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Abstract We investigated 32 net primary productivity (NPP) models by assessing skills to reproduce inte-
grated NPP in the Arctic Ocean. The models were provided with two sources each of surface chlorophyll-a
concentration (chlorophyll), photosynthetically available radiation (PAR), sea surface temperature (SST), and
mixed-layer depth (MLD). The models were most sensitive to uncertainties in surface chlorophyll, generally
performing better with in situ chlorophyll than with satellite-derived values. They were much less sensitive
to uncertainties in PAR, SST, and MLD, possibly due to relatively narrow ranges of input data and/or rela-
tively little difference between input data sources. Regardless of type or complexity, most of the models
were not able to fully reproduce the variability of in situ NPP, whereas some of them exhibited almost no
bias (i.e., reproduced the mean of in situ NPP). The models performed relatively well in low-productivity sea-
sons as well as in sea ice-covered/deep-water regions. Depth-resolved models correlated more with in situ
NPP than other model types, but had a greater tendency to overestimate mean NPP whereas absorption-
based models exhibited the lowest bias associated with weaker correlation. The models performed better
when a subsurface chlorophyll-a maximum (SCM) was absent. As a group, the models overestimated mean
NPP, however this was partly offset by some models underestimating NPP when a SCM was present. Our
study suggests that NPP models need to be carefully tuned for the Arctic Ocean because most of the mod-
els performing relatively well were those that used Arctic-relevant parameters.

1. Introduction

Model estimates of net primary production (NPP) that are inclusive of the Arctic Ocean (AO) are now avail-
able or coming online, ranging from simpler ones that largely address phytoplankton physiology or
phytoplankton-zooplankton coupling, to general circulation models that simulate the AO circulation,
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including sea ice, and that now incorporate biogeochemistry, food webs, and, in some cases, even sea-ice
algae. Given the high heterogeneity of the AO with its marginal seas and the rapid change the AO is under-
going, models are the best tool we have to simulate current conditions, reproduce historical observations,
and project future conditions of NPP in the AO.

The AO remains one of the most undersampled of the world’s oceans. This results from the unique combi-
nation of (a) inhospitable field conditions that prevent large-scale, sustained sampling, (b) the presence of
sea ice and its variability, (c) 6 months of relative darkness, (d) rapid seasonal changes in pan-Arctic climate,
(e) inter-annual changes of the AO system, and (f) the complexity of the physical-biological interactions of
the marine Arctic ecosystem. These factors, coupled with a diplomatic lack of access to major portions of
the AO, have resulted in a scarcity of extensive and/or continuous field data/programs. Hence, satellite-
measured ocean color provides a highly valuable data set with which NPP can be derived in the remote
and often inhospitable AO, allowing for more extensive spatial coverage of the ocean surface, at least dur-
ing the periods with sufficient solar elevations. However, satellite-derived ocean-color products are still
prone to large uncertainties in polar regions due to conditions specific to these environments, such as low
solar elevation and sea ice [IOCCG, 2015].

The seasonal cycle of primary production in the AO has been characterized by the classic pattern of a large
pulse of growth in spring, sometimes followed by a smaller one in late summer/early fall [Sakshaug, 2004].
The traditional controls by light (onset of the phytoplankton bloom early on) and nutrients (magnitude of
NPP later in the season) are further dependent in the AO on feedbacks with the cryosphere and the atmos-
phere. Light availability and water column stability change as the sea ice recedes northward, resulting in
the phytoplankton bloom that occurs along an ice-edge [Alexander and Neibauer, 1981; Perrette et al., 2011]
or that may even be widespread underneath the ice [Sakshaug et al., 1991; Mundy et al., 2009; Arrigo et al.,
2014]. Coastal inputs of fresh water affect both the stability and the transparency of the upper water col-
umn differently in various regions. In regions near sea-ice, NPP is usually highest at the surface, which is
likely due to the bloom being at its initial stage there, regardless of month [Wassmann, 2011]. Later in the
growth season, deep maxima of phytoplankton chlorophyll-a develop in seasonally ice-free shelf regions
[Brown et al., 2015] and in the central Arctic Basin where a strong halocline limits winter mixing [Tremblay
et al., 2008; Ardyna et al., 2013]. Consequently, NPP in the AO is strongly modulated by stratification and cir-
culation features controlled by the presence or absence of sea ice, ultimately enhancing or constraining
nutrient supply and light exposure of phytoplankton [McLaughlin and Carmack, 2010]. Snow and ice cover
also determine the amount of photosynthetically available radiation (PAR) in the upper part of the AO water
column. Increased light penetration due to anticipated reductions in snow/ice cover may, however, only
modestly increase NPP [Codispoti et al., 2013; Tremblay and Gagnon, 2009], because nutrient supply is low in
certain AO regions [Carmack, 2007] or in the shallow summertime mixed layer. Using ocean color models,
others propose that the increasing fraction of open water and higher availability of incoming radiation
result in increased pan-Arctic NPP, though regionally varying [Arrigo and van Dijken, 2011; B�elanger et al.,
2013; Pabi et al., 2008], an earlier onset of phytoplankton blooms [Kahru et al., 2010], and the development
of a persistent fall bloom [Ardyna et al., 2014].

Reliable models that estimate NPP, including both ocean color models (OCMs) and global/regional biogeo-
chemical ocean general circulation models (BOGCMs), are becoming increasingly available for the AO and
can help us better understand how NPP is changing, and how such changes are impacting this marine eco-
system. However, both types of models are associated with a substantial degree of uncertainty [Babin et al.,
2015]. While the total, annual integrated NPP computed from BOGCMs may be of similar magnitude, the
processes involved and their relative importance are very different in various model formulations [e.g.,
Popova et al., 2012; Vancoppenolle et al., 2013; Zhang et al., 2010]. In particular, BOGCMs are highly depend-
ent on a realistic representation of ocean physics, specifically vertical mixing, which is one of the main
mechanisms supplying inorganic nutrients to the AO surface waters [Popova et al., 2012].

Ocean color NPP models are also challenged in the AO due to the often simultaneous occurrence of sea-ice
presence during the growth season, a subsurface chlorophyll-a maximum (SCM; often referred to as a deep
chlorophyll-a maximum), and enhanced coastal turbidity [IOCCG, 2015]. Furthermore, the extensive pres-
ence of clouds in summer [Eastman and Warren, 2010; Intrieri et al., 2002] and the lack of light in winter limit
the period of observation. As a result, until recently we have not had sufficient spatial and temporal in situ
data coverage to evaluate trends and variability of satellite-derived NPP over the entire AO. Historically, the
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scarcity of in situ data for validation has affected our ability to accurately simulate contemporary mean NPP
and its variability in the AO [Wassmann and Reigstad, 2011]; however, a recent data compilation [Hill et al.,
2013; Matrai et al., 2013; Codispoti et al., 2013] including historical NPP, chlorophyll-a concentration (here-
after chlorophyll), and nutrient data (1954–2007), as well as recent in situ data collected during the Interna-
tional Polar Year (2007–2008) are now available, together with data from more recent polar research field
campaigns during 2009–2011. These data sets allow validation and calibration of OCMs and BOGCMs in the
AO, as well as the testing of multiple ecological hypotheses [e.g., Ardyna et al., 2013; Arrigo et al., 2011].

In order to better understand the strengths and limitations of currently available NPP estimates for the AO,
we conducted a Primary Productivity Algorithm Round Robin (PPARR) activity to assess the skill and sensitiv-
ity of NPP models in the AO. This study is based on multiple ocean color models using input fields from a
combination of in situ, reanalysis, and satellite data. Our goal is to help inform the scientific community
regarding model selection for the AO ecosystem and to identify the primary drivers of NPP model uncer-
tainty. Given the high sensitivity of the AO under a changing climate, our NPP modeling assessment also
provides an essential step forward to advance our knowledge of the observed contemporary changes in
this region, which is crucial to understanding a key uncertainty in future climate projections.

2. Previous PPARR Activities

Since the launch of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) in 1997, a number of PPARR activ-
ities have been conducted to assess the feasibility of estimating primary productivity from space-based obser-
vations. The earliest PPARR exercises compared in situ uptake rates of isotopically labeled carbon (14C) with
NPP estimated from satellite algorithms; they were applied to only a few regions that accounted for a very
small sample size of measurements (<100) and found systematic offsets between them [Campbell et al.,
2002]. The more recent PPARR studies (PPARR3 and PPARR4) have differed from the earlier ones by including
not only ocean color-based NPP models, but also BOGCMs as well. In the first stage of PPARR3, integrated
NPP outputs from �20 models were compared (model-model comparisons), global and regional deviations
were identified, and a sensitivity study was performed to identify model-specific sensitivities to the input vari-
ables [Carr et al., 2006]. This was followed by an evaluation of model skill in �30 models (model-in situ data
comparisons), and specifically focused on a large, quality-controlled database (�1000 measurements) from
the tropical Pacific [Friedrichs et al., 2009]. By examining uncertainties associated with the input variables (e.g.,
surface chlorophyll, PAR, and SST), it was determined that more than half of the model-data NPP differences
could be accounted for by errors/uncertainties in these input variables. The PPARR4 study expanded these
comparisons with in situ data in key regions critical for NPP models such as coastal waters, the oligotrophic
subtropics, and the Southern Ocean [Saba et al., 2010, 2011]. These previous PPARR studies revealed that
ocean color model skill was lowest in coastal waters where NPP was typically overestimated. Model estimates
of NPP in pelagic waters were closer to those derived from 14C estimates, but, in general, these model values
underestimated observations. Although these most recent PPARR studies included model skill comparisons in
the high latitude Southern Ocean, the AO was not included.

3. Data and Methods

We assembled a quality-controlled in situ database that includes a set of productivity-related variables at
455 stations sampled mostly in the Chukchi, Beaufort, Barents, and Nordic Seas, and the Canadian Archipel-
ago from 1988 to 2011 (Figure 1a). This database was built upon the ARCSS-PP data set [Matrai et al., 2013],
available at NOAA/National Oceanographic Data Center (NODC) (http://www.nodc.noaa.gov/cgi-bin/OAS/
prd/accession/details/63065), and was supplemented with more recent international polar research activ-
ities (Table 1). Also, daily sea ice concentration at each sampling station was determined using NOAA/
National Snow and Ice Data Center (NSIDC) Climate Data Record of Passive Microwave Sea Ice Concentra-
tion, Version 2 [Meier et al., 2013]. Roughly half of the stations (47%) were sampled in ice-free regions (sea
ice concentration< 15%, a threshold to determine sea ice extent used by NOAA/NSIDC) (Figure 1b).

3.1. In Situ Net Primary Productivity
The 455 stations (Table 1) were chosen such that (1) NPP measurements, using 13C- or 14C-labeled com-
pounds, were available at four or more different depths, (2) the minimum sampling depth of NPP was
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between 0 and 5 m depth, and (3)
additional in situ data were available
including surface chlorophyll, sea sur-
face temperature (SST) and mixed layer
depth (MLD). Most in situ NPP using a
14C label (N5324) were measured after
24 h in situ or simulated in situ incuba-
tions and the rest of the 14C data
(N550) were measured after less than
a 12 h incubation or an unknown time
period; most data were reported as
daily values. In situ carbon uptake rates
using a 13C label (N581) were meas-
ured after 3–6 h on-deck incubations
[Lee and Whitledge, 2005; Lee et al.,
2010]; a good agreement between esti-
mates of 13C and 14C productivity has
been reported [Cota et al., 1996]. If
hourly in situ production rates were
reported, they were converted to daily
production rates by multiplying with a
calculated day length [Forsythe et al.,
1995], based on the date and latitude
when/where each sample was taken.

Using the multiple segment trapezoidal
rule, NPP was integrated from the sur-
face (Z0) to the euphotic depth (Zeu; 1%
surface PAR) that was already deter-
mined during the incubation in most of
the data. If Zeu was not reported, then it
was calculated from available light pen-
etration data. Prior to any integration, if
the NPP value at Z0 was not measured,
it was assumed to be the same as the
closest measurement taken from the
uppermost 5m (Zmin) of the water col-
umn in each station. Analogously, if Zeu

was deeper than the maximum sam-
pling depth (Zmax), NPP at Zeu was
assumed to be the same as that meas-

ured at Zmax; (1) if NPP at Zmax was less than 1.0 mgC m23 d21 (the 25th percentile value among the available
measurements of in situ NPP) or (2) if the distance between Zmax and Zeu was less than 1 m. If Zeu was shallower
than Zmax, NPP at Zeu was linearly interpolated.

The majority of the 455 NPP samples were collected from the region between 65 and 898N mainly from late
spring to early fall, and were characterized by significant spatial and temporal variability (Figure 2). The low-
est integrated NPP (1.4 mgC m22 d21) was observed in the Beaufort Sea in October 2009 and the highest
NPP (10,317 mgC m22 d21) was observed in the Chukchi Sea in July 2004. The median of the NPP at the
455 stations (NPPN5455) was 214 mgC m22 d21. Integrated NPP exhibited a log-normal distribution (Figure
2a) that was tested with the Kolmogorov-Smirnov (K-S) test (not shown). The NPP data were log-
transformed (base 10) [Campbell, 1995] before being analyzed in this study. The mean log-transformed
NPPN5455 was 2.33 and the standard deviation was 0.72 (Table 2).

The subset of stations used in most of our analyses is less than 20% of the total (N585), because this model
skill assessment was based on algorithms using satellite data that were only available after 1997 and that

Figure 1. The total number of N5455 sampling stations (1988–2011) where in
situ chlorophyll, SST, MLD and integrated NPP are available: (a) the blue circles
(N585) represent the subset stations where matchups between in situ station
and satellite data exist, and (b) the green circles are the sampling stations
(N5212) from ice-free regions (sea ice concentration< 15%) and the white circles
(N5243) are the sampling stations from ice-covered regions (sea ice
concentration� 15%).
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also had in situ match ups in sea ice-free regions. For this subset of the data, NPP was measured mostly dur-
ing July–August (Figure 2h) from 1998 to 2011 (Figure 2f), primarily in the region between 668N and 808N
(Figure 2d). The in situ NPP at the 85 stations (NPPN585) ranged from as low as 10 mgC m22 d21 in Baffin
Bay (September 1999) to as high as 10,317 mg C m22 d21 in the Chukchi Sea (July 2004), again exhibiting a
log-normal distribution (Figure 2b) with the median NPP being 305 mgC m22 d21. The mean log-
transformed NPPN585 was 2.48 and the standard deviation was 0.63 (Table 2).

The two data sets described above (NPPN5455 and NPPN585) were compared using the K-S two-sample test
which failed to reject the null hypothesis with a 5% significance level (not shown). This indicates that the
two data sets are not statistically different and could be drawn from the same population with equal mean
and variance (Figure 3a).

3.2. Input Variables
The majority of NPP models participating in this comparison exercise required a variety of input data fields,
including surface chlorophyll, PAR, SST, and MLD (Table 3). In order to test the sensitivity of the models to
the input data provided, two sources of data were provided to the modeling teams for each of the primary
input variables: chlorophyll (in situ and satellite), PAR (reanalysis and satellite), SST (in situ and reanalysis),

Table 1. Description of the Field Program/Expedition/Database/Contributor Where NPP Data Were Obtained and Used for This Studya

Year Program/Expedition/
Database/Contributor

Number of
Stations

Season Region Reference/
Investigator/Website

1988 AOOS 9 Jun–Sep 4 b
1992 OPPWG 32 Jul–Aug 6 b
1993 V. Hill 9 Aug 2, 4 b
1995 V. Hill 5 Aug 6 b
1996 V. Hill 2 Aug 6 b
1997 Vedernikov

and Gagarin
6 Sep–Oct 6 Vedernikov and Gagarin [1998]

1998 ALV 4 Mar, May 6 Matrai et al. [2007]
Vedernikov

et al.
3 Aug 6 Vedernikov et al. [2001]

NOW 32 Apr–Jul 3 Klein et al. [2002]
1999 ALV 4 Jul 6 Matrai et al. [2007]

NOW 10 Aug–Sep 3 Klein et al. [2002]
2000 V. Hill 10 Aug 2, 4 b
2001 AOE 6 Jul–Aug 1 Olli et al. [2007]
2002 SBI 42 May–Aug 2, 4 Hill et al. [2005]
2003 CASES 5 Sep–Nov 2, 3 Brugel et al. [2009]; Tremblay et al. [2011]
2004 CABANERA 3 Jul 6 Hodal and Kristiansen [2008]

CASES 11 Jun–Jul 2, 3 Brugel et al. [2009]; Tremblay et al. [2011]
SBI 43 Jun–Aug 2, 4 Hill et al. [2005]

2005 CABANERA 1 May 6 Hodal and Kristiansen [2008]
ArcticNet 12 Aug–Sep 2, 3 Lapoussière et al. [2009]; Ardyna et al. [2011]; Ferland et al. [2011]

2006 ArcticNet 11 Sep–Oct 2, 3 Ardyna et al. [2011]; Ferland et al. [2011]
2007 ArcticNet 5 Sep–Oct 3 Ardyna et al. [2011]

Oshoro-Maru 7 Aug 4 S. H. Lee (personal communication, 2014)
2008 ArcticNet 7 Sep 3 M. Gosselin (personal communication, 2014)

ICE-CHASER 5 Jul–Aug 6 Charalampopoulou et al. [2011]
CFL 9 Jun–Aug 2, 3 Mundy et al. [2009]; Sallon et al. [2011]
CHINARE 20 Aug–Sep 1, 2, 4 S. H. Lee (personal communication, 2014)

2009 Malina 22 Jul–Aug 2 http://malina.obs-vlfr.fr/
JAMSTEC 13 Sep–Oct 1, 2, 4 http://www.godac.jamstec.go.jp/darwin/e/
RUSALCA 18 Sep 1, 4, 5 S. H. Lee (personal communication, 2014)
JOIS 10 Sep–Oct 1, 2 Yun et al. [2012]

2010 ArcticNet 7 Aug–Oct 3 M. Gosselin (personal communication, 2014)
KOPRI 11 Jul–Aug 1, 4 S. H. Lee (personal communication, 2014)
ICESCAPE 24 Jun–Jul 4 http://seabass.gsfc.nasa.gov/; Arrigo et al. [2014]
JAMSTEC 2 Oct 1, 4 http://www.godac.jamstec.go.jp/darwin/e/

2011 ArcticNet 12 Jul–Oct 2,3 M. Gosselin (personal communication, 2014)
ICESCAPE 23 Jun–Jul 4 http://seabass.gsfc.nasa.gov/; Arrigo et al. [2014]

aThe data from the ARCSS-PP database [Matrai et al., 2013] are italicized and sub-Arctic regions are labeled as following: 1––Arctic
Basin, 2––Beaufort Sea, 3––Canadian Archipelago including Baffin Bay, 4––Chukchi Sea, 5––East Siberian Sea, and 6––Nordic Seas
(Greenland and Barents Sea).

bSee ARCSS-PP database for further details.
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and MLD (in situ and climatology). In addition, other satellite-derived properties (e.g., remote sensing reflec-
tance, total/phytoplankton absorption coefficient, and particulate backscattering coefficient) required by
some of the participating models were provided (Table 3).
3.2.1. Surface Chlorophyll and Subsurface Chlorophyll-a Maximum (SCM)
For each station where NPP was measured, in situ fluorometric chlorophyll was collected at the surface layer
between 0 and 5 m depth (N5455). The comparison of in situ and remotely sensed chlorophyll was limited not
only by the scarcity of in situ measurements, but also by contamination of the remotely sensed data due to sea
ice and clouds in the AO. The retrieval of chlorophyll did not significantly differ between the 1 day and 8 day
averaged match-ups within the period 1998 to 2007 [Matrai et al., 2013]. In order to maximize the number of
satellite matchups, remotely sensed chlorophyll (N585) was retrieved from the level-3, 9 km, 8 day average
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Figure 2. (left) In situ integrated NPP at the N5455 in situ sampling stations and (right) from the N585 satellite matchup stations shown
in Figure 1. Figures 2a and 2b are the distribution of in situ integrated NPP. Figures 2c and 2d, Figures 2e and 2f, and Figures 2g and 2h
show where and when those in situ NPP were measured in terms of latitude, year, and month, respectively.
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imagery from SeaWiFS (N513 from November 1997 to June 2002) using the OC4 algorithm and from Moderate
Resolution Imaging Spectroradiometer (MODIS)-Aqua (N572 from July 2002 to October 2011) using the OC3M
algorithm (http://oceandata.sci.gsfc.nasa.gov). Although in situ and satellite chlorophyll were highly correlated
(N585, r50.74, p<0.01), there was a significant difference between them in terms of magnitude distribution,
especially at lower concentrations (Figure 3b). Whereas the in situ chlorophyll ranged between 0.019 and
19.9 mg m23 with a median of 0.40 mg m23, the satellite chlorophyll ranged between 0.12 and 8.0 mg m23

with a median of 0.55 mg m23, indicating that the ocean color satellite algorithms overestimated at lower

Table 2. Mean (l) and Standard Deviation (r) of In Situ logNPP at the 455 Stations (1988–2011; N5455) and the 85 Stations
(1998–2011; N585) in Different Months and Regionsa

Months/Regions

Period: 1988–2011 (N5455) Period: 1998–2011 (N585)

N logNPP (l6r)

NPP (mgC m22 d21)

N logNPP (l6r)

NPP (mgC m22 d21)

10l
95% CI [10l21.96r;

10l11.96r] 10l
95% CI [10l21.96r;

10l11.96r]

Apr–Jun 79 2.66 6 0.63 425 [21; 8493] 16 2.89 6 0.50 782 [83: 7361]
Jul 115 2.65 6 0.67 442 [21; 9212] 29 2.74 6 0.56 554 [44; 6904]
Aug 127 2.27 6 0.64 187 [10; 3415] 38 2.14 6 0.54 137 [12; 1557]
Sep–Nov 104 1.84 6 0.61 70 [4; 1123] 2 2.10 6 0.43 125 [18; 877]
Shallow (�200 m) 195 2.57 6 0.72 375 [15; 9681] 38 2.69 6 0.65 495 [26; 9300]
Deep (>200 m) 260 2.15 6 0.66 140 [7; 2769] 47 2.32 6 0.56 207 [16; 2617]
Sea ice-free (<15%) 212 2.32 6 0.65 207 [11; 3946]
Sea ice-covered (�15%) 243 2.34 6 0.77 220 [7; 7235]
Total 455 2.33 6 0.72 214 [8; 5481] 85 2.48 6 0.63 305 [18; 5292]

al and 95% confidence interval (CI; l61.96r) are inverse-transformed to the original scale (mg C m22 d21). The gray shading indi-
cates no values.
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Figure 3. Cumulative distribution functions of integrated NPP and the various input variables for the full data set (N5455) and the data
subset (N585). (a) In situ logNPP, (b) in situ and satellite chlorophyll (CHL), (c) satellite and reanalysis PAR, (d) in situ and reanalysis SST,
and (e) in situ and climatological MLD.
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concentration (<1 mg m23) and underestimated at higher concentrations (>1 mg m23), which is con-
sistent with the results of Cota et al. [2004]. There was little difference in in situ chlorophyll between the
N5455 and N585 datasets in their magnitude distributions (Figure 3b).

In addition, SCM were defined when the maximum chlorophyll in the water column was greater than 1 mg
m23 and more than 150% of the surface value. Among the 85 stations, SCM existed at 44 stations and were
absent at 39 stations: two stations were excluded because no chlorophyll profile was available. At the sta-
tions with SCM, the mean in situ logNPP was 2.64 (437 mgC m22 d21). At the stations without SCM, the
mean in situ logNPP was 2.37 (234 mgC m22 d21).
3.2.2. Photosynthetically Active Radiation (PAR)
Reanalysis estimates, incorporating observations and numerical simulations with data assimilation, of daily
average downward solar radiation flux at �1.98 resolution (N5455) were obtained from NOAA/National
Centers for Environmental Prediction (NCEP; http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanaly-
sis.surfaceflux.html) and converted to PAR by multiplying by 0.43 [Olofsson et al., 2007]. In addition, satellite
PAR matchups (N585) were extracted from the level-3, 9 km, 8 day average imagery from SeaWiFS (N513
from November 1997 to June 2002) and MODIS-Aqua (N572 from July 2002 to October 2011). Reanalysis
and satellite PAR were highly correlated (N585, r50.79, p<0.01) and the range of values was similar
between them, but the reanalysis PAR was generally higher than the satellite values (Figure 3c). In addition,

Table 3. Contributed Ocean Color Modelsa

Model Contributor(s) Type

Input Variables

ReferenceCHL PAR SST MLD Remotely Sensed

1 D. Antoine
and B. Gentili

DR,WR � � � � Morel [1991]; Antoine and Morel [1996];
Antoine et al. [1996]; Morel et al. [1996]

2 F. M�elin DR,WR � � M�elin [2003]; M�elin and Hoepffner [2011]
3 F. M�elin DR,WR � � Rrs M�elin [2003]; M�elin and Hoepffner [2011]
4 F. M�elin DR,WR � � M�elin [2003]; M�elin and Hoepffner [2011]
5 K. Waters DR,WR � � � � Ondrusek et al. [2001]
6 K. Waters DR,WR � � � � Ondrusek et al. [2001]
7 T. Smyth DR,WR � � � Smyth et al. [2005]
8 I. Asanuma DR,WI � � � Asanuma [2006]
9 M. Scardi DI,WI � � � � Scardi [2001]
10 S.Tang DI,WI � � � Tang et al. [2008]
11 S.Tang DI,WI � � � Tang et al. [2008]
12 UQAR-TAKUVIK DR,WR � � Rrs B�elanger et al. [2013]
13 UQAR-TAKUVIK DR,WR � Rrs B�elanger et al. [2013]
14 UQAR-TAKUVIK DR,WR � � Rrs B�elanger et al. [2013]; Huot et al. [2013]
15 UQAR-TAKUVIK DR,WR � Rrs B�elanger et al. [2013]; Huot et al. [2013]
16 UQAR-TAKUVIK DR,WR � � Rrs B�elanger et al. [2013]; Huot et al. [2013]
17 UQAR-TAKUVIK DR,WR � Rrs B�elanger et al. [2013]; Huot et al. [2013]
18 T. Kameda DI,WI � � � Kameda and Ishizaka [2005]
19 K. Turpie DI,WI � � � Behrenfeld and Falkowski [1997a]
20 T. Westberry DI,WI � � � Behrenfeld and Falkowski [1997a]
21 T. Hirawake DI,WI,AB � GIOP aph and Zeu_lee Hirawake et al. [2012]
22 T. Hirawake DI,WI,AB � Zeu_lee and GIOP aph443 Hirawake et al. [2012]
23 T. Hirawake DI,WI,AB � GIOP aph and Zeu_lee Hirawake et al. [2012]
24 T. Hirawake DI,WI,AB � Zeu_lee and GIOP aph443 Hirawake et al. [2012]
25 Y. Lee DI,WI � � Nelson and Smith [1991]; Balch et al. [1992]
26 Y. Lee DI,WI � � � Eppley [1972];

Antoine and Morel [1996];
Behrenfeld and Falkowski [1997a]

27 Y. Lee DI,WI � � � Howard and Yoder [1997]
28 Y. Lee DI,WI � � � � Howard and Yoder [1997]
29 Y. Lee DI,WI � Matrai et al. [2013]
30 Y. Lee DI,WI � � � Behrenfeld and Falkowski [1997a]
31 M. Fern�andez-M�endez

and C. Katlein
DI,WI � � Fern�andez-M�endez et al. [2015]

32 Z. Lee DI,WI,AB � GIOP aph443, QAA a443,
and GIOP bbp443

Lee et al. [2011]

a‘‘�’’ indicates input variables used in each model, DI: depth-integrated, WI: wavelength-integrated, DR: depth-resolved, WR:
wavelength-resolved, and AB: absorption-based) for estimating NPP with input variables, such as surface chlorophyll (CHL), PAR, SST, and
MLD. Twelve models (Models 3, 12–17, 21–24, and 32) incorporate satellite-derived products such as Rrs, GIOP aph, QAA a443, GIOP
bbp443, and Zeu_lee. Specific details for each model are described in Appendix A.
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the reanalysis PAR had lower values (1 to 17 Ein m22 d21) in the N5455 data set compared to the N585
data subset, and thus provided a wider range of values.
3.2.3. Sea Surface Temperature (SST)
In situ SST was obtained from surface (0 – 5m) CTD data from corresponding polar research cruises and
from the NOAA/NODC ArcNut database [Codispoti et al., 2013] (http://www.nodc.noaa.gov/archive/arc0034/
0072133/). The reanalysis SST, constructed by combining observations from different platforms (satellites,
ships, and buoys) on a regular global grid, was retrieved from the NOAA National Climate Data Center
(NCDC) Optimum Interpolation SST (daily 1=4-degree resolution from 1981; http://www.ncdc.noaa.gov/sst/).
Although SST ranged from 22 to 128C (Figure 3d), a majority of the data (67%) were less than 48C. In situ
and reanalysis SST were overall highly correlated (r50.90, p<0.01 when N585 and r50.88, p<0.01 when
N5455), but in situ SST was lower than reanalysis SST for temperatures below 28C.
3.2.4. Mixed Layer Depth (MLD)
Estimates of MLD were calculated using CTD profiles from corresponding polar research cruises and from
the NOAA/NODC ArcNut database. In order to calculate in situ MLD (N5455), we first used CTD data to com-
pute potential density (qh), disregarding surface values between 0 and 5 m due to possible instrumental
errors. Then, MLD was estimated for each profile by using a threshold criterion of Drh 5 0.1 kg m23 [Per-
alta-Ferriz and Woodgate, 2015], where Drh 5 rh(z) – rh(zmin); rh(z) and rh(zmin) are the potential density
anomaly (rh 5 qh – 1000 kg m23) at a given depth (z) and the shallowest depth between 5 and 10 m (zmin),
respectively. For climatological MLD (N585), we used the Polar Science Center Hydrographic Climatology
(PHC3.0; http://psc.apl.washington.edu/nonwp_projects/PHC/Climatology.html), updated from Steele et al.
[2001], providing monthly mean fields of ocean temperature and salinity on a global 183 18 grid at 33 dis-
crete vertical depths. The climatological MLD was determined in the same way as in situ MLD using a
threshold criterion, after rh was calculated using the climatological monthly mean temperature and salinity
and vertically interpolated to 1 m intervals. More than 90% of MLD was less than 20 m (Figure 3e), and in
situ and climatological MLD were strongly correlated (N585, r50.90, p<0.01).
3.2.5. Other Satellite-Derived Products
Twelve models required satellite products (see Table 3) other than surface chlorophyll and PAR, such as remote
sensing reflectance (Rrs) at 6 bands (412, 443, 490, 510, 555, and 670 nm from SeaWiFS, and 412, 443, 488, 531,
555, and 667 from MODIS-Aqua), phytoplankton absorption coefficient (aph) derived by the generalized inherent
optical property (GIOP) algorithm [Werdell et al., 2013] at 5 bands (412, 443, 490, 510, and 555 nm from SeaWiFS,
and 412, 443, 488, 531, and 547 from MODIS-Aqua), quasi-analytical algorithm (QAA) total absorption coefficient
at 443nm (a443) [Lee et al., 2002], GIOP particulate backscattering coefficient at 443 nm (bbp443), and the Lee
euphotic depth product (Zeu_lee) [Lee et al., 2007]. Like satellite chlorophyll and PAR, similar procedures were per-
formed to extract values at the satellite matchup stations using the level-3, 9 km, 8 day average imagery from
SeaWiFS (N513 from November 1997 to June 2002) and MODIS-Aqua (N572 from July 2002 to October 2011).

3.3. Model Skill
NPP model skill was assessed using root-mean-square difference (RMSD) for each participating model,
where N is the number of observations:

RMSD25

PN
i51 logNPPi

model2logNPPi
in situ

� �2

N
5bias21uRMSD2

Generally, the smaller a RSMD value becomes, the better a model performs. The RMSD consists of two com-
ponents: bias representing the difference between the means of in situ and model data and unbiased
RMSD (uRMSD; often referred to as centered RMSD) representing the difference in variability between
model output and in situ data. Thus, bias and uRMSD provide measures of how well mean and variability
are modeled, respectively:

bias5log NPPmodelð Þlog NPPin situð Þ

uRMSD 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

i51
logNPPi

model logNPPmodel
� �

2 logNPPi
in situlogNPPin situ

� �� �2
r

The Target diagram [Jolliff et al., 2009] is used to visualize bias (y-axis), uRMSD (x-axis), and RMSD (distance
from a center) for the 32 models on a single plot. On the Target diagram, these quantities are normalized
by the standard deviation (r) of logNPPin situ rin situ50:634ð Þ, i.e., normalized bias (bias�) is defined as:
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bias�5bias=rin situ

Although uRMSD is inherently a positive quantity, normalized uRMSD (uRMSD�Þ is defined as:

uRMSD�5 uRMSD=rin situ if rmodel > rin situð Þ

52uRMSD=rin situ if rmodel < rin situð Þ

where rmodel is the standard deviation of logNPPmodel and thus uRMSD* can be either positive, indicating
that the model overestimates the variance of the in situ data, or negative, indicating that the model under-
estimates the variance of the in situ data. By normalizing bias and uRMSD, the modeling efficiency (ME) can
also be illustrated by plotting a circle with a radius equal to one (ME50). ME measures how well a model
predicts relative to the average of the observations [Nash and Sutcliffe, 1970]:

ME5

PN
i51 logNPPi

in situ2logNPPin situ
� �2

2
PN

i51 logNPPi
model2logNPPi

in situ

� �2PN
i51 logNPPi

in situ2logNPPin situ
� �2 512

RMSD2

r2
in situ

where the range of ME lies between 1.0 (perfect fit) and 21 [Stow et al., 2009]. If ME< 0, and thus the
model symbol appears outside the circle with a radius of one on the Target diagram, then the mean value
of the observations would have been a better predictor than the model estimate. Models that perform bet-
ter than the mean of the observations are defined to have a ME> 0, in which case the model symbol
appears inside the circle with a radius of one on the Target diagram.

The Taylor diagram [Taylor, 2001] complements the Target diagram by displaying a different set of statistics,
i.e., uRMSD, standard deviation of the model and in situ data, and correlation between the model and in
situ data:

uRMSD5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rin situ

21rmodel
222 � rin situ � rmodel � r

p
where r is the Pearson’s correlation coefficient. The Taylor diagram inherently does not provide information
about bias; however, it has the advantage of illustrating the two components of uRMSD, i.e., the correlation
coefficient (r) and the ratio of the standard deviation of the model to that of the in situ data.

3.4. Participating Models and Sensitivity to Input Parameters
A total of 32 models (Table 3 and Appendix A) from 15 research teams participated in this exercise. Thirteen
participating models were depth-integrated (DI) and wavelength-integrated (WI) types, 13 models were
depth-resolved (DR) and wavelength-resolved (WR) types, and one model was DR and WI [see Behrenfeld
and Falkowski, 1997b]. All but two models used PAR, 24 models used surface chlorophyll, and only half of
the models used the SST information provided. An even smaller percentage (<16%) of the participating
models used MLD (Table 3). Five models that do not incorporate surface chlorophyll were absorption-based
DI models using aph, a443, bbp443, and/or Zeu_lee.

We provided a total of 16 different cases to each research team, corresponding to all possible combinations
of input variables (two types each of surface chlorophyll, PAR, SST, and MLD: 24 5 16 cases; Table 4). The
PPARR participants computed integrated NPP at each station for each case. In addition, modeling teams
using DR models provided vertical profiles of NPP.

4. Results

4.1. Model Sensitivity to Input Parameters (1998–2011, N585)
In order to test model sensitivity to uncertainties in model input variables, we first assessed which input
variable and source affected model estimates most by calculating the RMSD difference between paired
cases in each model, adjusting only one of the input variables at a time. This analysis was based on Table 4
after excluding duplicate cases depending on the number of input variables required for each participating
model. In general, the models were most sensitive to the uncertainty of surface chlorophyll (Figure 3b)
based on the large spread in RMSD (Figure 4a; in situ versus satellite-derived), ranging from almost no dif-
ference in NPP computed using the two types of chlorophyll to a RMSD difference of 0.16 (approximately 2/
3 of the paired results were greater than 0.06). Note that the eight models that do not use in situ chlorophyll
were excluded from this test. The models were much less sensitive to the remaining three input variables,
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despite their extensive use by most of the models. Indeed, PAR and SST were used in 90% and 50% of the
models, respectively, but their influence was not as significant as surface chlorophyll, possibly due to the
relatively narrower ranges in values than for chlorophyll (Figures 3c and 3d). For example, the models pro-
duced similar results regardless of the source of both PAR (Figure 4b; satellite versus reanalysis) and SST
(Figure 4c; in situ versus reanalysis), i.e., the maximum RMSD difference was 0.056 and 0.041, respectively.
Only five models used MLD as an input variable, but all were particularly insensitive to MLD source
(Figure 4d; in situ versus climatology), with a maximum difference of 0.022 in RMSD, because MLD does
not differ much between in situ and climatological values and is relatively shallow (< 20 m) at most sta-
tions (Figure 3e).

4.2. Model Skill Assessment of NPP: Results Using Satellite Versus In Situ Chlorophyll
(1998–2011, N585)
Table 4 shows the RMSD between observations and model estimates in the 16 cases examined for all 32
participating models. Note that no statistical analysis was performed for Cases 9 to 16 in Models 13, 15, 17,
21–24, and 32, since these models required satellite products other than surface chlorophyll. Although
RMSD varied between 0.56 and 0.88 among all cases, it was generally lower in the cases with in situ chloro-
phyll rather than satellite chlorophyll; however, a few models showed the opposite pattern (Models 12, 14,
16, 28, and 31). For example, Models 28 and 31 had higher RMSD values since those models had higher bias
when using in situ chlorophyll (Table 5). However, Models 12 and 14 had lower bias and a higher correlation
coefficient when using in situ chlorophyll (Case 9), but RMSD was still higher than when using satellite chlo-
rophyll (Case 1). This is because a larger standard deviation in Case 9 increased uRMSD compared to Case 1.
Model 16 shows the combined influence of the two factors just mentioned.

Based on the sensitivity test (Sect. 4.1), two of these 16 cases were selected for detailed analysis of model
skill in reproducing NPP. These two cases used satellite PAR, reanalysis SST, and climatological MLD, but dif-
fered in their source of surface chlorophyll: one case used satellite chlorophyll (Case 1) and another case
used in situ chlorophyll (Case 9). Figure 5 shows scatter plots of modeled NPP from both cases against in
situ NPP values and Table 5 shows more in-depth statistics of model results against in situ values including
RMSD, bias, uRMSD, and correlation coefficients from these two cases. In general, models using in situ
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Figure 4. Difference in RMSD of logNPPN585 between paired results available for each participating model when only one of the input var-
iables was from an alternate source: (a) chlorophyll (CHL) (24 models), (b) PAR (30 models), (c) SST (16 models), and (d) MLD (5 models).
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chlorophyll had lower RMSD, due to lower bias, and higher correlation coefficients (Table 5), and better rep-
resented the magnitude of the observed NPP variability (Figure 5). This is likely directly related to the fact
that satellite chlorophyll substantially overestimated in situ chlorophyll at low chlorophyll concentrations
and underestimated in situ chlorophyll at high chlorophyll concentrations (Figure 3b). In each case, whether
using satellite or in situ chlorophyll, model performance was not significantly different between model
types in terms of RMSD (Table 5), even when excluding a few models with the largest RMSD (e.g., Model
28). For satellite or in situ chlorophyll cases, most DR models, except Models 13, 15, and 17, performed bet-
ter than DI models in terms of correlation coefficient.

The skill statistics for all 32 models (Table 5) normalized by the standard deviation of in situ NPP are shown
visually in the Target diagrams (Figure 6); the closer a model symbol is to origin, the better a model performs.
The models generally produced lower RMSD (distance from origin) when using in situ chlorophyll (Figure 6b)
compared to using satellite chlorophyll (Figure 6a) and thus more symbols appear inside the unit circle, i.e.,
ME>0, in Case 9. In terms of bias, roughly two-thirds of the models overestimated the observed NPP, inde-
pendent of which type of chlorophyll was used as input. When satellite chlorophyll was used as input, no
model overestimated variability (all symbols were between 21.2 and 20.8 on the x axis), whereas when in
situ chlorophyll was used, five of the models overestimated variability. Interestingly, the model results were
clustered on either the positive or negative side of the x axis (uRMSD*) with a magnitude between 0.8 and 1.2
in both cases, whereas the normalized bias largely varied between 20.6 and 0.6 along the y-axis.

Table 5. Mean (l) and Standard Deviation (r) of Estimated logNPPN585. RMSD, Bias, uRMSD, and Pearson’s Correlation Coefficient (r) are Computed Between Each Model Estimate
and In Situ logNPPN585 for Cases 1 and 9a

Model

Case 1 Case 9

l r RMSD bias uRMSD r l r RMSD bias uRMSD r

1 2.79 0.21 0.64 0.30 0.57 0.46 2.71 0.36 0.56 0.22 0.52 0.58
2 2.86 0.23 0.68 0.37 0.56 0.46 2.78 0.40 0.59 0.29 0.51 0.58
3 2.73 0.29 0.60 0.24 0.55 0.49 2.56 0.56 0.56 0.07 0.55 0.58
4 2.82 0.29 0.65 0.34 0.56 0.47 2.69 0.49 0.56 0.21 0.52 0.59
5 2.88 0.15 0.70 0.40 0.58 0.48 2.81 0.21 0.63 0.32 0.54 0.58
6 2.43 0.32 0.57 20.06 0.57 0.44 2.31 0.47 0.57 20.18 0.55 0.54
7 2.83 0.21 0.66 0.35 0.57 0.46 2.69 0.40 0.56 0.21 0.52 0.57
8 2.82 0.28 0.66 0.33 0.56 0.45 2.69 0.41 0.56 0.20 0.52 0.57
9 2.68 0.22 0.64 0.20 0.60 0.30 2.64 0.37 0.58 0.15 0.56 0.48
10 2.67 0.22 0.65 0.18 0.63 0.19 2.55 0.33 0.59 0.06 0.58 0.40
11 2.71 0.30 0.68 0.22 0.65 0.19 2.71 0.42 0.62 0.22 0.58 0.44
12 2.58 0.27 0.56 0.09 0.55 0.49 2.42 0.67 0.61 20.07 0.61 0.56
13 2.25 0.50 0.73 20.23 0.69 0.28
14 2.69 0.28 0.59 0.20 0.55 0.49 2.48 0.74 0.65 20.01 0.65 0.56
15 2.33 0.58 0.76 20.16 0.75 0.24
16 2.40 0.27 0.56 20.09 0.55 0.49 2.24 0.67 0.66 20.25 0.61 0.56
17 2.07 0.50 0.80 20.41 0.69 0.28
18 2.82 0.24 0.69 0.34 0.60 0.33 2.80 0.36 0.63 0.31 0.55 0.49
19 2.48 0.28 0.59 20.01 0.59 0.36 2.36 0.47 0.56 20.12 0.55 0.54
20 2.89 0.26 0.72 0.40 0.59 0.35 2.79 0.43 0.62 0.30 0.54 0.54
21 2.50 0.44 0.65 0.02 0.65 0.30
22 2.44 0.46 0.66 20.04 0.66 0.30
23 2.73 0.31 0.65 0.24 0.60 0.35
24 2.69 0.31 0.63 0.21 0.60 0.36
25 2.77 0.25 0.65 0.28 0.58 0.39 2.62 0.45 0.56 0.13 0.55 0.54
26 2.61 0.33 0.60 0.12 0.59 0.39 2.50 0.56 0.57 0.01 0.57 0.54
27 2.54 0.32 0.57 0.05 0.57 0.44 2.41 0.54 0.56 20.08 0.55 0.56
28 2.10 0.45 0.71 20.39 0.60 0.43 1.92 0.75 0.87 20.56 0.66 0.54
29 2.73 0.26 0.64 0.25 0.59 0.36 2.64 0.46 0.57 0.16 0.55 0.53
30 2.74 0.33 0.65 0.26 0.60 0.36 2.63 0.55 0.59 0.15 0.57 0.54
31 2.31 0.42 0.63 20.17 0.61 0.39 2.16 0.73 0.74 20.33 0.66 0.54
32 2.73 0.31 0.66 0.24 0.62 0.29
DR 2.61 6 0.07 0.31 6 0.03 0.65 6 0.02 0.12 6 0.07 0.59 6 0.02 0.43 6 0.02 2.58 6 0.06 0.49 6 0.05 0.59 6 0.01 0.09 6 0.06 0.55 6 0.01 0.57 6 0.004
DI 2.62 6 0.06 0.30 6 0.02 0.65 6 0.01 0.13 6 0.06 0.60 6 0.006 0.34 6 0.02 2.52 6 0.07 0.49 6 0.03 0.62 6 0.02 0.03 6 0.07 0.57 6 0.01 0.51 6 0.01
AB 2.62 6 0.06 0.37 6 0.03 0.65 6 0.005 0.13 6 0.05 0.63 6 0.01 0.32 6 0.01
All 2.61 6 0.04 0.32 6 0.02 0.65 6 0.01 0.13 6 0.04 0.60 6 0.008 0.38 6 0.02 2.55 6 0.04 0.49 6 0.03 0.61 6 0.01 0.06 6 0.04 0.57 6 0.009 0.54 6 0.009

aIn each column, average model results (mean 6 standard error) are also reported for three groups of participating models: depth-resolved (DR) models (Models 1–8 and 12–17),
depth-integrated (DI) models (Models 9–11, 18–20, and 25–31), and absorption-based (AB) models (Models 21–24, and 32). In Case 9, the gray shading indicates the models that have
no values.
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Taylor diagrams (Figure 7) were also used to visualize the relative skill of the models in terms of Pearson’s
correlation coefficient (r), normalized standard deviation, and normalized uRMSD without the information
of bias. Note that a model performs better if it is closer to the reference point where r is 1.0, normalized
uRMSD is 0, and the normalized standard deviation is 1.0. When satellite chlorophyll was used (Case 1), the
models produced correlation coefficients that were mostly between 0.3 and 0.5 and the standard deviations of
all the models were less than the standard deviation of the observed NPP (Figure 7a and see also Table 5). The
models improved in estimating NPP when they incorporated in situ chlorophyll (Case 9) as evidenced by the
higher correlation coefficients between the modeled and in situ NPP and the closer match between the stand-
ard deviations of the modeled and observed NPP than occurred for Case 1 (Figure 7b). While the Target dia-
grams, as described above, showed that the models were clustered in terms of normalized uRMSD (Figure 6),
the clustering of the models in the Taylor diagrams was also due to a weak correlation and low variability of
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Figure 5. Scatter plots of modeled logNPPN585 using satellite chlorophyll (Case 1; blue) and in situ chlorophyll (Case 9; magenta) against
in situ NPP (mgC m22 d21). The model number is indicated in the upper left and a black line indicates a 1:1 ratio.
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the model results as compared to in situ NPP. For example, assuming the model standard deviation is equal to
the standard deviation of in situ NPP (rmodel=rin situ51), normalized uRMSD would be between 0.9 and 1.2 if r
ranges between 0.3 and 0.6, respectively. In other words, as shown in the Taylor diagram (Figure 7), it is critical
for models to have strong correlation (covariance) to lower uRMSD, even if model standard deviation is accu-
rately represented.

Boxplots were additionally used to characterize how well the modeled NPP reproduced the variability of
the observed NPP (Figure 8). The distribution of the modeled NPP was generally symmetrical (i.e., a log-
normal distribution) and the median values were similar between the two cases for each model (Case 1 ver-
sus Case 9). However, when using satellite chlorophyll (Case 1), the models produced narrower boxes (inter-
quartile ranges between the 25th and 75th percentiles) and shorter whiskers (Figure 8a) than when in situ
chlorophyll concentrations were used (Case 9; Figure 8b). As a result, there were more outliers in Case 1
than in Case 9, indicating that the models in Case 1 using satellite chlorophyll overestimated NPP in low-
productivity regions/seasons and underestimated it in high-productivity regions/seasons, relative to Case 9.
Again, this is largely because satellite-derived measurements overestimated chlorophyll at lower concentra-
tions and underestimated it at higher concentrations (Figure 3b). Note that Models 13, 15, and 17 used Rrs
to estimate surface chlorophyll from the Garver-Siegel-Maritorena semiempirical algorithm, which produced
four outliers resulting in extremely low NPP (Figure 8a).

Based on the skill assessment statistics described above (Table 5), models performing relatively better than
others were selected for further analysis using the two following criteria: (1) bias was close to 0
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Figure 6. Target diagrams illustrating relative model performance in reproducing logNPPN585 using (a) satellite chlorophyll (Case 1) and
(b) in situ chlorophyll (Case 9).
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(20.1<bias<0.1) and (2) correlation coefficient was greater than the model average (r>0.38 for Case 1 and
r>0.54 for Case 9). Four model results (Models 6, 12, 16, and 27) were selected for Case 1 and five model
results (Models 3, 12, 14, 26, and 27) for Case 9. Using t-test for equal mean, it was determined that the esti-
mated NPP from the selected models was not statistically different from the in situ NPPN585 mean (not
shown). From the cumulative distribution of logNPPN585 for these model results (Figure 9), it is again clear
that the variability of NPP was underestimated using satellite chlorophyll (Case 1) although mean NPP was
reproduced. Unlike Case 1, models using in situ chlorophyll (Case 9) successfully reproduced mean and var-
iance in terms of magnitude distribution. Among the seven selected models, four (Models 3, 12, 14, and 16)
required chlorophyll as well as satellite-derived Rrs and two (Models 26 and 27) used empirically derived
Zeu_derived that was based on the relationship between in situ Zeu and in situ surface chlorophyll using the
AO data sets listed in Table 1 (log10 Zeu_derived 5 0.0192 3 log10 in situ surface chlorophyll2 - 0.2303 3 log10

in situ surface chlorophyll 1 1.4078). Models 12, 14, and 16 were also developed for the AO [B�elanger et al.,
2013] and Models 14 and 16 were further tuned with Arctic-relevant photosynthetic parameters [e.g., Huot
et al., 2013].

4.3. Influence of the SCM in NPP Estimates (1998–2001, N585)
When estimating NPP using ocean color models, one challenge is to take into account the impact of the
SCM in optically complex waters like the AO. Hence a comparison of NPP model skill was made for times
and locations when SCM were and were not present in the in situ NPP data set. For the stations with SCM,
Figures 10a and 10b overall exhibit similar results to those in Figure 6; a few more models underestimated
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Figure 7. Taylor diagrams illustrating relative model performance in reproducing logNPPN585 using (a) satellite chlorophyll (Case 1) and
(b) in situ chlorophyll (Case 9). The black square labeled as ‘‘REF’’ represents a perfect model, where the normalized standard deviation and
the correlation coefficient are 1.0.

Journal of Geophysical Research: Oceans 10.1002/2015JC011018

LEE ET AL. ARCTIC PRIMARY PRODUCTIVITY ROUND ROBIN 6523



mean and/or variability of NPP as compared to when all data were used. In contrast, when SCM were not
present, more models overestimated mean NPP with a greater magnitude as well as its variability (Figures
10c and 10d, respectively). Whether or not SCM were present, most models were clustered within the range
of 0.7–1.0 in normalized uRMSD as shown earlier (Figure 6), but there was a large difference between cases
in terms of correlation coefficient (Figure 11). Overall, the models had the highest correlation coefficient
with in situ NPP when using in situ chlorophyll at the stations without SCM (Figure 11d) and the lowest
when using satellite chlorophyll at the stations with SCM (Figure 11a).

4.4. Vertical Profiles of NPP in DR Models (1998–2011, N585)
Vertical profiles of NPP estimated by the 11 DR models (Models 1–8, 12, 14, and 16) were also compared to
in situ vertical profiles at the 85 sampling stations (1998–2011). Because sampling depths were different at
each station, in situ NPP as well as the model results were grouped into ten layers: 0–2 m, 2–5 m, 5–10 m,
10–15 m, 15–20 m, 20–30 m, 30–40 m, 40–50 m, 50–60 m, and 60–100 m. The participants provided NPP
profiles only for Case 1 (satellite chlorophyll and PAR, reanalysis SST, and climatological MLD) and Case 16
(in situ chlorophyll, reanalysis PAR, in situ SST, and in situ MLD) including model Zeu estimates. Note that
only DR models were asked to provide vertical profiles for Case 1 and 16, and Models 13, 15, and 17 were
excluded because they had no results for Case 16. The DR models generally overestimated NPP (mean and
variability) and Zeu in both cases (Figure 12a). In July, mean in situ and modeled NPP were both highest just
below the surface (2–5 m). In contrast, variability of in situ NPP was high down to 40 m, whereas variability
of modeled NPP was only high in the uppermost 10 m (Figure 12b). This high observed variability at depths
below 20 m was not captured in the DR models. Unlike in July, in August mean and variability of in situ NPP
were both highest at the surface layer (0–2 m and 2–10 m, respectively) and decreased quickly. This trend
was reproduced in the models; however, the in situ NPP was very low below 20 m depth, whereas the mod-
els overestimated NPP down to 50 m depth (Figure 12c).

The model skills of the 11 DR models at different depth layers in Cases 1 and 16 were assessed using the Tar-
get and Taylor diagrams (Figure 13). All models overestimated NPP except one model (Model 6), which had
very low NPP below 10m (seven symbols with negative normalized bias less than 20.25 in Figures 13a and
13b). Almost all models underestimated the variability, except in the surface layer of 0–10 m in Case 16 using
in situ chlorophyll (Figure 13b). The models also showed the highest correlation with in situ NPP in this
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Figure 8. Boxplot of estimated logNPPN585 using (a) satellite chlorophyll (Case 1) and (b) in situ chlorophyll (Case 9). In situ NPP is shown
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surface layer (Figure 13d), but this was not so for Case 1 using satellite chlorophyll (Figure 13c). In general,
the DR models performed very poorly at the middepth layer (15 - 40 m), where variability of in situ NPP was
greater than estimated NPP (e.g., Figure 12b), because uRMSD was high and correlation coefficient was low.

4.5. Regional and Seasonal NPP (1988–2011, N5455)
In order to utilize the entire in situ data set, Case 16 was selected from 1988 to 2011 for the next two exer-
cises, using 16 models out of the 32 participating models, after excluding those requiring satellite-derived
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Figure 9. Cumulative distribution functions of logNPPN585 for the selected models, i.e., Models (a) 3, (b) 6, (c) 12, (d) 14, (e) 16, (f) 26, and
(g) 27: blue5Case 1 NPP using satellite chlorophyll, red5Case 9 NPP using in situ chlorophyll, and black5in situ NPP.
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products (Models 3, 12–17, 21–24, and 32) and/or producing NPP at less than 455 stations in total (Models
5, 6, 10 and 11). The 16 remaining models estimated NPP using in situ chlorophyll, NOAA/NCEP reanalysis
daily PAR, in situ SST, and in situ MLD (Figure 3). We examined the performance of model skill in four differ-
ent time periods that have a similar number of stations (April–June, July, August, and September–Novem-
ber), in two different regions (bottom depth �200 m and >200 m), and under two different sea ice
conditions (< and� 15% ice concentration) using the Target and Taylor diagrams.

Overall, the selected models performed better in fall (September–November) or at deep-water stations
(depth> 200 m) in terms of uRMSD (Figures 14a and 14b) as well as correlation coefficients (Figures 14c
and 14d), when and where NPP was relatively low, respectively (Table 2). In addition, the models repro-
duced NPP relatively well (lower RMSD and higher correlation coefficient) in sea ice-covered regions com-
pared to sea ice-free regions (Figures 14b and 14d) even though the distribution of in situ NPP values was
similar between the two regions (Table 2). On the other hand, the models performed poorly in July–August
and at shallow-water stations (depth< 200 m), when and where NPP was relatively high, respectively (Table
2). Although RMSD varied spatially and temporally, the model performance in a given month (bloom or
postbloom) and region (depth or ice coverage) was mostly determined by bias rather than uRMSD and/or
correlation coefficient.

In a final component of this analysis, in situ and modeled daily NPP were projected onto a 100 km EASE-
Grid map to illustrate the spatial pattern of NPP in the AO (Figure 15a). In situ NPP was relatively higher in
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Figure 10. Target diagrams of (a) Case 1 using satellite chlorophyll (CHL) and (b) Case 9 using in situ CHL based on the stations where SCM existed (N544), and (c) Case 1 and (d) Case 9
based on the stations where SCM was not present (N539) among the 85 stations (1998–2011) in Figure 5. Note that two stations were excluded because no SCM information was available.
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the Chukchi Sea, the Canadian Archipelago, and the Nordic Seas and lower in the Beaufort Sea and the cen-
tral Arctic Basin. Based on the average results from Case 16 (N5455), the simulated NPP was compared
regionally with in situ data. In general, the models have a strong tendency to overestimate NPP in lower
productivity regions and underestimate NPP in higher productivity regions. In situ and modeled NPP were
highly correlated in the central Arctic Basin (r50.82, p<0.01; Figure 15e) where most of the in situ NPP were
measured at deep-water, sea ice-covered stations and weakly correlated in the Chukchi Sea (r50.57,
p<0.01; Figure 15d) where most of the in situ NPP were measured at shallow-water, sea ice-free stations.

5. Discussion

Our main objective was to determine sources of uncertainty in the performance of various NPP models
based on satellite ocean color and chlorophyll measurement. A large number of models (N532) partici-
pated in this PPARR exercise and individual model skill was assessed primarily by computing mean, var-
iance, and RMSD (bias and uRMSD) as well as other statistical tools to determine how well each model
reproduced NPP in the AO. Compared to previous PPARR exercises [Campbell et al., 2002; Friedrichs et al.,
2009; Saba et al., 2010, 2011], in situ integrated NPP in the AO exhibited the widest variability of data: more
than 4 orders of magnitude between minimum and maximum NPP (1 to 10,000 mgC m22 d21). Model skills
presented in previous PPARR studies varied substantially from one region to another; RMSD ranged mostly
between 0.1 and 0.5 from tropical waters to high latitudes. In contrast, this study showed that RMSD in the
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Figure 11. Taylor diagrams of (a) Case 1 using satellite chlorophyll (CHL) and (c) Case 9 using in situ CHL based on the stations where SCM exists (N544), and (b) Case 1 and (d) Case 9 based
on the stations where SCM was not present (N539) among the 85 stations (1998–2011) in Figure 6. Note that two stations were excluded because no SCM information was available.
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AO varied from 0.56 to 0.80 (see Table 4) which was much greater than RMSD in any other region so far
studied, indicating the lowest model skill (the highest RMSD) for this polar region. Carr et al. [2006] showed
that NPP model estimates had the widest range of values for the AO at basin scale, when using monthly,
satellite-derived data only. Saba et al. [2011] found that the highest model skill was observed in the deep-
water regions with low NPP variability; however, the AO was not included in that study. In contrast, model
skill was lowest in the shallow-water regions where NPP variability was highest, such as in coastal areas of
the Mediterranean Sea [Saba et al., 2011]. In this AO study, the model-data misfit mainly stemmed from an
underestimation of NPP variability by the models, because of a large variability of the in situ data––espe-
cially in shallow-water regions like the Chukchi Sea (i.e., Figure 15d)––that the models were unable to
reproduce.

It should be remembered that the cumulative maximum error of NPP propagated from field measurement
precision to algorithm precision has been shown to account for 39% of RMSD in the case of a classical
empirical model also dependent on chlorophyll only [Eppley et al., 1985] and has been estimated as 72%
[Saba et al., 2011] to 6 100% [Balch et al., 1992; Campbell et al., 2002] in more complex models. These esti-
mates include the uncertainties associated with the determination of in situ chlorophyll (6–21%) [Lorenzen
and Jeffrey, 1980] (e.g., fluorometric versus HPLC data) and with satellite chlorophyll (median absolute per-
cent difference of 33% [Bailey and Werdell, 2006]; RMSD of 0.29 log unit [Moore et al., 2009]; and satellite pig-
ment accuracy per se of 60.17 log unit [O’Reilly et al., 1998]). It should be noted that previous model
intercomparisons dealt with integrated NPP estimates that respond differently to environmental
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Figure 12. Vertical profiles of the mean in situ (black) NPP and the mean NPP of the 11 depth-resolved models (Models 1–8, 12, 14, and 16) in (a) all months (N585), (b) July (N529),
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perturbations than surface primary production [Balch et al., 1992; Saba et al., 2010]. Finally, it has become
clear that not all NPP is necessarily contained within the algal cells in the particulate fraction (as represented
by most of the in situ data herein) but that a significant fraction (sometimes as much as 50%) is quickly
released by the algal cells as dissolved primary production in Arctic waters [Gosselin et al., 1997; Klein et al.,
2002; Vernet et al., 1998], causing an underestimation of NPP.

A primary result of this model inter-comparison effort highlights that most ocean color NPP models using
surface chlorophyll performed better in the AO when in situ measurements rather than satellite-derived
properties were used; the skill of certain models decreased dramatically if satellite chlorophyll was used
instead. This is because satellite chlorophyll was underestimated at higher concentration and overestimated
at lower concentrations compared to in situ values in the AO (see Figure 3b) [also Cota et al., 2004; Matrai
et al., 2013]. As a result, modeled NPP variances were substantially underestimated (Figure 8a), resulting in
relatively weaker correlation between in situ and estimated NPP (Figure 7a). The use of semianalytical algo-
rithms to estimate surface chlorophyll, such as the Garver-Siegel-Maritorena model, did not improve the
results (Models 13, 15 and 17 versus Models 12, 14, and 16). Hence, an accurate retrieval or measurement of
surface phytoplankton chlorophyll becomes critical to estimate NPP in the AO using OCMs [i.e., Balch et al.,
1992; Saba et al., 2010]. Uncertainties in estimating NPP from remotely sensed ocean color have been
largely attributed to surface chlorophyll [Friedrichs et al., 2009; Saba et al., 2010, 2011] and photosynthetic
parameters [Milutinović and Bertino, 2011] relative to other input variables. In our case, we showed that the
models that utilized MLD in estimating NPP were least sensitive to the type of MLD data (in situ versus
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Figure 13. (a, b) Target and (c, d) Taylor diagrams of (left) Case 1 and (right) Case 16, representing relative model performance in reproducing logNPPN585 by the 11 depth-resolved
models (Models 1–8, 12, 14 and 16) using satellite and in situ chlorophyll, respectively. The symbols indicate the statistics between in situ and estimated NPP at various depth layers:
0–2 m, 2–5 m, 5–10 m, 10–15 m, 15–20 m, 20–30 m, 30–40 m, 40–50 m, 50–60 m, and 60–100 m.
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climatology), possibly because of a shallow mixed layer in the AO [Peralta-Ferriz and Woodgate, 2015], sug-
gesting that the spatio-temporal variability of MLD was relatively weak in our AO data sets (Figure 3e).

The low irradiance and low water temperature prevailing in polar seas are associated with unique bio-
optical and photosynthetic parameters reflecting these extreme environments that must be accounted for
in primary production models [e.g., Rey, 1991; Arrigo et al., 2008]. The interactions between these factors
have resulted in overestimates of low NPP and underestimates of high NPP by remote sensing (Figure 5).
Many of the models also incorporated PAR and SST in this study, but there was little difference in the overall
performance of the models. This is because the two different sources for each input variable exhibited a
similar distribution (Figures 3c and 3d), indicating that the AO is well represented in reanalysis data of PAR
and SST. The range of PAR in the AO is comparable to that in previous PPARR exercises in tropical to tem-
perate regions [e.g., Campbell et al., 2002; Friedrichs et al., 2009; Saba et al., 2011]; however, SST was gener-
ally low and narrowly ranged, only between 22 and 68C, in the AO (Figure 3d). Sixteen NPP algorithms
include temperature-dependent functions which are used to correct temperate water values adopted for
phytoplankton physiological parameters (i.e., the maximum photosynthetic rate normalized to chlorophyll,
PB

max or similar parameters). For instance, the correction from a 208C rate to the value for a temperature of
08C means a reduction by about 70% in the maximum photosynthetic rate [e.g., Eppley, 1972]. However, the
effect of temperature on PB

max was not significant over the temperature range observed in the southern
Beaufort Sea during the MALINA cruise [Huot et al., 2013]. Although the various models performed poorly in
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Figure 14. (a, b) Target and (c, d) Taylor diagrams of Case 16 (N5455) using in situ chlorophyll (1988–2011), illustrating relative model performance in reproducing logNPP over different
(left) months and (right) regions. The symbols indicate the statistics between in situ and estimated logNPP in four different periods (April–June, July, August, and September–November),
two different regions (shallow-water stations where water depth is less than 200 m and deep stations where water depth is greater than 200 m), two different sea ice conditions (ice-free
stations where sea ice concentration was less than 15% and ice-covered stations where sea ice concentration was greater than 15%), and two different model types (5 depth-resolved
(DR) and 11 depth-integrated (DI) models). See text for further details.
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reproducing the in situ NPP values in the AO, the models were less sensitive to uncertainties in SST, sug-
gesting that temperature dependence in NPP algorithms may be sufficient in the AO or that the influence
of temperature on phytoplankton physiology, within the narrow range of observed SST, may be insignifi-
cant compared to surface irradiance.

Although it still is a subject of much discussion, errors from model-derived NPP omitting SCM vary signifi-
cantly temporally and spatially from one study and one region to another [Ardyna et al., 2013; Brown et al.,
2015; Cherkasheva et al. 2013; Arrigo et al., 2011; Hill et al., 2013; Martin et al., 2013; Zhai et al., 2012]. Since
most OCMs rely on surface chlorophyll and do not account for the presence of SCM in their algorithms dur-
ing postbloom season (July–September), one can expect that the presence of a SCM may bias their esti-
mates of NPP [e.g., Martin et al. 2010]. Contrary to the SCM observed at lower latitudes [Cullen, 1992], the
Arctic SCM often corresponds to a maximum in particulate carbon and primary production [Martin et al.,
2010]. However, the highest NPP levels were found in the upper 20 m in the Chukchi Sea whereas the depth
of SCM was observed mostly below 15 m [Coupel et al., 2015; Brown et al., 2015], indicating that high chloro-
phyll does not always account for high NPP in this polar water column. Figure 12 shows that mean in situ
NPP in the AO was highest at the surface (0–10 m) but its variability was highest between 20 and 30 m in
the lower euphotic zone where SCM usually occur, especially in July (Figure 12b). However, this pattern was
not clearly exhibited in August, when mean and variability of in situ NPP peaked at the surface (0–10 m)
and declined with depth (Figure 12c). When in situ NPP was averaged temporally and spatially, the
maximum of subsurface NPP variability was significantly dampened at pan-Arctic and/or annual scales
(Figure 12a).

When our analyses were expanded to include more in situ data from 1988 to 2011 (N5455; Figures 14 and
15), thus using a decade of data prior to the advent of remote sensing, the models performed poorly in July

Figure 15. (a) In situ NPP projected on the EASE-Grid map, and average estimation with an error bar (6 1 standard deviation from the mean) from 16 NPP models (N5455) was region-
ally compared to in situ values in (b) Beaufort Sea, (c) Canadian Archipelago, (d) Chukchi Sea, (e) central Arctic Basin, and (f) Nordic Seas; all inserts have the same axis units as in Figure
15c. A solid-line is a slope of 1.0 and the correlation coefficient (r) with degrees of freedom (df5number of grid cells-2) is shown in the lower right of each insert.
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(Figures 14a and 14c), when the mean and variance of in situ NPP were high (Table 2). This is likely because
the models could not capture the presence of the July SCM [e.g., Arrigo et al., 2011; Ardyna et al., 2013],
resulting in high uRMSD and low correlation. The models were also regionally compared to in situ NPP
again showing that the models overestimated NPP in low productivity regions (the Beaufort Sea and the
central Arctic Basin) and underestimated it in high productivity regions (the Chukchi Sea). That the models
performed worst in a highly productive region such as the Chukchi Sea may suggest that the underestima-
tion of NPP is possibly linked to the existence of a SCM which Brown et al. [2015] describe to be deeper
than the NPP maximum and the MLD historically, especially in July and the rest of the summer. Or, the
model performance could be due to the fact that the majority of the models were originally developed for
regions other than these optically complex polar waters, rather mostly for Case-1 waters, for which light
penetration differs substantially than in the AO [Antoine et al., 2013].

When a SCM is present, AO ocean color-based NPP is expected to be underestimated, as a result of the
omission of phytoplankton chlorophyll now at the SCM [e.g., Hill et al., 2013, Zhai et al., 2012]. In this study,
we confirmed this expectation, highlighting the failure of the models to capture the NPP variability at the
stations where a SCM was present, especially when using satellite chlorophyll as input data. In contrast, the
models performed better at the stations without SCM, particularly in terms of correlation; albeit that NPP
was overestimated. Nonetheless, some models performed well on a pan-Arctic scale in terms of bias (Table
5 and Figure 6). This suggests that the overestimated NPP in the absence of SCM could be compensated by
underestimation of NPP due to omission of the SCM [Arrigo et al., 2011; IOCCG, 2015], or that vertical varia-
tions in chlorophyll have a limited impact on annual, depth-integrated NPP [Ardyna et al., 2013]. Although
the SCM is a ubiquitous feature throughout the Arctic Ocean on a seasonal basis, processes involved in
developing/maintaining SCM are possibly different from coastal to offshore regions [Bergeron and Tremblay,
2014; McLaughlin and Carmack, 2010]. Hence, the effect of the SCM could be most important on a regional
scale and more pronounced in mid-summer, and may correspond to high NPP at middepths in highly strati-
fied oligotrophic waters, such as the Beaufort Sea [Weston et al., 2005; Martin et al., 2010, 2013; Tremblay
et al., 2008], while the SCM accounts only for a low fraction of integrated NPP on an annual basis over the
pan-Arctic domain [Arrigo et al., 2011; IOCCG, 2015]. However, the location of the SCM can be critical to
understanding higher trophic levels and pelagic-benthic coupling [Wassmann and Reigstad, 2011].

Of all the participating models, sea ice information was only taken into account in Model 31 [Fern�andez-
M�endez et al., 2015], which was specifically developed for the ice-covered region (north of 758N) where sat-
ellites cannot measure most ocean properties. This may pose a limitation when applying these models to
the entire AO, especially in areas where subice and/or ice-algal blooms are dominant. It should be noted
that the models were provided with incoming PAR, computed above the sea ice surface, which likely
exceeded the subice light levels available for the in situ primary production incubations provided as field
data. Nonetheless, it is surprising that, whether sea ice-covered or not, in situ NPP values were more or less
similarly distributed in the two regions (Table 2), supporting significant phytoplankton production under
the sea ice cover [Gosselin et al., 1997; Pomeroy, 1997]. The models generally performed better in ice-
covered regions than in ice-free regions, especially in terms of correlation coefficient (Figure 14d) and they
even performed better in the stations with higher sea ice concentration (not shown). In other words, the
models did a relatively poor job of capturing NPP variability in physically dynamic, ice-free regions where
fronts, upwelling, and other mesoscale physical features may occur. Model 31 also produced NPP in sea ice-
free areas where it is not expected to give good results, and it performed better with satellite chlorophyll
than with in situ chlorophyll in terms of RMSD, though it significantly underestimated the mean NPP when
using in situ chlorophyll.

Our results show that ocean color NPP models for the AO were challenged by the strong spatio-temporal
variability of the in situ data. Such variability is controlled by discontinuous data availability as well as by
processes that interfere with remote sensing of ocean chlorophyll, such as subpixel ice contamination
[B�elanger et al., 2007]. Other obstacles also exist in the AO that pertain to the remote sensing of ocean
color and the derivation of accurate estimates of surface chlorophyll needed for the simulation of NPP
[Babin et al., 2015]. These range from those on cellular scales, i.e., an enhanced pigment packaging effect
common in polar waters [e.g., Brunelle et al., 2012; Matsuoka et al., 2011], to those on regional scales, i.e.,
signal interference by land-derived, river-borne colored dissolved organic matter (CDOM) [e.g., Brunelle
et al., 2012; Matsuoka et al., 2007, 2011, 2013; Rachold et al., 2004], and basin scales, i.e., signal loss by sea
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ice and cloud cover [IOCCG, 2015]. Recent bio-optical analyses in the western Arctic indicate a positive bias
resulting from currently used chlorophyll algorithms and their treatment of CDOM [Chaves et al., 2015],
rather than from the radiometric reflectance data per se collected by the satellite-borne sensor. Previous
studies, on the other hand, found nonuniform biases in estimating chlorophyll on a pan-Arctic basis, but
with consistent patterns of underestimation of surface chlorophyll in the Labrador Sea [Cota et al., 2003]
and overestimation in the Beaufort, Chukchi and Nordic Seas [Ben Mustapha et al., 2012; Matsuoka et al.,
2007; Stramska et al., 2003; Wang and Cota, 2003]. In this study, the absorption-based models that included
a way to reduce the impact of Arctic CDOM, pigment packaging, and nonalgal matter in their algorithms
(Models 21 and 22) exhibited both lower bias and higher standard deviation close to in situ NPP (Table 5
and Figure 6a) when using remotely sensed data. The algorithm for Models 12, 14, and 16 was originally
developed for the AO [B�elanger et al., 2013]; Models 14 and 16 further incorporated photosynthetic param-
eters derived from Arctic data sets [Huot et al., 2013]. Models 26 and 27 modified their original algorithms
by including empirically derived Zeu information and photosynthetic parameters based on the Arctic data.
The models specifically tuned for the Arctic environment (Models 12, 14, 26, and 27) outperformed other
ocean color models in terms of mean, variance, and correlation, especially when using in situ chlorophyll.
However, although photosynthetic parameters were also tuned for the AO, modeled NPP was still signifi-
cantly underestimated and weakly correlated in Models 13, 15, and 17 using Rrs-derived chlorophyll based
on the Garver-Siegel-Maritorena semianalytical algorithm. Clearly, an improved, regional chlorophyll algo-
rithm tuned for the AO will result in more accurate NPP [B�elanger et al., 2007], even though previous
attempts [Cota et al., 2004; Wang and Cota, 2003] have had mixed successes [Ben Mustapha et al., 2012;
Matsuoka et al., 2007].

Although skill varied substantially among the participating models, most models significantly underesti-
mated the variability of NPP, often by more than a factor of two, regardless of model type or complexity.
On the positive side, some models presented almost no bias. Thus, the models with a greater skill were gen-
erally those that exhibited the least bias and that best simulated integrated NPP variability, though the lat-
ter varied relatively little among, and was similarly underestimated by, most of the participating models.
The specific models that demonstrated the greatest skill varied depending on which skill metric was used.
For example, if the correlation coefficient was used as a single skill metric, some models performed rela-
tively well compared to others, but their bias was large (e.g., Models 5 and 28), resulting in relatively higher
RMSD values. Similarly, in terms of reproducing the observed mean NPP, especially when using satellite
chlorophyll (Case 1), Models 21 and 22 had one of the lowest bias, but these models were very weakly cor-
related with the in situ NPP, resulting in relatively higher RMSD values (Table 5 and Figure 5). Furthermore,
one should be cautious that lower bias and higher correlations often yield higher RMSD when the standard
deviation of model results is greater than that of the in situ data, e.g., Model 14 in Case 9. Therefore, it is crit-
ical to use multiple skill metrics, since correlation can be substantially different even if RMSD are similar or
vice versa. When using in situ chlorophyll (Case 9), there were five models (Models 3, 12, 14, 26, and 27 in
Figure 9) that reproduced the NPP distribution (equal mean and variance based on the null hypothesis
using t-test and F-test, respectively; not shown) but did not necessarily show a one-to-one relationship with
a slope of 1.0 (Figure 5), suggesting that the models failed to capture small-scale variability, extreme events,
or, perhaps, the SCM.

It is clearly a challenge for OCMs to be applied in Case-2 waters which are optically complex and often pro-
ductive at the same time, such as in the AO in summer. Furthermore, the widespread presence of CDOM
from Arctic rivers significantly changes the optical properties in AO waters [Anderson and Amon, 2014;
Antoine et al., 2013]. Our study strongly recommends that the current algorithm used to remotely derive
chlorophyll should be improved for the AO [Antoine et al., 2013; Lee et al., 2015; Chaves et al., 2015]. This
PPARR exercise suggests that bio-optical parameters (e.g., quantum yield, absorption coefficients, and pho-
tosynthetic rates) in ocean color models need to be tuned for the AO, such that the development of
regional- and/or seasonal-specific models can lead to improved estimates of NPP for a better understanding
of current and future trends of NPP. In addition, in order to examine seasonal and regional characteristics of
primary productivity in the AO, it is desirable to have extensive field measurements with international col-
laborations covering various areas in the AO. Because the current in situ data sets are also skewed tempo-
rally and spatially, the results from their analysis may be biased toward the western Arctic during summer
months. Although the estimated NPP range may be of similar magnitude for the pan-Arctic Ocean, the
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processes involved and their relative importance are very different in the various areas of the AO [Carmack
and Wassmann, 2006; Wassmann, 2011].

Appendix A: Model Descriptions

A1. Model 1
This is a model based on Morel [1991], which is formulated using chlorophyll specific wavelength-resolved
absorption and quantum yield. Temperature dependence is given by the parameterization of the maximum
photosynthetic yield (PB

max), which follows Eppley [1972]. The chlorophyll profile is determined to be well-
mixed or stratified according to the ratio of MLD and the euphotic depth, and if stratified, assigned a Gaussian
profile as in Morel and Berthon [1989]. Mean photo-physiological parameters are from Morel et al. [1996]. The
model is run in its ‘‘satellite’’ version [Antoine et al., 1996], where NPP is the product of integral biomass, the
daily irradiance, and w*(the cross section of algae for photosynthesis per unit of areal chlorophyll biomass).

A2. Model 2–4
These models [M�elin, 2003; M�elin and Hoepffner, 2011] follow that of Platt and Sathyendranath [1988] as
implemented at global scale by Longhurst et al. [1995]. It uses biogeographical provinces to define the val-
ues of the parameters to describe the light-photosynthesis curve and the chlorophyll depth profile. Photo-
synthetic parameters were updated using an extended data set provided by the Bedford Institute of
Oceanography and an extensive literature review. Spectral surface irradiance is first estimated independ-
ently with the model of Gregg and Carder [1990] combined with a correction for cloud cover and then
scaled to match the PAR values provided for the exercise. Spectral light is subsequently propagated in the
water column with a Case-1 bio-optical model with updated parameterizations of the inherent optical prop-
erties. All changes to the original implementation of Longhurst et al. [1995] are detailed by M�elin [2003].
With respect to the standard configuration (Model 4), two other versions were tested. Model 2 adopted the
parameterization of Ardyna et al. [2013] to define the vertical shape of the chlorophyll profile. Model 3 used
satellite-derived reflectance values and the QAA [Lee et al., 2002] to compute an independent estimate of
the absorption by chromophoric dissolved organic matter that substitutes the contribution foreseen by the
Case-1 water model in the standard model.

A3. Model 5 and 6
These models derived spectral irradiance using Tanr�e et al. [1990] scaled to the PAR values provided in the
exercise, and applies a wavelength dependent absorption as a function of chlorophyll as spectral irradiance is
propagated through the water column. Quantum yield varies with depth and is parameterized as a maximum
value times both a light-dependent term [Bidigare et al., 1992; Waters et al., 1994] and a temperature depend-
ent term. Temperature dependence was assumed to be sigmoidal, and was based on a vertical profile of tem-
perature derived from SST and MLD. For Model 5, the chlorophyll profile was assumed constant and equal to
the surface chlorophyll. For Model 6, the chlorophyll profile was assumed constant to the MLD, followed by a
small chlorophyll max and then a decrease to 20% of the surface chlorophyll. The chlorophyll maximum was
0.1 mg m23 larger than the surface chlorophyll. Parameterizations were primarily derived from temperate and
tropical areas. While CDOM absorption can be incorporated in the model, it was not provided in the exercise.

A4. Model 7
This model is an implementation of the Morel [1991] model in which the depth distribution of chlorophyll is
assumed constant throughout the water column. The broadband incident PAR is spectrally resolved using a
look-up-table generated from a single run of the Gregg and Carder [1990] marine irradiance model where
the effects of clouds and aerosols are essentially linearly scaled. The model uses 60 min time and 10 m
depth steps at 5 nm wavelength resolution when run using the global data sets [Smyth et al., 2005].

A5. Model 8
In this model, the depth distribution of PAR is given by an empirical equation of light attenuation, which is
determined by the surface chlorophyll. The vertical distribution of chlorophyll is determined empirically
with the vertical distribution of PAR and surface chlorophyll. The products between the chlorophyll and the
carbon fixation rate, which is defined as a function of PAR and temperature, are integrated for the day time
and for the euphotic depth to give the total productivity [Asanuma, 2006].
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A6. Model 9
This model uses an artificial neural network to perform a generalized nonlinear regression of NPP on several
predictive variables, including latitude, longitude, day length, MLD, SST, a maximum carbon fixation rate
within a water column (PB

opt) computed according to Behrenfeld and Falkowski [1997a], PAR, and chlorophyll
[Scardi, 2000; Scardi, 2001].

A7. Model 10–11
These models use support vector machine (SVM) as the nonlinear transfer function between ocean primary
productivity and chlorophyll-a concentration, euphotic layer depth, PAR, maximum carbon fixation rate, and
day length [Tang et al., 2008]. In Model 10, the maximum carbon fixation was estimated by using a seventh-
order polynomial function of SST [Behrenfeld and Falkowski, 1997a]. The euphotic layer depth was estimated
using the integrated chlorophyll [Morel and Berthon, 1989]. Model 11 is similar to Model 10 except that the
maximum carbon fixation rate was estimated as a SVM-based nonlinear function of SST, chlorophyll, and PAR.

A8. Model 12–17
All models assume vertically homogeneous chlorophyll profiles and use Rrs to estimate spectral diffuse
attenuation coefficient of downward irradiance (Kd) applying the QAA [Lee et al., 2002, 2005]. Model 12 and
13 based on PB

max as B�elanger et al. [2013] use measured chlorophyll and Rrs-derived chlorophyll, based on
the Garver-Siegel-Maritorena semiempirical algorithm, respectively. Model 14 and 15 use measured chloro-
phyll and Rrs-derived chlorophyll, respectively, but PB

max is based on Huot et al. [2013]. If chlorophyll is less
than 0.1 mg m23, Model 14 and 15 use equation (2) in Huot et al. [2013]. Otherwise, Model 14 and 15 uses
equation (3) in Huot et al. [2013]. Model 16 and 17, based on PB

max from equation (4) in Huot et al. [2013], use
measured chlorophyll and Rrs-derived chlorophyll, respectively.

A9. Model 18
This vertically generalized production model (VGPM) variant formulates PB

opt as a function of SST and chlorophyll
[Kameda and Ishizaka, 2005; Yamada et al., 2005]. The model is based on the assumption that phytoplankton con-
sists of large and small phytoplankton groups, which have specific chlorophyll productivities and temperature
functions such that changes in chlorophyll concentration depends on the abundance of large phytoplankton.

A10. Model 19
This model is identical to the original version of the VGPM model developed by Behrenfeld and Falkowski
[1997a]. The implementation for this model closely matches the code found on the Oregon State University
primary productivity website (see http://www.science.oregonstate.edu/ocean.productivity/vgpm.code.php).
For PB

opt, a Horn formulation (recursive) of the original 7th order polynomial of temperature was used for
better numerical stability. The calculation for NPP was formulated for integration to 1% euphotic depth and
there were no checks for euphotic depth exceeding actual depth. As with the original model, there was also
no treatment of MLD.

A11. Model 20
This model is the original default version of VGPM developed by Behrenfeld and Falkowski [1997a].

A12. Model 21–24
All models are based on the VGPM [Behrenfeld and Falkowski, 1997a] and assume homogeneous chlorophyll
profile. PB

opt3Csurf in the VGPM was replaced by an empirical function of absorption coefficient of phyto-
plankton at the sea surface (aph (02)) for Models 21 and 22 [Hirawake et al., 2012], or by absorbed radiation
by phytoplankton (aph(02) 3 PAR/day-length) for Models 23 and 24 (SGLI/GCOM-C, TBD). Models 21 and
23 used spectrally averaged absorption coefficient, �aph(02), and Models 22 and 24 used absorption coeffi-
cient at 443 nm, aph(443, 02).

A13. Model 25
This model is based on equation (4) presented in Balch et al. [1992]. PB

max is a median value (1.14 mgC mgChl21

h21) based on previously published measurements in the AO [Platt et al., 1982; Smith et al., 1985; Harrison and
Platt, 1986; Platt et al., 1987; Rey, 1991; Harrison and Cota, 1991; Sakshaug and Slagstad, 1991; Stockwell et al.,
2001; Tremblay et al., 2006; Yamaguchi et al., 1996]. The attenuation coefficient for PAR was formulated from Nel-
son and Smith [1991].
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A14. Model 26
This model is a variant of Eppley-VGPM [Eppley, 1972; Antoine and Morel, 1996; Behrenfeld and Falkowski,
1997a] using Zeu empirically derived for the AO (see the section 4.2).

A15. Model 27
This is a variant of the algorithm by Howard and Yoder [1997], which integrates NPP to Zeu empirically
derived for the AO (see the section 4.2) rather than to MLD. PB

max and the initial slope of the photosynthesis
(a) are median values (1.14 mgC mgChl21 h21 and 0.06 mgC mgChl21 h21 Wm22, respectively) based on
previously published measurements in the AO [Platt et al., 1982; Clegg Smith, 1985; Harrison and Platt, 1986;
Platt et al., 1987; Harrison and Cota, 1991; Rey, 1991; Sakshaug and Slagstad, 1991; Stockwell et al., 2001;
Tremblay et al., 2006; Yamaguchi et al., 1996].

A16. Model 28
This algorithm is based on Howard and Yoder [1997] and NPP is integrated to the MLD.

A17. Model 29
This model estimates integrated NPP based on an empirical relationship between surface chlorophyll and
NPP: log10NPP 5 0.87 3 log10(chlorophyll) 1 1.43 [Matrai et al., 2013]. The model assumes a constant NPP
within Zeu empirically derived for the AO (see the section 4.2).

A18. Model 30
This is a variant of VGPM [Behrenfeld and Falkowski, 1997a] using Zeu empirically derived for the AO (see the
section 4.2).

A19. Model 31
This is an irradiance-based model developed for the sea ice and the water column in the Central Arctic
Ocean (north of 788N) [Fern�andez-M�endez et al., 2015]. The chlorophyll normalized specific net primary pro-
ductivity is calculated using the P-E–curve equation described by Platt et al. [1980]. NPP was calculated as a
vertical integral with a resolution of 1 m in water and 0.1 m in sea ice.

NPP5
Xz5zeuph

z50

npp E4p zð Þð Þ � Cchl zð Þ

Total NPP is calculated as a weighted sum of the three different compartments (open water, water under
bare ice and water under ponded ice):

dNPP5NPPow � 12cið Þ1NPPice � ci � 12cp
� �� �

1 NPPpond � ci � cp

The vertical profiles of light were calculated based on daily means of global radiation from the European Centre
for Medium-Range Weather Forecast (ECMWF) Era Interim reanalyses [Dee et al., 2011]. Global radiation G was
transformed to planar down-welling PAR E0 using the relationship F050:47 � G [Papaioannou et al., 1993].

A20. Model 32
This is the absorption-based model described by Lee et al. [1996, 2011]. A spectrally integrated formulation
for NPP at depth z is used as following:

NPP zð Þ5um
Kuexp 2v3E zð Þð Þ

Ku1E zð Þ Aph3E zð Þ½ �

where E zð Þ5E0exp 2KPAR zð Þ3zð Þ [Lee et al., 2011]. The term associated with um and Ku represents the verti-
cal variation of the quantum yield of photosynthesis. Values of the model parameters used were
um 5 0.12 mol C � Ein21, Ku 5 10 Ein m22 d21, and v 5 0.01 (Ein m22 d21)21. Aph is the absorption coeffi-
cient of phytoplankton at 443 nm, which represents the blue peak of spectral aph. E(z) is the PAR value at
depth z, with E0 for surface PAR. KPAR(z) is the vertical attenuation coefficient of PAR, which is modeled as a
function of absorption and backscattering coefficients [Lee et al., 2005].
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