남극 빅토리아랜드 주상 눈시료의 광물성 먼지와 이온성분의 특성

<u>김초이¹, 곽호제², 홍성민², 강정호^{1*}</u>

¹한국해양과학기술원 부설 극지연구소 극지기후변화연구부, ²인하대학교 해양과학과

Instruction

대기 에어로졸 중 불용성 입자를 '광물성 먼지(mineral dust)' 라고 한다. 광물성 먼지는 대 기 중에서 태양 빛을 흡수하거나 산란시켜 전 지구적으로 기후변화에 영향을 준다. 장거리 대기 이동 후 극지 빙하에 침적된 광물성 먼지는 주로 운모, 점토, 석영 등으로 구성되어 있 다. 과거의 기후변화를 이해하기 위해서는 극지의 빙하로부터 과거 대기의 광물성 먼지의 농도를 정량적으로 정확히 복원하는 것이 필수적이다. 또한 빙하 내에 존재하는 다양한 이 온성분은 과거의 기후요소와 대기환경 특성을 지시할 수 있는 프록시로 활용될 수 있다. 본 연구의 목적은 남극 빅토리아랜드 주상 눈시료에 침적된 광물성 먼지와 이온성분의 특성을 알아보는 것이다.

Snow pit sampling

Results and Discussion

Depth profiles of Dust, Ca²⁺ and nssCa²⁺

스틱스 주상눈시료에서 광물성 먼지의 크기 분포는 3.0 – 3.5 µm에서 최빈값(mode)을 가지고 농도 수준은 7.41 – 638 ng mL⁻¹ 로 나타났다. 광물성 이온과 높은 상관관계를 가진 Ca²⁺을 총 Ca²⁺과 nssCa²⁺으로 나누어 계산한 결과 총 Ca²⁺의 농도는 5.92 - 109.35 ng mL⁻¹, nssCa²⁺은 3.83 - 104.5 ng mL⁻¹ 로 확인되었다. nssCa²⁺농도의 계산식은 아래와 같다.

 $[nss X] = [X]_{total} - (X/Na^{+})_{sea} \times [Na^{+}]_{total}$

위 식에서 [X]_{total} 은 특정 시료에서 측정된 이온 X의 농도, [Na⁺]_{total} 은 특정 시료에서 측정된 Na⁺의 농도 그리고 (X/Na⁺)_{sea} 는 벌크 바닷물(bulk seawater)의 평균 X/Na⁺ (w/w)비 (Pilson, 1998)를 의미한다. 광물성 먼지, Ca²⁺과 nssCa²⁺을 깊이에 따른 농도로 비교해보았을 때 모두

유사한 구간에서의 피크와 함께 비슷한 농도 분포 경향을 나타내었다.

Figure 6. Dust, calcium and non-sea-salt calcium concentration on the depth scale

Correlation coefficients of Ions and Dust

 CI^{-} SO₄²⁻ CH₃CO₂⁻ HCO₂⁻ NO₃⁻ MSA F⁻ Na⁺ Mg²⁺ Ca²⁺ K⁺ NH₄⁺ Dust No.

Figure 2. Styx snow pit Sampling

남극 장보고기지에서 북서쪽으로 80 km 떨어진 빅토리아랜드(Victoria Land)의 스틱스 빙하 (Styx Glacier)에서 2012년 1월 6일부터 8일까지 1.5 m 깊이의 주상 눈시료를 2.5 cm 간격으로 채취하였다. 주상 눈시료는 2009년부터 2011년까지 약 3년간의 기간에 해당된다.

Instrumental Analysis

모든 분석은 외부의 오염을 최소화하기 위해 극지연구소의 Class 1000 클린룸에 설치된 Class 10 클린부스 안에서 실시하였다. 쿨터카운터(Multisizer 3)를 이용하여 광물성 먼지의 농도 분 포를 분석하였다. 이온성분은 이온크로마토그래피(ICS-2000, ICS-2100)를 이용하여 음이온 (Cl⁻, SO₄²⁻, CH₃CO₂⁻, HCO₂⁻, NO₃⁻, MSA, F⁻)과 양이온(Na⁺, Mg²⁺, Ca²⁺, K⁺, NH₄⁺)을 분석하 였다.

Coulter Counter

SO4 ²⁻	0.58													
CH₃CO2 [−]	0.20	0.46												
HCO2 [−]	-0.23	0.05	0.19											
NO₃⁻	-0.30	-0.04	0.13	0.94										
MSA	-0.17	0.38	0.02	-0.05	-0.12									
F⁻	0.42	0.51	0.06	0.06	0.02	-0.19								
Na ⁺	0.99	0.57	0.11	-0.23	-0.29	-0.17	0.46							
Mg ²⁺	0.97	0.61	0.15	-0.16	-0.23	-0.19	0.57	0.98						
Ca ²⁺	0.43	0.65	0.31	0.09	0.03	-0.12	0.86	0.43	0.53					
K^+	0.96	0.60	0.14	-0.17	-0.24	-0.19	0.59	0.97	0.99	0.56				
NH_4^+	0.45	0.48	0.12	-0.09	-0.20	0.21	0.10	0.48	0.45	0.08	0.45			
Dust No.	0.27	0.49	0.20	0.06	0.02	-0.17	0.75	0.28	0.38	0.88	0.41	-0.01		
Dust mass	0.49	0.57	0.28	0.04	-0.01	-0.22	0.82	0.49	0.58	0.94	0.60	0.04	0.89	

Table 3. Correlation coefficients determined for a continuous series of 60 samples in Styx snow pit

Scatter plots

높은 상관관계를 가진 광물성 먼지와 Ca²⁺농도를 비교하기 위하여 Ca²⁺를 총 Ca²⁺농도 (a), non-sea-salt Ca²⁺농도 (b) 로 나누어 비교한 결과 r² 값은 각각 0.94, 0.87로 나타났다.

Figure 4. Multisizer 3

Figure 5. ICS-2000, ICS-2100

Parameters	Values		Anion analysis	Cation analysis			
Range	0.708 - 6.0 µm	System	ICS 2000	ICS 2100			
Noise level	2.2 %	Column	IonPac AS 15	IonPac CS 12A			
Analytical Volume	500 µL		IonPac AG 15	IonPac CG 12A			
Channel	300	Eluent	6-55 mM KOH	20 mM MSA			
Density	2.5 g mL ⁻¹		(gradient elution)	(isocratic elution)			
Size of tube	30 µm	Suppressor	ASRS 300	CSRS 300			
Electrolyte	2.0 % NaCl	Flow rate	0.5 mL min ⁻¹	1.0 mL min ⁻¹			
Current & Gain	800 µA & 4	Injection Volume	200 µL	200 µL			
Table 1. Parameters	of Coulter Counter	Table 2. Parameters of ICS-2000. ICS-2100					

Figure 7. Scatter plots of Ca²⁺(a) and nssCa²⁺(b) concentrations against the Dust concentration

Conclusion

남극 빅토리아랜드 주상 눈시료에 침적된 광물성 먼지와 이온성분의 특성을 알아본 결과 광물 성 먼지와 Ca²⁺이온이 높은 상관관계를 가진다는 것을 확인하였다.

Acknowledgement

이 연구는 한국해양과학기술원 부설 극지연구소의 주요사업 "과거, 현재의 극지기후 관측과 재현을 통한 기후변화 메커니즘 규명" (PE14010)의 지원으로 수행되었습니다. E-mail : Choi.kim @kopri.re.kr, Choi Kim

