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Abstract Polar biodiversity should be monitored as an

indicator of climate change. Biodiversity is mainly

observed by field survey although this is very limited in

broad inaccessible polar regions. Satellite imagery may

provide valuable data with less bias, although spatial,

spectral, and temporal resolutions are limited for analyzing

biodiversity. The present study has two objectives. The first

is constructing a first-ever vegetation map of the entire

Barton Peninsula, Antarctica. The second is developing a

monitoring method for long-term variation of vegetation,

based on satellite images. Dominant mosses and lichens are

distributed in small and sparse patches, which are limited

to analysis using high-resolution satellite images. A sub-

pixel classification method, spectral mixture analysis, is

applied to overcome limited spatial resolution. As a result,

vegetation shows high abundance along the southeastern

shore and low-to-medium abundance in the nearly snow-

free inland area. Even though spatial patterns of vegetation

were almost invariant over 6 years, there was interannual

variation in abundance aspects because of meteorological

conditions. Therefore, extensive and long-term monitoring

is needed for aspects of distribution and abundance. The

present results can be used to design field surveys and

monitor long-term variation as elementary data.
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Introduction

Vegetation in polar regions is adapted to an extreme

environment and must respond rapidly to climate change to

survive (Kennedy 1993; Robinson et al. 2003). Recently,

severe climate change in the maritime Antarctic area

around the Antarctic Peninsula has affected terrestrial

biodiversity including vegetation (Sancho and Pintado

2004; Bergstrom et al. 2006; Convey 2011; Torres-Mellado

et al. 2011). The resulting adaptation and changes of polar

vegetation may be used as an indicator of climate change

(Green et al. 2011). Changes of biodiversity may have a

positive effect on habitat productivity and biomass as well

as on populations of individual species at short- and mid-

term timescales. However, in the long term, biodiversity

changes may disrupt the ecosystem by increasing the

abundance of non-native species (Convey 2011). There-

fore, changes of polar vegetation should be observed as an

index used to monitor climate change, such as the distri-

bution and variation of species in terms of biodiversity.

Many studies have observed biodiversity in maritime

Antarctica (including King George Island) via field surveys

(Furmanczyk and Ochyra 1982; Barcikowski and Gurt-

owska 1999; Poole et al. 2001; Kim et al. 2006, 2007;

Pereira et al. 2007; Victoria et al. 2009). Field surveys have

limitations because they do not allow observation of a

broad area and variations occur during collection of data

time series and extensive surveys require substantial labor,

time, and cost. Most of all, human activity during field

surveys may permanently destroy portions of the very

slowly growing polar vegetation. These factors give field

survey data significant uncertainty, making it difficult to

quantitatively analyze variations of vegetation and the

effect of climate change over a broad area (Robin et al.

2011).
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Satellite imagery can provide valuable data, allowing

researchers to overcome the inherent limitations of field

surveys by observing a broad area simultaneously and

frequently with less bias. Many studies have surveyed polar

vegetation using various remote sensing data and analytical

techniques. Most focused on vegetation in Arctic tundra

(Stow et al. 2004; Frohn et al. 2005; Raynolds et al. 2006,

2008; Laidler et al. 2008; Bhatt et al. 2010). Relatively few

investigations have targeted Antarctic vegetation through

estimating vegetated areas, and these were not properly

validated because of a lack of in situ reference data

(Murray et al. 2010; Fretwell et al. 2011).

Mid- or low-resolution satellite images such as from

AVHRR, MODIS, Landsat, and SPOT have mainly been

used to observe vegetation in polar regions (Stow et al.

2004; Bhatt et al. 2010; Fretwell et al. 2011). However, the

flora of polar region tundra is predominantly mosses and

lichens, which usually have small size and height and

irregular distributions and community-level ground cover-

age (Raynolds et al. 2006). In this environment, mid- or

low-resolution images have limited use in analysis of

vegetation spatial coverage or distribution. Therefore,

high-resolution imagery is more appropriate for observa-

tion and analysis of polar vegetation (Murray et al. 2010).

Selection or design of classifiers is important for

improved vegetation mapping in a given environment

because there are no superior image classifiers for all

applications (Xie et al. 2008). Supervised or unsupervised

classification methods have generally been used in previ-

ous studies to detect or classify vegetation from satellite

images. Moreover, many studies have used vegetation

indices such as the normalized difference vegetation index

(NDVI) (Murray et al. 2010; Fretwell et al. 2011; Robin

et al. 2011). However, hard classification (such as super-

vised or unsupervised classification) methods that classify a

pixel as a material or land-cover type are not appropriate.

Because tundra consists of sparse vegetation communities,

they are mixed with neighboring rock, soil, and snow

within areas smaller than the pixel size of high-resolution

satellite imagery. Additionally, supervised classification

usually needs a sufficient number of samples for training

and validation, but extensive field surveys are limited in

broad, inaccessible areas. Therefore, soft classification

methods, which can facilitate estimation of a fraction of

surface materials at sub-pixel scale, are needed to accu-

rately estimate a vegetated area in polar regions (Théau

et al. 2005).

The objective of this study is satellite-based estimation

of simultaneous vegetation abundance and distributions

across Barton Peninsula, King George Island. First, we

constructed for the first time an elementary vegetation map.

Second, we developed a monitoring method for long-term

variation of the vegetation, based on the satellite imagery.

Two high-resolution satellite images were used to confirm

consistency of the method or results. A spectral mixture

analysis (SMA) method was used to estimate vegetation

abundance, because of sparse communities smaller than

pixel size.

Study area and data

Barton Peninsula

The study area is the Barton Peninsula of King George

Island, where King Sejong Station is located (Fig. 1). The

island is between 57�400W–59�000W and 61�500S–62�150S
and covers about 2,600 km2, making it the largest of the

South Shetland Islands. Almost all the land is covered with

glaciers, except in coastal regions where geologically

dominated environments remain poor in organic material

and nutrients. However, the relatively moderate maritime

climate allows the distribution of various species and

facilitates the transport of nutrients into the area, such as

wind-blown and precipitation-borne materials and guano

(Bokhorst et al. 2007). The Barton Peninsula is at the

southwestern part of King George Island and has an area of

about 10 km2 (4 9 3 km) and average elevation 150 m.

Meteorological records from King Sejong Station have

been collected since 1988, indicating an average annual

temperature -1.8 �C and average summer temperature

1.6 �C (December through February). Relative humidity

averages 89 %, with an average 437 mm of precipitation

annually (Lee et al. 1997; Chung et al. 2004). Flora on the

peninsula is predominately mosses, lichens and vascular

plants (Kim et al. 2006; Lee et al. 2008), in generally small

(sub-meter), sparse and irregular patches.

Satellite and field data

Two types of satellite images were used, KOMPSAT-2

(KOrea Multi-Purpose SATellite-2) multispectral and

QuickBird multispectral (Fig. 1). Table 1 provides specifi-

cations of these types. These high-resolution satellite images

typically have a spatial resolution of several meters, which is

adequate for estimating the abundance of sparse vegetation.

Further, these images have a near-infrared (NIR) band,

which is essential to effectively observe vegetative condi-

tions. In our study, a sub-image of each satellite image was

used to study the land area. The images were acquired with

different sun and sensor geometries (Table 1), with varying

shade areas. Union areas of shadow were masked out from

the two images for reasonable comparison between their

SMA results. Shadow was detected with a supervised clas-

sifier (maximum likelihood), in which training samples were

collected by visual interpretation of each image.
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Field surveys along the coast from January 7 to February

8, 2012, included measurements of vegetation coverage.

This coverage was measured by visual interpretation of

natural color photos taken of 50 9 50 cm quadrats

(10 9 10 cm for each sub-quadrat; Fig. 2). When a sub-

quadrat was covered by more than half with vegetation, it

was counted as vegetated. Vegetation coverage was

recorded with the fraction of vegetated sub-quadrats to

total number of sub-quadrats (25) using 10 % divisions.

Among a total of 88 field survey sites, only 29 were

selected for validation because those were concurrently

snow-free, shadow-free, and ‘‘homogeneous’’ in the

KOMPSAT-2 (Feb. 2012) image. Here, homogeneous site

means that pixels had similar brightness (or color) and

cover over at least 12 9 12 m (3 9 3 pixels), with con-

sideration of the KOMPSAT-2 image spatial resolution.

The 29 selected sites included predominant species (lichen

and moss) with even vegetation coverage, although a small

number of field survey sites were selected relative to the

total number of the site. The locations of selected valida-

tion sites are shown by green crosses in Fig. 1.

Methods

SMA was used to estimate vegetation abundance for every

pixel of each satellite image. SMA permits estimation of

fractions of each material within each image pixel, which is

assumed to be a mixture of certain materials such as veg-

etation, rock, and snow (the area of each pixel is not

expected to be covered by pure material). The vegetated

area is mixed with a background of soil and rocks, because

of the three-dimensional structure of vegetation. For the

preprocessing of SMA, minimum noise fraction (MNF)

transformation and pixel purity index (PPI) methods (or

algorithms) were used to collect endmembers (details in

sub-section on endmember collection), which are defined

as pixels with uniform coverage of plants or other material.

Figure 3 shows the SMA image processing procedure, and

each step is explained in the following sub-sections, with

examples based on the KOMPSAT-2 image.

Fig. 1 Vicinity map and

satellite images of study area on

Barton Peninsula, King George

Island, Antarctica. a, b are

locations of King George Island

and Barton Peninsula,

respectively, c is KOMPSAT-2

image from February 24, 2012,

and d is QuickBird image from

December 6, 2006. Vegetation

is shown in red, based on color

composite of bands

(RGB = NIR R G). Green

crosses indicate locations of 29

selected field survey sites in

2012

Table 1 Specifications of satellite imagery analyzed in this study

(B blue, G green, R red, NIR near-infrared)

Sensor KOMPSAT-2 Quickbird

Acquisition date 2012. 02. 24 2006. 12. 06

Spatial resolution 4 m 2.4 m

No. of band 4 (B, G, R,

NIR)

4 (B, G, R,

NIR)

Swath width 15 km 16.5 km

Digital quantization 10 bit 11 bit

Sun elevation angle 37� 46�
Sun azimuth angle 10� 41�
Sensor viewing angle (along

track)

0� -6�

Across track ?23� ?6�
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MNF transformation

Generally, principal component analysis (PCA) transfor-

mation is widely used to reduce the dimensionality of high-

dimensional data such as multispectral images. As an

advanced method, MNF transformation is used to simul-

taneously reduce both dimensionality and noise. This is a

well-known preprocessing method for hyperspectral ima-

ges of high dimensionality and high noise levels (Green

et al. 1988; Jensen 2005). An MNF transform involves the

following two steps of PCA analysis (Chen et al. 2003).

First, data are decorrelated and noise is rescaled. As a

result, noise has unit variance and no band-to-band corre-

lation. Then, coherent MNF eigen-images and noise-dom-

inated MNF eigen-images are created through a second

PCA.

We used MNF instead of PCA to enhance radiometric

quality of the KOMPSAT-2 image, as with IKONOS and

QuickBird (Kim et al. 2012). Figure 4 shows four MNF

eigen-images produced by MNF transformation of a KO-

MPSAT-2 image. Principle components (PCs) have high

brightness values in each MNF band. PCs of the first

(Fig. 4a), second (Fig. 4b) and third (Fig. 4c) MNF bands

are represented by higher (brighter) values for: (a) low-

albedo objects such as rock, soil, and water (b) mid-range

albedo objects, which include areas of vegetation with

some shaded snow, and (c) high-albedo objects, which

included snow areas, respectively. By interpretation of

MNF bands, the study area had three PCs with spectral

characteristics of bare surfaces (rock, soil, and water) with

low-albedo, vegetation with mid-albedo, and snow with

high-albedo. The fourth MNF band presented bright pixels

along edges between two land-cover (material) types

without a specific PC, which may be assumed a noise

component. Therefore, this band is excluded from further

analysis.

Pixel purity indexing

The PPI represents spectral purity of each pixel using a

relative value. To determine purity, pixels of coherent MNF

eigen-images are repeatedly projected onto n-dimensional

scatter plots (Jensen 2005). In each projection, most of the

extreme pixels are noted. Therefore, pixels with high values

are candidate endmembers in the PPI image. We determined

optimum numbers of iteration and thresholds of noted values

experimentally.

Endmember collection

An endmember is defined as the spectral signal of pure

material for those pixels with uniform coverage of plants or

Fig. 2 50 cm 9 50 cm quadrats (10 cm 9 10 cm for each quadrat)

used to survey vegetation abundance and species composition. a 60 %

coverage with mixed flora (lichen and moss), b 100 % coverage with

one species (lichen)

Fig. 3 Procedure used to estimate vegetation abundance
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other material. An endmember could be an extremely pure

pixel in the image, which can be determined by PPI ana-

lysis. Endmember candidates (pixels) are presented as

points based on 2D projection of MNF bands, and end-

members are always located in an extreme area. We

defined three materials as endmembers, snow, vegetation,

and bare surface (rock/soil and water). Another source of

an endmember could be field-measured spectra or spectral

libraries, although we collect endmembers from each

image itself. Each image had the same radiometric scale.

Spectral mixture analysis

Generally, the area of each pixel could be assumed to be

composed of a mixture of various materials. Based on this

assumption, the spectral signal of a pixel was defined as the

sum of the weighted signal of endmembers by the fraction

present in a pixel (Eq. 1). Therefore, SMA can estimate

sub-pixel information (abundance) using an inverse cal-

culation (Okin et al. 2001).

Rmix ¼ fA � RA þ fB � RB þ fC � RC þ e ð1Þ

where R is the spectral signal of each endmember or mixed

pixel, f is the fraction (abundance) of each endmember in a

pixel, A–C are each endmember, and e is error. The fraction

of each endmember may be estimated inversely with

known variables (Rmix, RA, RB, and RC). In our study, SMA

was implemented with three endmembers (snow,

vegetation, and bare surface) for three MNF bands. ENVI

4.8 software (Exelis Inc., McLean, VA, USA) was used for

SMA, in which we did not use constraints to converge the

error to zero as much as possible.

Validation

Field-measured vegetation abundance data were used to

validate estimated vegetation abundance. For the KOMP-

SAT-2 image, 29 sites were used to compare estimated

(SMA) vegetation abundance with measured (field survey)

abundance. For the QuickBird image, estimated vegetation

abundance was compared with vegetation coverage from a

vegetation map that covered 0.4 km2 around King Sejong

Station (Kim et al. 2007) because of the lack of in situ field

data. The vegetation map was generated with field survey

data collected from 2001 to 2003.

Results

Abundance estimation from KOMPSAT-2 (February

2012)

Abundances of endmembers were estimated using a KO-

MPSAT-2 image from February 2012. Figure 5 shows

abundance images of (a) vegetation, (b) bare surface, and

(c) snow, with gray scale (0–1). Vegetation covered 34 % of

Fig. 4 MNF transformed bands from a KOMPSAT-2 image; MNF

bands 1–3 have higher values for principal components (low-, middle-

, and high-albedo objects), respectively, and MNF band 4 has a higher

value for noise or edge of different cover types. a MNF band 1 (low-

albedo objects: rock, soil, and water), b MNF band 2 (middle-albedo

objects: vegetation and some shaded snow), c MNF band 3 (high-

albedo objects: snow), d MNF band 4 (noise)
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the entire area (Table 2). Vegetation was very abundant

along the southeastern shore. Most snow-free areas had some

vegetation in the mountainous inland areas, although most of

these areas have not been surveyed. Bare surface (including

rock, soil, and water) had 37 % abundance. Bare surface was

distributed broadly in nearly snow-free areas, because rock

and soil were mixed with sparse vegetation or exposed

without vegetation. Snow showed 29 % abundance, with a

massive glacier covering almost all the northeast peninsula.

Large and small patches of snow covered other regions.

Vegetation coverage data from the 29 field survey sites

were used to validate the estimated vegetation abundance

from the KOMPSAT-2 image. Figure 6 shows a scatter

plot illustrating the relationship between the estimated

abundance and field-surveyed coverage data at the 29 sites.

The scatter plot reveals a strong linear relationship, with R2

of 0.72, correlation coefficient 0.85, and root mean square

error 0.13 (13 %).

There are uncertainties as follows. First, each field survey

site covered a small area (0.5 9 0.5 m) relative to a single

pixel of the KOMPSAT-2 image (4 9 4 m), even if a highly

homogeneous area was selected as a validation site. Second,

satellite images and validation field reference data had a

1-month gap. From experience, the area has a strongly

variable phenology over short periods, because of meteo-

rological conditions. Third, spectral anomalies should be

considered, with spectral characteristics varying by species.

Some species do not have an ordinary vegetation spectrum,

high reflectance in NIR, which might result in lack of

detection with the spectral range of the images used.

Abundance estimation from QuickBird (December

2006)

A QuickBird image from December 2006 was used to

remove an unexpected bias from a satellite image acquired

Fig. 5 Estimated abundance image from a KOMPSAT-2 image

acquired in 2012 as a linear scale 0–1. a Vegetation, b bare surface,

c snow

Table 2 Estimated abundance (%) of each endmember based on

KOMPSAT-2 and QuickBird images

Endmember KOMPSAT-2

(2012) (%)

Quickbird

(2006) (%)

Difference

(2006–2012) (%)

Vegetation 34.2 37.0 ?2.8

Bare

surface

37.0 42.3 ?5.3

Snow 28.8 20.7 -8.1

Fig. 6 Relationship of vegetation abundance between field survey

and SMA estimation
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at a certain time. Slowly growing vegetation in polar region

allows confirmation of the consistency of results, although

QuickBird image was acquired 6 years earlier than the

KOMPSAT-2 one. The consistency is described in detail in

the following sub-section. Figure 7 shows grayscale

abundances of endmembers of (a) vegetation, (b) bare

surface, and (c) snow. Vegetation occupied 37 % of the

peninsula (Table 2) and showed very high abundance along

the southeastern shore. Broad inland areas had low-to-

medium abundances of vegetation, except in the north-

eastern glacier area. Bare surface had 42 %, which was

distributed over the entire area with various abundances.

This surface showed some abundance in snow-covered

areas, which was caused by a layer of water a top melting

snow. Snow melt was evidenced by low-to-medium

abundance (Fig. 7c), with 21 % abundance over the study

area. The summer temperature in 2006 was 2.3 �C, which

was 0.7 �C higher than the 25-year average.

Estimated vegetation abundance based on the QuickBird

image unfortunately could not be quantitatively validated,

because in situ field survey data were unavailable for this

image. Estimated abundance was compared using vegetation

coverage from a vegetation map (Kim et al. 2007) of the King

Sejong Station vicinity. Estimated abundance (by SMA) and

coverage (by map) of vegetation were 43 and 47 %, respec-

tively. These data had a time gap between the image and field

survey of Kim et al. (2007). The results of both methods show

a similar distribution of vegetation between the SMA

(Fig. 8a) and vegetation map (Fig. 8b). Therefore, our

method allows researchers to acquire both distribution and

abundance of vegetation accurately and consistently.

Consistency of distribution and variation of abundance

Distribution and abundance of vegetation were compared

to confirm consistency of both results. Figure 9a and b

shows extensive very abundant vegetation along the

southeastern shore and low-to-mid abundance in inland

areas. Vegetation had the same (or similar) distributions

(locations), although some areas had different vegetation

distributions because of variable snow distributions

between 2006 and 2012. Therefore, we infer that polar

vegetation growing in certain environments does not

change drastically over a short period (Selkirk and Skotn-

icki 2007). However, interannual variation is shown from

the aspect of abundance in Fig. 9. The summer season can

be defined from December through February in maritime

Antarctica. Generally, February had higher temperatures

and less snow coverage than December. Figure 9b

(December 2006) shows less snow coverage and higher

vegetation abundance than Fig. 9a (February 2012) across

the peninsula. This variation is caused by high tempera-

tures and abundant moisture from melting snow. Some

studies have reported that mosses and lichens have either

activation or increased annual growth rate because of high

moisture and temperature (Pannewitz et al. 2003; Sancho

and Pintado 2004). Given our result, we believe that veg-

etation abundance per unit area varies with weather con-

ditions, although the vegetation distribution (location) does

not change drastically over short periods.

Discussion

The present study mapped vegetation from two aspects.

The first was a first-ever vegetation mapping of the Barton

Fig. 7 Estimated abundance image acquired from QuickBird in 2006

as a linear scale 0–1. a Vegetation, b bare surface, c snow
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Peninsula. The second was development of a method for

long-term monitoring of vegetation based on satellite

image. An SMA method was used to estimate vegetated

area for sparse communities of sizes smaller than that of

the two high-resolution satellite images used. The esti-

mated vegetation maps frequently showed very high

abundance along the southeastern shore and low-to-med-

ium abundance in a nearly snow-free inland area. Estima-

tion accuracies were high, with R2 of 0.72 from comparison

to field data and a 3 % difference from comparison to an

existing map. The results showed that vegetation had a

consistent distribution and location over 6 years. Vegeta-

tion was more abundant in December 2006 than February

2012, although February generally had higher temperatures

and less snow coverage than December. This means that

there are interannual variations in the aspect of abundance,

caused by meteorological conditions. Therefore, more

extensive and long-term monitoring based on satellite data

is needed for aspects of distribution and abundance.

Given the above, this study produced satellite image-

based vegetation maps for broad inaccessible Antarctic

tundra, such as the Barton Peninsula study area. The veg-

etation maps showed high accuracy and consistency and

may be used as elementary data for field survey design and

monitoring of long-term variation.

In future studies, uncertainties should first be mitigated.

These are characterized by differences between field sur-

vey and pixel areas, time gaps, and spectral characteristics

of species. Second, the potential for species discrimination

using remotely sensed imagery should be assessed using

Fig. 8 Distribution of vegetation by (a) SMA estimation and (b) modified vegetation map by Kim et al. (2007) around King Sejong Station,

where, gray color indicates vegetated area

Fig. 9 Combined abundance map of vegetation and bare surface (B.S.) in (a) February 2012 and (b) December 2006. Each color presents

mixture ratios between vegetation and bare surface. White color indicates snow or masked shadow area
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species-specific spectral signatures. Third, it is necessary to

investigate relationships between vegetation distribution

and various habitat factors, such as elevation, topography,

temperature, and moisture. Therefore, simultaneous

hyperspectral remote sensing and sufficient or suitable field

data are periodically needed, with consideration of both

spectral and spatial resolution of remote sensing data.

These data should be used to evaluate the potential for

biodiversity monitoring via remote sensing, to be used as

an indicator of climate change. For the analysis, we need to

pay attention to data quality and skill of users in using the

method those might affect to result of SMA.
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