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Landfast sea ice (fast ice) means sea ice that is attached to the shoreline with little or no
motion in contrast to pack ice which drifts on the sea. As fast ice plays an important role
in the environmental and biological systems of the Antarctic, it is crucial to accurately
monitor the spatiotemporal distribution of fast ice. Previous studies on fast ice using
satellite remote sensing were mostly focused on the Arctic and near-Arctic areas,
whereas few studies were conducted over the Antarctic, especially the West Antarctic
region. This research mapped fast ice using multisensor data from 2003 to 2008 based
on machine learning approaches – decision trees (DTs) and random forest (RF). A total
of seven satellite-derived products, including Advanced Microwave Scanning
Radiometer for the Earth observing system brightness temperatures and sea ice con-
centration, Moderate Resolution Imaging Spectroradiometer (MODIS) ice surface tem-
perature (IST) and Special Sensor Microwave/Imager ice velocity, were used as input
variables for identifying fast ice. RF resulted in better performance than that of DT for
fast ice classification. Visual comparison of the fast ice classification results with 250-m
MODIS images for selected areas also revealed that RF outperformed DT. Ice velocity
and IST were identified as the most contributing variables to classify fast ice.
Spatiotemporal variations of fast ice in the East and West Antarctic were also examined
using the time series of the fast ice maps produced by RF. The residence time of fast ice
was much shorter in the West Antarctic than in the East.

Keywords: landfast sea ice; Antarctic; random forest; decision trees

1. Introduction

Landfast sea ice (hereafter fast ice) in the Antarctic is fastened to the coastline or the
seaward edge of floating glaciers, as distinct from pack ice which drifts freely on the sea
surface. The spatial distribution of fast ice and its temporal variation are closely related
with the physical and environmental systems of the Antarctic. The variability of melt
onset and freeze-up of fast ice is strongly correlated with changes in seawater and surface
air temperature, wind speed, and precipitation on the ice surface such as snow accumula-
tion (Heil 2006). An increase in the maximum thickness of fast ice corresponds to a
decrease in oceanic heat flux (Heil, Allison, and Lytle 1996). Moreover, fast ice can play
an important role in the marine ecosystems of the Antarctic Ocean. It has been reported
that fast ice provides an extensive habitat for many organisms ranging from bacteria to
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various marine bird and mammal species, for example, successful breeding places for
Emperor penguins and Weddell seals (Massom et al. 2009). Therefore, it is very important
to monitor the spatial distribution and temporal variation of the properties of the Antarctic
fast ice such as its extent and thickness.

Monitoring of the Antarctic fast ice has been conducted using in situ observations
(Fedotov, Cherepanov, and Tyshko 1998; Heil 2006; Heil, Allison, and Lytle 1996; Lei
et al. 2010; Tang et al. 2007) and satellite remote sensing (Fraser et al. 2012; Giles,
Massom, and Lytle 2008; Massom et al. 2010; Fraser, Massom, and Michael 2009, 2010;
Fraser 2011; Mahoney et al. 2007). Spatial distribution and thickness of the fast ice in
Prydz Bay, East Antarctica, were investigated by the Antarctic Fast Ice Network project, a
representative research program of in situ observations of the Antarctic fast ice promoted
by Antarctic Climate & Ecosystems during the period of 1950–2021 (Heil, Gerland, and
Granskog 2011). However, in situ observations have limitations in spatial continuous
monitoring of the fast ice over vast areas at a continental scale.

Satellite remote sensing can be used as an alternative way of monitoring fast ice as it
covers vast areas with high temporal resolution. Satellite-based research on fast ice can be
divided into three categories in terms of sensor types by optical, active microwave, and
passive microwave sensors. Optical sensors such as Landsat, the Moderate Resolution
Imaging Spectroradiometer (MODIS), and the Advanced Very High Resolution
Radiometer (AVHRR) have low and medium spatial resolution from dozens of meters
to a few kilometers, while they observe the same area at least every other day (except the
Landsat series). Fraser, Massom, and Michael (2009) used thermal infrared (TIR) and
visible MODIS data to produce cloud-free composite images for fast ice detection at the
Mertz Glacier Tongue, East Antarctica. Cloud-free TIR/visible AVHRR images were used
for investigating the distribution and variations of fast ice along the Adélie coast, East
Antarctica (Massom et al. 2009). However, optical sensors have limitations including the
fact that they cannot observe the surface under cloudy sky or at night.

Microwave sensors have provided high-quality images independent of weather con-
ditions and sun illumination. Synthetic aperture radar (SAR), an active microwave sensor,
has observed surface properties with high spatial resolution of a few meters. Meyer et al.
(2011) detected the seaward fast ice edge in Arctic regions using the interferometric
technique with L-band SAR data. The fast ice edge was also delineated using Radarsat
SAR images in northern Alaska and northwestern Canada (Mahoney et al. 2007). Giles,
Massom, and Lytle (2008) created a distribution map of fast ice in part of the East
Antarctica using an image correlation method with Radarsat ScanSAR imagery. Despite
their advantages, it is difficult to investigate sea ice at a continental or global scale using
active microwave sensors due to their narrow observation area.

Passive microwave sensors such as the Advanced Microwave Scanning Radiometer
for the Earth observing system (AMSR-E), the Special Sensor Microwave/Imager (SSM/
I), and the Special Sensor Microwave Imager/Sounder (SSMIS) can be successfully
utilized for global-scale research on sea ice. Passive microwave sensors measure the
surface radiation properties in various channels, such as sea ice concentration and sea
ice velocity, with low spatial resolution of a few kilometers. Nevertheless, the passive
microwave sensors can be successfully utilized for time series monitoring of sea ice at a
global scale because they observe the entire Arctic and Antarctic areas every day. Tamura
et al. (2007) monitored fast ice using SSM/I brightness temperature data to detect coastal
polynyas in four sectors around the Antarctic coast.

As optical and microwave sensors have distinct strengths and weaknesses, several
researchers have tried to fuse the strengths of each sensor for mapping the fast ice over a
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wide area. Fraser, Massom, and Michael (2009) suggested a method of time series
compositing cloud-free imagery from MODIS to detect fast ice in the East Antarctic, in
which brightness temperature and concentration of sea ice derived by SSM/I with 25-km
spatial resolution were used to define the extent of fast ice. Fraser, Massom, and Michael
(2010) improved the accuracy of fast ice detection by replacing the products derived by
SSM/I with those by AMSR-E, of which the spatial resolution is 6.25 km. Ushio (2006)
analyzed the distribution and variations of fast ice in Lützow-Holm Bay, East Antarctica,
with a time series of TIR images from AVHRR data and in situ measurements. The
distribution of pack ice was determined with sea ice concentration data from SSM/I
images.

While some studies were conducted to map and explore fast ice in the East
Antarctic, few were performed over West Antarctica. Thus, this research aims at
mapping and monitoring fast ice over the entire Antarctic area using time series satellite
data. The objectives of this study are to (1) develop an automated model based on
machine learning approaches for mapping fast ice through the synergistic use of time
series optical and passive microwave data-sets for the entire Antarctic area, (2) explore
accuracy patterns of the time series mapping results, (3) examine important variables for
fast ice identification by model and how they affect the fast ice mapping results, (4)
compare fast ice mapping results with the manually extracted fast ice edges from 250-m
MODIS images for specific regions of interest, and (5) analyze the spatiotemporal
variations of the Antarctic fast ice.

2. Data and methods

2.1. Data-set

2.1.1. Fast ice reference data

Fast ice maps of the East Antarctica from 2003 to 2008 produced by Fraser, Massom,
and Michael (2010) were used as a reference data-set (Table 1). The reference maps
were generated from 20-day composites of MODIS imagery in which cloud-covered
areas were removed using the MOD35 cloud mask products (Fraser, Massom, and
Michael 2009, 2010). Fast ice adjacent to the entire East Antarctic coastline was
extracted using the MODIS composite images based on manual digitization with the
help of AMSR-E sea ice concentration data (Fraser, Massom, and Michael 2010). The
detailed procedures for deriving the reference data are described in Fraser, Massom, and
Michael (2009, 2010).

2.1.2. Passive microwave data

Brightness temperature and sea ice concentration data from AMSR-E were used in this
study (Table 1) (Cavalieri, Markus, and Comiso 2014). Since fast ice has radiative
properties distinctive from pack ice due to emissivity difference, the brightness tempera-
ture measured by passive microwave sensors such as SSM/I and AMSR-E can be used as
powerful tools to identify sea ice types. SSM/I measures vertically and horizontally
polarized brightness temperature at 19.35, 37.0, and 85.5 GHz and vertically polarized
brightness temperature only at 22.235 GHz. AMSR-E is composed of six frequencies:
6.925, 10.65, 18.7, 23.8, 36.5, and 89.0 GHz (Spreen, Kaleschke, and Heygster 2008;
Comiso, Cavalieri, and Markus 2003). All frequencies of the AMSR-E instrument
measure both vertically and horizontally polarized brightness temperature, which enables
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a more detailed analysis of the physical properties of sea ice than the SSM/I-derived
brightness temperature. The brightness temperature data measured at the 18.7, 23.8, 36.5,
and 89.0 GHz channels of AMSR-E from 2003 to 2008 were used. Those channels are
very effective for differentiating the radiative properties depending on sea ice types
because of the dependency of polarization and spectral properties of the channels on
emissivity differences (Cavalieri 1991).

The passive microwave sensors have provided sea ice concentration every day within
a few tens of kilometers. As fast ice forms over a wide area attached to the coastlines, sea
ice concentration of the fast ice is about 100%. Over pack ice areas, passive microwave
sensors observe brightness temperature from both ice and open water, which results in low
sea ice concentration. AMSR-E daily sea ice concentration over the Antarctic from 2003
to 2008 was used. The grid spacing of AMSR-E sea ice concentration is 12.5 km which is
finer than that of SSM/I sea ice concentration of 25 km. Sea ice velocity derived by SSM/I
was also used to classify the ice types (Table 1) (Fowler, Emery, and Tschudi 2013). The
motion of fast ice is very small because it is fixed at the coastline or shallow seabed, while
pack ice may move considerably in a short time period as the ice drifts freely by ocean
current and wind.

2.1.3. Optical sensor data

Fast ice and pack ice have different physical properties such as snow depth on ice surface,
ice thickness, and surface wetness, which determine the ice surface temperature (IST)
(Hall et al. 2004). This means that the surface temperature of sea ice can be used as a
variable to classify sea ice into fast ice and pack ice. The daily IST with 4-km spatial
resolution measured by MODIS (MOD29E1D product) from 2003 to 2008 was used in
this study (Table 1) (Hall, Salomonson, and Riggs 2006). Although MODIS IST is also
provided with 1-km resolution, the aggregated 4-km IST data were used considering the
spatial resolution of the other input variables, data processing time, and computational
demand as the study area covers the entire Antarctic. Daily sea ice reflectance from the
MOD29E1D product between 2003 and 2008 was used to define the extent of sea ice and
to mask the open water area.

Table 1. Input variables and reference data information.

Satellite
sensors Variables

Spatial
resolution (km)

Temporal
interval Units

AMSR-E 18 GHz H/V 12 Daily Kelvin (K)
23 GHz H/V
36 GHz H/V
89 GHz H/V
Sea ice concentration (SIC) Percentage (%)

MODIS Ice surface temperature (IST) 4 Daily Kelvin (K)
SSM/I Ice velocity 25 Daily cm/sec
Fast ice reference data by Fraser, Massom,
and Michael (2010)

1 20 days

242 M. Kim et al.
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2.2. Methods

Figure 1 summarizes the process flow of the fast ice monitoring conducted in this study. A
total of 11 input variables were used, including sea ice concentration and eight dual
polarization frequency channels from AMSR-E, IST from MODIS, and ice velocity from
SSM/I. Since the reference fast ice data were produced from the 20-day MODIS composite
images (Fraser, Massom, and Michael 2010), the daily input variables were aggregated into
the same 20-day composites using the statistical mean function. During the composite
process of the MODIS IST data (MOD29E1D product), the sea ice by reflectance (i.e., sea
ice vs. non-sea ice) variable contained in the MODIS IST product was also used to mask out
non-sea ice pixels. Variables from the passive microwave sensors were all available for the
whole Antarctic region over the study period (i.e., 2003–2008), whereas the IST data were
not always available for some areas due to cloud cover during the composite period. Thus,
the images <20 could be used in compositing IST data. The input variables used in this
study have different spatial resolutions. All input variables and the fast ice reference data
were resampled with 4-km resolution using bilinear spatial interpolation.

The sea ice type (i.e., fast ice vs. pack ice) was set to a dependent variable for binary
classification. Since the fast ice reference data were only available for the East Antarctic,

Figure 1. The process flow of the research.
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samples to train and validate machine learning-based classification models were extracted
only from that region. Within the sea ice extent determined by AMSR-E sea ice concentra-
tion data, the area excluding the reference fast ice was considered as pack ice. One million
samples (i.e., pixels, approximately 5.2% of the sea ice reference pixels) were selected from
the sea ice reference data through stratified sampling as the ratio of 1:4 between fast ice and
pack ice for the East Antarctic. Eighty percent of the samples by class were randomly
extracted to train the machine learning-based models to classify the sea ice. The remaining
200,000 samples were used as the test data-set to validate the developed models.

Machine learning techniques have been applied to various remote sensing applications
including land cover classification, change detection, and biophysical parameter estimation
(Maxwell et al. 2014; Ghimire et al. 2012; Li, Im, and Beier 2013; Kim et al. 2014; Long et al.
2013; Rhee, Park, and Lu 2014). Two rule-based machine learning approaches – decision trees
(DTs) and random forest (RF) – were used to map fast ice in the Antarctic region. See5.0, a
commercial program developed by RuleQuest Research, Inc. (Quinlan 2013), was used to
implementDTs. It uses recursive binary splits to extract patterns or rules in a data-set. As See5.0
produces rule-based results (if–then rules), users can interpret the results in a more straightfor-
ward and easier way than other methods such as artificial neural networks. RF creates a
collection of trees based on Classification and Regression Trees (CART), which is a rule-
based DT similar to See5.0 (Breiman 2001). Each tree is grown using two randomizations in
selecting training samples and split variables to overcome the limitations of CART, including
dependency on a single tree and sensitivity to training samples. A subset of the training samples
(typically 67% of the samples) is randomly selected, and the remaining samples (out-of-bag
data) are used to internally validate the model. The second randomness is that in each node of a
tree, a subset of input variables (typically

p
n with n as the number of input variables) is

randomly selected. The grown trees are then combined using either a simple majority voting or
a weighted majority voting strategy. In this study, RF models were developed using an add-on
package inR software. All optionswere set to the default valueswith 500 as the number of trees.
Bothmachine learningmodels provide relative variable importance that can be used to examine
the contribution of each input variable for fast ice mapping. See5.0 provides attribute usage
information that shows how frequently a variable is used at each split. RF provides mean
decrease accuracy in classification when a variable is permuted, which means that the greater
the decrease in accuracy, the more important the variable is.

To assess the performance of the DT and RF models, confusion matrices produced
using the test data-set were examined, including overall accuracy and Kappa coefficient of
agreement (Jensen 2005). Furthermore, the time series of fast ice mapping results was
compared with all the reference fast ice data over the East Antarctic (Fraser, Massom, and
Michael 2010) to calculate the time series of producer’s and user’s accuracies of fast ice
(Equations (1) and (2)).

Producer’s accuracy ¼ OP

RP
� 100 (1)

User’s accuracy ¼ OP

MP
� 100 (2)

where OP is the number of overlapping pixels between reference and modeled fast ice, RP is
the number of reference fast ice pixels, and MP is the number of modeled fast ice pixels.
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As the fast ice reference data were available only for the East Antarctic, additional
visual assessment using relatively high-spatial-resolution MODIS images was conducted.
National Snow & Ice Data Center (NSIDC)-provided 250-m MODIS Antarctic ice shelf
images were used to delineate the fast ice edges based on visual interpretation. Fast ice
mapping results of the models were compared with the MODIS-derived fast ice images
over selected areas of interest in the Mertz and Abbot Ice Shelf regions in the East and
West Antarctic, respectively. While the Mertz region documented relatively slow changing
of fast ice distribution, the Abbot region showed rapid change based on the multiyear sea
ice information (Massom et al. 2010; Worby et al. 2008).

The spatiotemporal patterns in the fast ice distribution were examined with the 6-year
time series of the fast ice extent produced. Two frequency metrics of fast ice occurrence
were calculated: the number of switches between occurrence and disappearance of fast ice
(1) by pixel and (2) by applying weighted average depending on the number of compo-
sites during fast ice residence (Equation (3)).

P
NC � n
P

n
(3)

where NC is the number of composites during fast ice residence, and n is the number of
each NC found throughout the study period.

3. Results and discussion

3.1. Fast ice mapping model performance

The Antarctic fast ice mapping models developed by DT and RF were validated using the
200,000 test data-set. The DT and RF models produced similar overall accuracies of
93.09% and 94.77%, respectively (Tables 2 and 3). The RF model resulted in slightly
higher performance of sea ice mapping, especially fast ice, than the DT model. The user’s
and producer’s accuracies of pack ice were higher than those of fast ice for both models.
This is because the sample size of pack ice was much larger than that of fast ice, and the
pack ice samples located far from the coast were easily distinguished from fast ice
samples due to a relatively lower sea ice concentration. While the overall accuracy was
similar between the two models, the Kappa coefficient of agreement resulted in a greater
difference, ~6%, which showed the superiority of RF to DT.

Table 2. Accuracy assessment results for decision trees using the test data-set.

Reference

Classified as Fast ice Pack ice Sum User’s accuracy

Fast ice 32,274 6099 38,373 84.11%
Pack ice 7726 153,901 161,627 92.22%
Sum 40,000 160,000 200,000
Producer’s accuracy 80.69% 96.19%
Overall accuracy 93.09%
Kappa coefficient 78.06%
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The box plots of the producer’s and user’s accuracies by model calculated using the
reference fast ice data-set in the East Antarctic for the entire period (Fraser, Massom, and
Michael 2009, 2010) are shown in Figure 2. In Austral winter (composites from 6 to 12),
the user’s and producer’s accuracies of fast ice were significantly low or uncalculated
because MODIS IST was not available during the season. Both models produced similar
producer’s and user’s accuracies of fast ice through all composites. RF produced a bit
higher accuracy than DT for identifying fast ice. For the first five composites, the
producer’s accuracy was higher than the user’s accuracy for both models, whereas the
other composites showed a reversed trend. Both models produced very low producer’s
accuracy near the winter season (i.e., composites 7 and 11) due to the limited availability
of the MODIS IST data.

The relative importance of variables to fast ice mapping for both models is presented
in Tables 4 and 5. Ice velocity and IST were the most contributing variables for fast ice
classification regardless of the model used. The velocity of fast ice fixed to the shoreline
or an ice shelf is close to 0 m/s (Mahoney, Eicken, and Shapiro 2007; Mahoney et al.
2006), whereas pack ice can be easily moved by ocean currents and winds, and thus, it
shows larger velocity than fast ice (Heil and Allison 1999). It reveals that ice velocity can
be used as a major variable for distinguishing fast ice from pack ice.

Table 3. Accuracy assessment results for random forest using the test data-set.

Reference

Classified as Fast ice Pack ice Sum User’s accuracy

Fast ice 36,319 6773 43,092 84.28%
Pack ice 3681 153,227 156,908 97.65%
Sum 40,000 160,000 200,000
Producer’s accuracy 90.80% 95.77%
Overall accuracy 94.77%
Kappa coefficient 84.13%

Figure 2. Box plots of the producer’s accuracy and user’s accuracy for quantitative examination of
the fast ice mapping results of (a) decision trees and (b) random forest. For full color versions of the
figures in this paper, please see the online version.

246 M. Kim et al.

D
ow

nl
oa

de
d 

by
 [

U
ls

an
 N

at
io

na
l I

ns
tit

ut
e 

of
 S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y 
(U

N
IS

T
)]

 a
t 1

9:
40

 0
4 

Ju
ne

 2
01

5 



MODIS IST was identified as the second contributing variable for the fast ice mapping.
The IST difference between fast ice and pack ice could be due to the subpixel effects in that
fast ice typically has higher ice concentration while pack ice, especially far from the coast,
has lower concentration affected by open water at 4 × 4 km resolution (Hall et al. 2001).
Open water has a higher surface temperature than sea ice (Hall et al. 2004). Fast ice
typically forms at large size, while pack ice is distributed in patches, which results in a
relatively higher IST for pack ice. However, the unexpected high IST values over fast ice
regions are occasionally found where fast ice is formed for a small area, often occurring in
Austral summer (Fraser, Massom, and Michael 2010). IST could also be different between
the two types of sea ice due to different physical characteristics. The surface temperature of
sea ice depends on the physical properties of sea ice such as emissivity, thickness, and
salinity (Hall et al. 2004; Maslanik and Key 1993). Thick sea ice typically has a lower
surface temperature than that of thin ice due to its lower emissivity in the infrared bands
(Hall et al. 2004). Fast ice can thicken up to a few meters during the ice growing season
(Heil, Allison, and Lytle 1996), and thus, it would have a lower surface temperature than the
drifting pack ice, which is typically less than 1 m thick (Worby et al. 2008).

While the ice velocity and IST were dominantly important compared to the other
variables in the RF model, SIC showed a very high importance rating in the DT model
following ice velocity and IST as SIC varies by sea ice type (Comiso, Cavalieri, and
Markus 2003). AMSR-E brightness temperatures at 36-GHz, vertically polarized channels
and 18-GHz, both vertically and horizontally polarized channels also showed high
importance ratings in the DT model, which implies that the brightness temperatures varied
depending on sea ice types and ice thickness (Comiso et al. 1997). The three channels
have been used to distinguish sea ice types (Comiso et al. 1997). For thick sea ice such as
fast ice or multiyear ice, the brightness temperatures are very low ~190 K at 18-GHz H
and 36-GHz V channels and 220 K at the 18-GHz V channel, while thin first-year ice such
as pack ice and drift ice radiates much higher brightness temperatures at the three channels
(~240 K at the 18 GHz H and 36 GHz V; and ~250 K at 18 GHz V) than thick sea ice
(Comiso et al. 1997). In addition, as 89-GHz channels are less affected by snow or ice
layers on sea ice than 36- and 18-GHz channels under clear sky conditions, 89-GHz
channels can be used to differentiate the types of sea ice on which snow or ice accumu-
lates (Markus and Cavalieri 2000).

The contribution of the brightness temperatures measured at the other AMSR-E chan-
nels to the sea ice classification was relatively low, especially at 36 GHz H, showing the

Table 4. Attribute usage of the decision trees model.

VEL IST SIC 18H 36V 18V 89V 89H 23V 23H 36H

100% 96% 92% 90% 87% 86% 80% 73% 62% 28% 7%

Table 5. Mean decrease accuracy calculated using out-of-bag data when a variable was permuted
in random forest. The greater the decrease in accuracy, the more contributing the variable was.

VEL IST 23V 18H 89H 36V 23H 89V 18V SIC 36H

607.34 354.89 160.82 160.50 147.04 136.84 111.61 111.40 105.72 103.35 99.53
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lowest importance for both models. This is because the 36-GHz H channel is sensitive to
changes in atmospheric water vapor content instead of sea ice properties (Maslanik 1992).

3.2. Comparison with MODIS images

Fast ice mapping results from the DT and RF models were compared with the fast ice area
extracted from MODIS images with 250-m spatial resolution (band 2) over the Mertz Ice
Shelf region in the East Antarctic and Abbot Ice Shelf in the West Antarctic with different
periods considering the variability of fast ice (Figures 3 and 4). When the fast ice near

Figure 3. Comparison of fast ice mapping results by model with the 250-m MODIS images during
the periods of relatively stable fast ice around (a) Mertz and (b) Abbot Ice Shelf in the East and West
Antarctica, respectively. The lines in (a) and (b) indicate fast ice edges delineated from the MODIS
images based on visual interpretation. Decision tree results are shown in (c) and (d), while random
forest results are in (e) and (f). MODIS images with the maximum fast ice cover were used as
background images in (a) and (b).
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Mertz Ice Shelf was relatively stable during 13 days of the MODIS images (Figure 3a),
the RF model detected fast ice better than DT compared with the actual fast ice areas
(Figures 3c and 3e). This might be because the RF model used the ice velocity and IST
much more significantly than DT to classify ice types compared to the other variables,
such as the brightness temperatures at 18 GHz H and V and 36 GHz V. For example, wide
ice floes located to the right of the fast ice appeared to be dropped out of the fast ice, and
thus, they had reflectivity and morphology similar to the fast ice. Therefore, the

Figure 4. Comparison of fast ice mapping results by model with the 250-m MODIS images during
the periods of rapidly changing fast ice around (a) Mertz and (b) Abbot Ice Shelf in the East and
West Antarctica, respectively. The lines in (a) and (b) indicate fast ice edges delineated from the
MODIS images based on visual interpretation. Decision tree results are shown in (c) and (d), while
random forest results are in (e) and (f). MODIS images with the maximum fast ice cover were used
as background images in (a) and (b).
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microwave radiation properties, i.e., the brightness temperature, of the ice floes were
similar to those of the fast ice (not shown). It resulted in misclassification between the fast
ice and ice floes when the DT model with high importance of the brightness temperatures
at 18 GHz H and V and at 36 GHz V was used. Since the ice floes and fast ice had
different ice velocity and IST values, RF was able to identify the fast ice in the region
relatively better than DT.

For the relatively stable fast ice during 8 days in Abbot Glacier in the West Antarctica
(Figure 3b), both the DT (Figure 3d) and RF (Figure 3f) models mapped much smaller
fast ice areas than the actual fast ice areas. The low spatial resolution of the passive
microwave-derived variables (12–25 km) could be a major reason as the fast ice was very
narrowly attached to the shoreline. In addition, MODIS IST with relatively higher spatial
resolution was not always available for the period of the corresponding composite due to
heavy clouds (i.e., ~25% available on average), which resulted in very limited examina-
tion of the temporal variation of the fast ice areas.

Previous studies reported that the 20-day compositing period well represented the
variation, growth, and breakup of fast ice, and thus, it is enough to map fast ice areas in
the polar region (Fraser, Massom, and Michael 2010; Mahoney et al. 2006). However,
substantial changes in the fast ice areas in 20 days were often observed in both the East
and West Antarctic from the MODIS images (Figure 4). This implies that the 20-day
composite interval might not be sufficient to represent the variation of fast ice, especially
where it rapidly changes over a short period of time. For such areas, fast ice should be
monitored with a compositing period less than 20 days. For the rapidly changing period
around Mertz (Figure 4a) and Abbot Ice Shelf (Figure 4b), the performance of the RF
(Figure 4e and 4f) model was slightly better than DT (Figure 4c and 4d) through the
visual validation of the fast ice mapping results with the high-resolution MODIS images.
This also corresponds to the accuracy assessment results of the classification models
(Tables 2 and 3).

3.3. Spatiotemporal variation of fast ice in the East and West Antarctic

As the RF model produced better fast ice classification results than the DT model, the
RF-derived maps were used to examine the spatiotemporal variation of fast ice. Fast ice
in the entire Antarctic Ocean was mapped by composite period (i.e., 20 days) from 2003
to 2008. Although MODIS IST was identified as one of the most important variables to
detect fast ice, it has a major drawback, which is its limited availability. Due to the lack
of MODIS IST data during the Australian winter season, fast ice mapping results could
not be obtained for the sixth (101–120 Julian days) to twelfth (221–240 Julian days)
composite periods. Figure 5 shows the distribution maps of fast ice produced by the RF
model for two composites in 2003. Hatched areas in Figure 5 represent that IST was not
available during the composite period, which resulted in no fast ice classified in the
areas. The limited spatial coverage of IST could increase uncertainty of fast ice dis-
tribution in the Antarctic. As shown in Figure 6, the spatial discontinuity of IST data
was larger in the West Antarctica than in the East throughout the entire composite
period. While the availability of IST is higher in the East Antarctica than in the West,
some regions in the East Antarctica also had no available IST data for a certain time of
period.

The time series of fast ice extent is depicted for the East and West Antarctica between
2003 and 2008 in Figure 7. While the temporal variation of the fast ice areas in the West
Antarctica appeared higher than that in the East (with standard deviations of 122,457 km2
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in the West Antarctica and 69,158 km2 in the East), it should be noted that the limited
availability of IST data might increase temporal uncertainty in the fast ice distribution
especially around Weddell Sea and Ross Sea in the West Antarctica. Fraser et al. (2012)
reported that the fast ice extent maximum was found around September and the minimum
around March in the East Antarctica. Our results for the East Antarctica also showed a
similar trend (Figure 7). However, such a pattern was not found for the West Antarctica,
possibly due to the data void problem caused by MODIS IST data. Unlike the East
Antarctica, many data voids occurred along the coast especially in the Weddell Sea and
Ross Sea in the West Antarctica, which significantly increased the uncertainty of the fast
ice distribution in those regions. No training data from the West Antarctica were used in
the classification models, which possibly increased the false alarm or false negatives of
the fast ice detection to lead to the increase in the uncertainty of the fast ice distribution.
Consequently, the temporal (seasonal and annual) variation of fast ice distribution in the
West Antarctica should deserve further research.

Figure 8 shows the distribution of the frequency of fast ice residence using simple
counting of the switches (i.e., occurrence and disappearance) and the weighted
average approach (Equation (3)). In order to mitigate the data void problem, it was
excluded in the frequency calculation when a pixel in a composite had no data. High
values of frequency for the simple counting approach indicated that the advance and
retreat of fast ice frequently occurred during the study period. While the temporal
variation of the fast ice based on the simple counting approach was generally high in
the edge of fast ice all over the East Antarctica, it was only high for specific areas
such as Weddell and Amundsen Sea in the West Antarctica (Figure 8a). When the
weighted average approach was used, high values meant that the fast ice residence
time was relatively long, while low values indicated that fast ice only existed for a
short period of time (Figure 8b). While the weighted average of the fast ice residence
was very low in the West Antarctica, it was relatively high in the East Antarctica,
which corresponds to more gradual change of fast ice distribution in the East
Antarctic region (Figure 7).

Figure 5. Fast ice maps using random forest in 2003 for (a) composite 5 (81–100 Julian days)
and (b) composite 13 (241–260 Julian days). Magenta areas represent fast ice in the Antarctic,
and hatched areas with gray color indicate that MODIS IST was not available for the
composite.
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Figure 6. (a) Temporal variation of the availability of MODIS IST data in the East and West
Antarctic regions. (b) The ratio of the IST coverage in the West Antarctic (WA) relative to the East
Antarctic (EA) in percentage. (c) Box plot of the IST coverage in percentage by composite.
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4. Conclusions

In this study, fast ice in the East and West Antarctic was mapped using multisensor data
and machine learning techniques – DT and RF – during the period from 2003 to 2008.
RF produced better performance than DT for fast ice mapping based on the accuracy
assessment and visual interpretation of the classification maps in conjunction with 250-
m MODIS images. Ice velocity and IST were identified as the most contributing
variables to classify fast ice regardless of the approach used. Based on the time series
of the fast ice maps produced by RF, the spatiotemporal variations of fast ice were
examined over the entire Antarctic. While the temporal pattern of fast ice extent for the
East Antarctica agreed with the literature, no clear pattern was found for the West
Antarctica due to the data void problem, which resulted in considerable uncertainty of
the fast ice distribution. Fast ice residence time was relatively long in the East
Antarctica, which indicates gradual changes in advance and retreat of fast ice.
However, fast ice residence time was very short in the West Antarctica partially due
to the no-data pixels from MODIS IST data.

Figure 7. Temporal variation of fast ice areas in the East and West Antarctic. Due to the lack of the
input data during the Australian winter season, composites 6–12 for each year were not available.

Figure 8. Temporal variation of fast ice in the Antarctic using (a) the simple counting approach
and (b) the weighted average approach.
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Since some areas had a high variation of fast ice for a short period of time, composting
of input variables with a period of less than 20 days is necessary to accurately monitor fast
ice in the Antarctic. However, since MODIS IST, one of the most contributing variables,
is heavily influenced by clouds, the number of no-data pixels inevitably increases when
compositing IST with a small number of days (e.g., 10 days). Thus, spatial and temporal
interpolation might be necessary to solve the data void problem when using a small
number of days for compositing of MODIS IST. Future research includes (1) incorporat-
ing additional variables such as CryoSat-2-derived sea ice thickness for fast ice mapping
to improve classification accuracy and (2) linking time series of fast ice distribution to
climate change indicators to better understand the Antarctic climate system and its relation
to other regional climate systems.
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