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ABSTRACT
Melt ponds are believed to play an important role in sea ice
dynamics because they accelerate the melting of sea ice in the
warmer spring and summer months. Additionally, they are known
to absorb solar radiation rather than reflect it as the surrounding
sea ice does. However, the size and distribution of melt ponds are
highly variable, and thus, the contribution of melt ponds to sea ice
melting should differ based on the maturity of the melt pond.
Because of the harsh conditions of the Arctic, estimating the actual
surface changes via in situ measurements and/or optical remote
sensing data is difficult. In this study, we present a high-resolution
time-series analysis of the short-term variation of sea ice and melt
ponds over the Beaufort Sea using space-borne multispectral and
synthetic aperture radar (SAR) images. A KOMPSAT-3 (Korea Multi-
Purpose Satellite-3) optical image was used for an initial classifica-
tion of the surface types, and 15 TerraSAR-X SAR images covering
46 days in the 2014 Arctic summer were used to perform a dense
time-series analysis. The surface of the target sea ice was classified
into six categories based on spectral characteristics. The temporal
variation of the radar backscattering coefficient in each class
exhibited a distinct pattern, which was closely related to surface
changes. Overall, changes in the radar backscattering coefficient
indicated dynamic surface changes, except over pressure ridges.
All ice classes showed a two-step decrease in radar backscattering,
whereas snow-covered ice surfaces exhibited far fewer changes
compared to bare ice surfaces. The surfaces adjacent to ponds
showed stronger negative decreases than other classes. The
changes in dark melt pond classes presented a complex non-linear
decrease, which differed from the stepwise decrease of blue melt
ponds. These observations can be used for important modelling
studies of surface melting/freezing rates and to infer the variation
over large areas using remote sensing data.
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1. Introduction

The Arctic sea ice is thinning at a dramatic rate, even faster than researchers previously
expected (Stroeve et al. 2012). The recent reduction in Arctic sea ice coverage during the
summer season is believed to have contributed to and resulted from global warming.
Although the total volume of Arctic sea ice is very small compared to other ices in the
ocean because of its thickness (IPCC 2013), its surface coverage is crucial to maintain Earth’s
net radiation balance. The main controlling factor of the surface melting rate is the surface
melt pond fraction, which is explained by the ice-albedo feedback mechanism (Curry et al.
1995): A larger melt pond reduces the albedo, a lower albedo causes more melting, and
more melting increases the pond fraction. One recent study (Schröder et al. 2014) reported
that a strong correlation exists between the spring pond fraction and the September sea ice
extent. In summer, melt ponds can cover 30–50% of first-year ice and 15–25% of multi-year
ice (Fetterer and Untersteiner 1998). In general, first-year ice surfaces have large networks of
connected shallow ponds, whereas the ponds in multi-year ice surfaces are deep and
isolated (Eicken et al. 2004). The melt pond coverage has been measured in several Arctic
regions via field surveys (Grenfell and Maykut 1977; Yackel, Barber, and Hanesiak 2000;
Polashenski, Perovich, and Courville 2012), aerial photography (Derksen, Piwowar, and
LeDrew 1997; Perovich, Tucker, and Ligett 2002; Birnbaum et al. 2009), and satellite imagery
(Yackel and Barber 2000; Tschudi, Maslanik, and Perovich 2008; Rösel, Kaleschke, and
Birnbaum 2012; Kim et al. 2013). Field observations provide the most precise melt pond
properties, but it is impossible to investigate vast areas during short ice camp periods. There
are also many areas inaccessible for direct measurement because of the difficulties research
vessels may encounter in attempting to reach such places. Only remote sensing can provide
more extensive mapping capabilities on a regular basis. Previous studies using satellite
remote sensing mainly focused on the extraction of the surface melt pond fraction,
particularly using multispectral sensors, such as Landsat (Markus, Cavalieri, and Ivanoff
2002; Rösel and Kaleschke 2011) and the Moderate Resolution Imaging
Spectroradiometer (MODIS) (Rösel, Kaleschke, and Birnbaum 2012). The MODIS-based
study demonstrated the most successful mapping capabilities for pan-Arctic sea ice.
However, frequent cloud cover of up to 81% over Arctic seas hinders mapping with optical
sensors (Schweiger 2004). In contrast, it is possible to collect dense time-series data sets
using synthetic aperture radar (SAR) because of its day/night acquisition and ability to
penetrate through cloud cover.

This study aimed to answer the following questions: It is possible to relate the melt
pond extent to the surface change rate using high-resolution satellite data? If so, how
will melt ponds affect the radar backscattering of various types of surface sea ice? To
address these questions, we collected both multispectral and SAR images acquired from
the Beaufort Sea (Figure 1) during the summer of 2014. As a part of a research
collaboration between the Korea Polar Research Institute (KOPRI) and the marginal ice
zone programme (Lee et al. 2012) of the U.S. Office of Naval Research (ONR), many
satellite observations were requested and collected over the regions near Cluster 5. This
study presents high-resolution dense time-series observations of sea ice surface changes
from high-resolution space-borne imaging data. We hypothesized that the SAR back-
scattering properties of the sea ice surface change as the melting/freezing process
progresses and that the rate of change differs by surface type, which can be delineated
clearly in high-resolution images.
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2. Methods

In this study, we used two types of high-resolution space-borne remote sensing data: multi-
spectral optical data fromKOMPSAT-3 and Landsat-8 and SAR data from TerraSAR-X. The basic
characteristics of these data are summarized in Table 1. To relate the surface coverage and the
rate of change, a dense time-series data set was utilized. The image-acquisition mechanisms
of the optical and SAR sensors are very different, and thus, they sense the surface materials
fromdifferent perspectives. In the case of sea ice andmelt ponds,multispectral optical sensors
can discriminate surface types based on spectral response patterns from multiple channels.
Additionally, melt ponds can be subdivided into several types using spectral signatures (i.e.,
blue ponds, blue-green ponds, and dark ponds, as in Tschudi, Maslanik, and Perovich 2008).
The colour of a melt pond depends on the thickness of the sea ice beneath the pond. In
general, ponds over multi-year ice appear blue because their bottoms are less transparent,
whereas ponds over first-year ice appear much darker (Divine et al. 2015). In SAR sensors, the
backscattering intensities are strongly influenced by the surface roughness, the dielectric
constant of the scatterers, and the orientation of the features (Sandven and Johannessen
2006). Additionally, the melt water distribution contributes to the dynamic backscattering
signatures of the sea ice surface, but a radar signal cannot penetrate into the water surface,
making it difficult to discriminate pond classes using a single-channel SAR image. Because the
observation periods (mid-August–early October) include both latemelting and early freeze-up
phases, the backscattering signatures will reflect these changes in the time-series data.

To take full advantages of the two different sensors, the basic strategy was to
combine the analytical results from each sensor. Figure 2 demonstrates the data-

Figure 1. The coverage of optical images overlaid on a map of the study area. The large rectangle L8
and the small rectangle K3 represent the coverage of the Landsat-8 and KOMPSAT-3 (Korea Multi-
Purpose Satellite-3) image, respectively. The coverage of the TerraSAR-X images was omitted to
avoid visual complexity because they were acquired in 15 different footprints.

Table 1. Specifications of the sensors and data used in this study.
Satellite
name Sensor type Band Acquisition date

Number of
scenes

Spatial
resolution

Landsat-8 Multispectral (MS) 11 channels in VNIR-
TIR (0.43–2.3,
10.6–12.5 μm)

17 August 2014 1 30 m (MS)
15 m (PAN)

KOMPSAT-3 Multispectral (MS) 5 channels in VNIR
(0.45–0.90 μm)

14 August 2014 1 2.8 m (MS)
0.7 m (PAN)

TerraSAR-X Synthetic Aperture
Radar (SAR)

1 channel in X-band
(9.65 GHz),
HH polarization

19 August–3
October 2014

15 3 m

MS: multispectral band; VNIR: visible and near infrared; PAN: panchromatic band; TIR: thermal infrared.
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processing workflow used in this study, which is described in this section. The main
point is that optical and SAR data are used separately to perform an initial surface type
classification and a time series analysis, respectively. Through this approach, we
extracted distinctive radar backscattering changes over the different observation peri-
ods. The detailed methods used follow, and the results are discussed in the next section.

2.1. Target ice floe selection

In a time-series analysis of the same target, the target ice floe should be large enough to
cover a large number of samples (pixels) in the image domain. Additionally, its structure
should be solid enough to not experience deformation during the observation period.
Based on these considerations, we selected a multi-year ice floe with a diameter of 3 km.
During the observation periods, this ice floe drifted 147.8 km, and the mean centre
location was at 77.46°N 143.38°W, near the southern ice margin of the Beaufort Sea.

2.2. Cross-calibration of KOMPSAT-3 and Landsat-8 images

The calibration coefficients of KOMPSAT-3 (Kim et al. 2015) have not been fully validated over
polar oceans, where two radiometrically extreme features coexist: water and snow/ice. To
convert the digital numbers (DN) into reflectance, we adopted a Landsat-8 Operational Land
Imager (OLI) image as a cross-calibration source. Although the observation dates of the two
sensors differed by 3 days, the two images were acquired in a very similar nadir-viewing
geometry with almost the same spectral band selection in the visible and near infrared (VNIR)
channels. To match the spectral characteristics of KOMPSAT-3 to those of Landsat-8, we first
subsampled the KOMPSAT-3 image (2.8-m resolution) into the pixel spacing of Landsat-8
(30 m) using pixel aggregation. Then, we transformed the resampled KOMPSAT-3 image into
the Landsat-8 geometry via a rigid body transform so that the two images had nearly identical
contents. Unlike land-observation scenarios, the 3-day time gap does not allow for perfect
one-to-one registration because of the motion and deformation of sea ice. However, the
overall contents of the KOMPSAT-3 image (15 km by 15 km) are almost the same over such a
short period. Because perfect co-registration is not guaranteed in this case, a least-squares fit
of each pixel value would result in a biased estimation. We computed histograms of the
KOMPSAT-3 DN values and corresponding Landsat-8 reflectance for each channel. Because
the contents of two images were almost the same (Figure 3, upper row), their distributions
were similar. A generalized extreme value distribution was used to fit each distribution, and
the resulting gains (scale factor, G) and offsets (shifting factor, O) were calculated as follows:

G ¼ σL8=σK3 (1)

Figure 2. Data-processing workflow of this study.
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O ¼ μL8 � μK3; (2)

where σ and μ are the scale and location parameters of the model distribution, and
subscripts L8 and K3 represent Landsat-8 and KOMPSAT-3, respectively. Finally, we obtained
the calibrated KOMPSAT-3 image in its native full resolution by applying computed scale
factors (G1, G2, G3, and G4) and shifting values (O1, O2, O3, and O4) to the original DN value of
each band (subscripts represent the band number. Note that, we used four bands in VNIR).

2.3. Surface type classification of sea ice

As themain aim of this study was to identify the relationship between surface types and the
corresponding changes during the observation period, we first divided the surface types
into six classes according to the difference in their spectral albedos, following Grenfell and
Maykut (1977): pressure ridges, white (snow-covered/dry) sea ice, grey (bare/melting) sea
ice, blue melt ponds, dark melt ponds, and open water. Because there are four KOMPSAT-3
spectral bands, which are fewer than the number of classes, these data were insufficient to
establish a large number of classes using unsupervised classification methods. We first
selected 1000 pixels in each class by comparing the spectral similarity with those of six
reference surface types; then, 70% of them were used as a training set, and the other 30%
were used for verification. Although several algorithms can be used for supervised classifi-
cation, we selected the minimum distance classification algorithm because it assumes that
spectral variability is same in all directions; hence, there are no overlapping classes.

2.4. Generation of radar time series

To analyse the temporal variation of an ice floe, 15 TerraSAR-X images were acquired over
acquisition dates from 19 August 2014 to 3 October 2014. The imagingmode was stripmap,
which has an approximately 3 m spatial resolution. The absolute radiometric stability of
TerraSAR-X data is known to be less than 0.2 dB (Schmidt et al. 2014). Because all of the
delivered TerraSAR-X products are calibrated to radar brightness, β0, we first converted
them to normalized radar backscattering coefficient, σ0, to enable inter-comparison of the

Figure 3. (Upper) Landsat-8 (left) and KOMPSAT-3 (right) images used for radiometric cross calibration.
An area out of the common coverage was masked out with a bright tone, and the red polygon indicates
the area with thin cloud cover where the pixels were excluded in the calibration process. The target ice
floe is located in the centre of the white box. (Bottom) Scatter plot of the digital values of KOMPSAT-3 DN
and Landsat-8 reflectance. Solid lines represent the regression lines computed by applying gains and
offsets, while dashed lines represent those of direct least-squares fit.
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time-series data. Although the conversion process required knowledge of the local inci-
dence angle over the whole illuminated area, no such in situ measurement was available.
Therefore, we used ellipsoidal Earth geometry (WGS84) to compute the local incidence
angle and then removed the incidence angle-dependent backscattering variance from the
data themselves. The reference variance was estimated by applying a second-order poly-
nomial fit to the data acquired over a relatively short period (24–28 September) with four
different incidence angles (21.5°, 35.4°, 42.9°, and 55.1°). To reduce the inherent intensity
fluctuations from speckle noise, a filtering process using NL-SAR (Deledalle et al. 2015) was
adopted prior to geo-referencing. NL-SAR is a state-of-art non-local-based denoising filter,
which introduces a patch similarity criterion and aweightedmaximum likelihood estimation
for noisy images with adapted weights derived from patches in a search window. We
applied the NL-SAR filter to every SAR image with a half-search window size of 12, half-
patch size of 5, and number of looks of 4. Because the time-series data were acquired from
many different orbital paths and at various incidence angles, they first needed to be geo-
referenced using state vectors and an Earth ellipsoidal model. Then, all of the other images
were co-registered with the master image, which was acquired on the earliest date in the
time-series data, to compensate for relative motion. Note that, there was no significant
deformation in the target ice floe, and thus, we used a linear conformal transformation for
the co-registration, which only incorporated the translation and rotation effects. Finally, we
estimated the backscattering intensity changes for each pixel of the time-series data and
compared them with the classification results deduced from the multispectral optical data.

3. Results and discussion

To achieve a high-resolution classification of sea ice surface types, we first cross-cali-
brated high-resolution KOMPSAT-3 images using a radiometrically stable Landsat-8
image. The bottom of Figure 3 shows a scatter plot relating the VNIR channels of
KOMPSAT-3 and Landsat-8. The regression lines were computed by applying gains and
offsets (solid line) and show strong agreement with the scatter distributions in Figure 3.
A direct least-squares fit (dashed line) was not suitable because of the misregistration
induced by ice motion between the two observation dates. Then, a minimum distance
classification algorithm was applied to the calibrated KOMPSAT-3 image (Figure 4(b)).
The confusion matrix in Table 2 validates the classification results with an overall
accuracy of 93.9%. Note that, although the classification in this study might not be
sufficient to reflect the true nature of Arctic sea ice, it included the most common
classes. Furthermore, the number of classes that can be identified by a single polariza-
tion SAR image was also limited. After generating the radar time-series data, the (spatial)
mean backscattering coefficients for each class were used to investigate the surface
changes in each time-series data set. Because the backscattering coefficient can be
altered by small differences in surface conditions, even within the same class, we used
the class mean value for our analysis to suppress such effects. Note that, the temporal
mean backscattering coefficient image (Figure 4(c)) is similar to the visual band image
(Figure 4(a)): areas with a high pond fraction have low values of both the optical
reflectance and radar backscattering. However, this positive correlation was not main-
tained throughout the whole observation period.

Figure 5 demonstrates the changes in the mean backscattering intensity over a 46-
day observation period. The observation period included 17 September, which was the
date of minimum Arctic sea ice extent in 2014 (NSIDC 2014). The wind speed and air
temperature were also measured by an automatic weather station (AWS), which was
installed approximately 4.5 km away from the target ice floe; these data also indicated
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that the observation period included both late melting and early freezing periods.
Because there was no in situ measurement available to confirm how the target’s surface
changed, we divided the observation periods into four categories, primarily based on air
temperature. The boundary between the melt phase and intermediate phase was
defined based on an abrupt decrease in the air temperature from approximately zero
to sub-zero. Considering the atmospheric conditions and the peak of minimum sea ice
extent of the year observed by passive microwave radar, the onset of the surface freeze-
up occurred on approximately 13 September. The wind speed information suggested
that the surfaces of the pond classes were not frozen in the intermediate phase because
only the pond class exhibited notable changes in radar backscattering intensity, which
reflected changes in the water surface roughness (Scharien and Yackel 2005). As the
radar incidence angle varied from scene to scene in our dataset, the relationship
between the wind speed and radar backscattering intensity was not necessarily positive
in this case. Unfortunately, the AWS stopped working after 22 September; however, we
divided the freeze-up phase into two phases by analysing the changes in the radar
backscattering coefficients. Because the radar backscattering intensity changes mainly
because of surface roughness, changes in backscattering indicate changes in the surface
material’s status. The backscattering intensity of the pressure ridge class remained
almost constant, indicating that no significant external force was introduced and that
the combined measurements from different orbital paths and incidence angles were
reliable. The white ice class consists of typical multi-year ice with moderate topographic
relief because both the optical albedo and radar backscattering exceeded those of the
grey ice class. The backscattering intensity declined slightly during the late melting and

Figure 4. Target ice floe analysed in this study. (a) Red-green-blue (RGB) composite optical image;
(b) Five surface class types: pressure ridge (red), white ice (yellow), grey ice (white), blue melt pond
(cyan), and dark melt pond (purple); and (c) Temporal mean of radar backscattering coefficient (σ0Þ.
Brighter tones correspond to higher backscatterings.

Table 2. Confusion matrix of the minimum distance classification results (Unit = %).

Classified data
Pressure
ridge

White sea
ice

Grey sea
ice

Blue melt
pond

Dark melt
pond

Open
water

User’s
accuracy

Pressure ridge 79.3 0 0 0 0 0 100
White sea ice 20.6 89.3 5.8 0 0 0 76.5
Grey sea ice 0.1 10.7 94.2 1.3 0 0 89.2
Blue melt pond 0 0 0 92.3 0.1 0 99.9
Dark melt pond 0 0 0 6.4 85.7 0.1 93.1
Open water 0 0 0 0 14.2 99.9 98.3
Producer’s
accuracy

79.3 89.3 94.2 92.3 85.7 99.9 –

Overall classification accuracy = 93.9%; Kappa coefficient = 0.91.
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intermediate phases but remained almost constant after the onset of freeze-up. The grey
ice class, however, showed a clear two-step decrease throughout the whole observation
period. Because the surface of the grey ice was very smooth and partly covered by
remnant water overflowed from adjacent dark melt ponds and/or leads, the backscatter-
ing intensity declined during the melt season. After the melt season, the refrozen thin
water layer further smoothed the surface, acting as specular scatterer and causing a
second decrease in the radar backscattering (freeze-up phase I in Figure 5). After
refreezing of the topmost layer, no further changes were observed.

The blue pond class was relatively small among the pond classes. Most were found on
top of the white ice class, where the ice was thicker than in other areas. Their backscattering
changes reflect rapid changes of the surface status. In the early part of our observation
period, the backscattering intensity decreased by the end of August and then remained
almost constant until the second decrease, which occurred during freeze-up phase I. The
melting of small floating ice, which was a common feature in the blue melt ponds, might
have induced the first rapid decrease. Subsequently, the surface refreeze caused a second,
similar decrease, following the trend of the grey ice. The dark pond class had larger coverage
than the blue pond class. The dark ponds were locatedwithin the interior part of the ice floe,
surrounded by pressure ridges, where the topographic height is relatively low. Thus, the
dark ponds started to melt earlier than the blue ponds and were mature, with less floating
ice on the pond surface. As a result, they exhibited smaller backscattering decreases in the
late melting phase and more backscattering fluctuations leading up to the early freeze-up
phase. After the surface refroze, their change pattern was very similar to that of the blue
ponds, with slightly lower values because of the presence of less surviving floating ice.

4. Conclusions

The sea ice surface changes related to melt ponds have been poorly evaluated using high-
resolution space-borne remote sensing methods because continuous data acquisition over
the Arctic sea is greatly constrained by weather conditions and the long revisit time. In this

Figure 5. Changes in the class mean backscattering coefficient of TerraSAR-X observations between
19 August 2014 and 3 October 2014. The wind speed and air temperature were measured by an
AWS. The observation period can be subdivided into four phases based on the change patterns.
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study, we explored very high-resolution multispectral optical and SAR images to monitor
sea ice surface changes, which are closely related to the surface coverage types. During the
late summer to early autumn of 2014, we determined that the temporal variation of the
radar backscattering coefficient in each class exhibited a distinct pattern, which was closely
related to the surface changes. Overall, these changes in the backscattering coefficients
indicated dynamic surface changes, except over pressure ridges. All of the ice classes
exhibited a two-step decrease in radar backscattering, whereas snow-covered ice surfaces
presented far fewer changes than bare ice surfaces. The surfaces adjacent to ponds had
stronger negative changes in backscattering than those in other classes. The backscattering
changes of the dark melt pond class exhibited a complex non-linear decrease, unlike the
stepped decrease of the blue melt pond class. Although the classification of surface types
using SAR data alone requires further investigation, our results clearly demonstrated that
high-resolution SAR data can be effectively utilized to compute the surfacemelting/freezing
rate and infer sea ice surface variations over large areas using remote sensing data.
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