STRAIN OVER LANDFAST SEA ICE NEAR JANGBOGO ANT ARCTIC STATION OBSERVED BY INSAR

Hoonyol Lee¹ and Hyangsun Han²

¹ Department of Geophysics, Kangwon National University, Korea ² Division of Polar Ocean Environment, Korea Polar Research Institute, Korea

Objectives

 To map the annual variation of landfast sea ice extent near Jangbogo Research Station

• To understand the strain field on fast ice

Landfast sea ice and Polynyas

- Landfast sea ice (fast ice) is stationary sea ice attached to coastal features such as the shoreline and grounded icebergs (WMO 1970).
- In East Antarctica, polynyas are frequently formed on the western side of fast ice and glacier tongues because they block westward sea ice advection.
- Polyna is factory of sea ice due to severe heat loss of open sea and katabatic wind
- Brine rejection of sea ice leads to formation of dense water which is a major source of Antarctic Bottom Water (AABW) and a driving force of thermohaline circulation

(Nihash and Ohshima, J. Climate, 2015)

Campbell Glacier

Data SIO, NOAA, U.S. New, NGA, GEBCO Image U.S. Geological Survey

IGARSS 2015

Kangwon N

sity, Korea

Study Area

- A section of Terra Nova Bay, East Antarctica
- Landfast sea ice near Campbell Glacier Tongue ^{\$7422 30-}
- Fast ice near TNB affect logistics of research stations
 - Mario Zucchelli Station, Italy, since 1986
 - Jangbogo Station, Korea, since 2013 (74°37'04"S, 164°13'07"E)

Mario Zucchelli Station

Jangbogo Station

Araon Icebreaker Research Vessel

Jangbogo Station

Runway on fast ice

Mario Zucchelli Station

Kang of National dovers

- Araon Icebreaker, Jan. 2011

IGARSS 2015

von

National

GB-SAR on CGT

Araon Icebreaker, Jan. 2012

Dataset

- COSMO-SkyMed Constellation (AO 2215)
- X-band, strip map, 3m resolution, VVpol, descending orbit
- 14 months of observation period from Dec. 2010 to Jan. 2012
- 20 one-day InSAR from CSK1 and CSK2 with 16-day repeat cycle
- 17 weekly InSAR combining CSK3 with 8-day offset
- Automatic Weather Station at Jangbogo Station
- Ross_Inv tide model (Padman et al, 003)

Dates of InSAR pair (yyyy/mm/dd)	Temporal baseli ne (day)	Dates of InSAR pair (yyyy/mm/dd)	Temporal baselin e (day)
2010/12/01, 2010/12/09	8	2011/06/19, 2011/06/27	8
2010/12/09, 2010/12/10	1	2011/07/05, 2011/07/06	1
2010/12/25, 2010/12/26	1	2011/07/22, 2011/07/29	7
2011/01/02, 2011/01/10	8	2011/08/06, 2011/08/07	1
2011/01/10, 2011/01/18	8	2011/08/22, 2011/08/23	1
2011/01/26, 2011/01/27	1	2011/08/30, 2011/09/07	8
2011/02/11, 2011/02/19	8	2011/09/07, 2011/09/08	1
2011/02/27, 2011/02/28	1	2011/09/15, 2011/09/24	9
2011/03/15, 2011/03/16	1	2011/10/01, 2011/10/09	8
2011/03/23, 2011/03/31	8	2011/10/09, 2011/10/10	1
2011/03/31, 2011/04/01	1	2011/10/25, 2011/10/26	1
2011/04/01, 2011/04/08	7	2011/11/02, 2011/11/10	8
2011/04/08, 2011/04/16	8	2011/11/10, 2011/11/11	1
2011/04/16, 2011/04/24	8	2011/11/18, 2011/11/26	8
2011/05/02, 2011/05/03	1	2011/11/26, 2011/11/27	1
2011/05/18, 2011/05/19	1	2011/12/28, 2011/12/29	1
2011/06/03, 2011/06/04	1	2012/01/05, 2012/01/13	8
2011/06/03, 2011/06/11	8	2012/01/13, 2012/01/14	1
2011/06/19, 2011/06/20	1	2012/01/13, 2012/01/21	8

Region of Interest for Sea Ice Extents

- A coastal section of Terra Nova Bay, West of Campbell Glacier Tongue that affects logistics for Jangbogo and Mario Zucchelli Stations
- Image area of common coverage of CSK images

Classification

- Fast ice
 - High coherence in one-day InSAR
 - Strain rate less than a quarter of SAR resolution (~ 3/4 m)
- Pack ice
 - Low coherence
 - Cracks and leads
 - Traceable by multi-temporal SAR images
- Ocean
 - Low coherence
 - Dark in calm days (or nilas, frazil ice)
 - Polynya with katabatic winds

Fast Ice Extent

Sea Ice Extent

One-day InSAR

- 20 One-day Cosmo-SkyMed Images
- Repeat cycle of 16 days
- Dec. 2010 ~ Jan 2012
- Earth-flattened

TNB_20101209_20101210

TNB_20101225_20101226

TNB_20110126_20110127

TNB_20110331_20110401

TNB_20110502_20110503

TNB_20110518_20110519

TNB_20110603_20110604

TNB_20110806_20110807

TNB_20110822_20110823

TNB_20110907_20110908

TNB_20111009_20111010

IGARSS 2015 TNB_20111025_20111026

TNB_20111110_20111111

TNB_20111126_20111127

TNB_20111228_20111229

TNB_20120113_20120114

Fast Ice Stress

• Air Stress

- Katabatic wind is strong but drag coefficient is low
- Extensional Antarctic sea ice (lead > ridge)*
- No correlation with fringes
- Water Stress
 - Low drag coefficient due to the absence of keel*
 - No correlations with fringes
- Coriolis Force
 - Strong for heavy icebergs but week for sea ice*
 - fast ice!
- Adjacent sea ice
 - Lead > Ridge
 - Can not explain the year-long consistency in sea ice fringe
- Sea Surface Tilt
 - Induced by tide or current*
 - Some correlations with fringes near sea shore
- Campbell Glacier Tongue
 - Very complex especially in west of CGT
 - Fringe rate and direction varies
- ✓ Various multi-dimensional regression have also failed causing year-long intermission in research.
- ✓ Tidal strain is oscillatory while CGT strain is cumulative -> Weekly InSAR

* P. Wadhams, 2000. *Ice in the ocean*, Gordon and Breach Science Publishers

- CSK1-2 one-day tandem is interleaved by CSK3
- 7~9 days of temporal baselines

TNB_20110424_20110502

TNB_20110604_20110611

TNB_20110620_20110627

TNB_20110706_20110713

TNB_20110722_20110729

TNB_20110807_20110814

- Weekly InSAR verifies cumulative glacial strain with equi-strain line (fringes) parallel to the glacial contact.
- Fast ice to the east side of CGT is strongly affected by glacial stress
- Some section of fast ice to the west of CGT, in contact with CGT, is also affected by glacial stress with fringes parallel to the ice contact line.
- Fast ice near the shoreline, isolated from CGT by cracks and leads, shows tidal strain only
- ✓ Steady glacial strain can be removed by DDInSAR operation

DDInSAR

- A technique to remove constant fringes between two InSAR images (Double Differential InSAR)
 - Han and Lee, 2014, Tide deflection of Campbell Glacier Tongue, Antarctica, analyzed by double-differential SAR interferometry and finite element, *RSE*
 - Han and Lee, 2015, Tide-corrected flow velocity and mass balance of Campbell Glacier Tongue, East Antarctica, derived from interferometric SAR, *RSE*
- Valid only when ice surface is stable between two InSAR pairs
- Can remove fringes from consistent glacial stress, if any.

20110603_20110705

20110603_20110619

20110518_20110603

20110603_20110907

IGARSS 20150110603_20110806

20110603_20111009

20110603_20111025

20110603_20111110

20110603_20111126 IGARSS 2015

20110619_20111009 Kangwon National University, Korea

20110619_20111110

20110619_20111126

20110705_20111110

20110705_20111126 IGARSS 2015

20110806_20110822 Kangwon National University, Korea

20110806_20110907

20110806_20111009

20110806_20111025

20110806_20111110

20110806_20111126 IGARSS 2015

20110822_20110907 Kangwon National University, Korea

20110822_20111009

20110822_20111025

20110822_20111110

20110822_20111126

Kangwon National University, Korea

20111009_20111126

20111025_20111110

Glacial and Tidal Stresses

- Glacial Stress
 - Campbell Glacier Tongue has a year-long steady motion of ~67 cm/day (Han and Lee, 2014, 2015)
 - Equi-strain fringe is parallel to the glacier-fast ice contact
 - Glacier-fast ice contact in the east of CGT is established between mid May and early June
- Tidal Stress
 - Tide generates ocean surface tilt (~ 40 cm)
 - Tidal strain fringe is parallel to the sea shore
 - Affected by tidal current, CGT and ocean bottom topography
- Glacial and tidal strain rates are similar in **one-day InSAR**
- **Glacial strain** is dominant in **weekly InSAR** because CGT gives cumulative stress (~469 cm/week) while tide is oscillatory (~40 cm).
- Consistent glacial strain is removed in **DDInSAR** operation, and only **tidal strain** is visible.

Conclusions

- One day and weekly based InSAR observation enabled the observation of annual variation of landfast sea ice and its dynamics.
- Fast ice lags air temperature by two months in Terra Nova Bay.
- Fast ice fringes in this study area are mainly from glacial stress and tidal stress.
- Weekly InSAR highlights consistent glacial strain (~469 cm/week).
- DDInSAR highlights oscillatory tidal strain (~ 40 cm).

On-going Research

- Tide deflection ratio of fast ice and its seasonal variation can be modeled by DDInSAR.
- Tide-corrected InSAR can reveal the glacial stress-strain relationship and its seasonal variation.
- Quantitative physical properties of fast ice in freezing and thawing season can be deduced by ice modeling.

Thank you

