
극지포럼 제 4차 정례세미나

子们, 工学就是到 至社

일시 : 2011년 11월 9일(수) 오후 3시

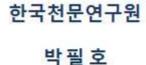
장소 : 국립과천과학관 상상홀(구 큐씨홀)

목 차

1.	행사일정	1
2.	Seminar 1 ···································	3
3.	Seminar 2 ···································	17
4.	Seminar 3 ···································	37

□ 행 사 일 정

15:30~15:50	등 록
15:50~16:00	개회사 : 극지포럼 공동대표 축 사 : 최은철 국립과천과학관장 사 회 : 김성중 극지연구소 극지기후연구부장
16:00~16:30	Seminar 1 : 남극, 우주와 지구의 연결고리 박필호 한국천문연구원장
16:30~16:40	질의 · 응답
16:40~17:10	Seminar 2 : Sustainable Engineering for Extreme Environment - Earth and Space (지속가능한 극한공학 - 지구와 우주) 이태식 한양대학교 건설환경공학과 교수
17:10~17:20	질의 · 응답
17:20~17:30	Coffee Break
17:30~18:00	Seminar 3 : 북극해 항로의 활용가능성과 과제 황진회 한국해양수산개발원 해운정책연구실장
18:00~18:10	질의·응답
18:10~18:20	폐회
18:30~	만 찬


Seminar 1

주 제 : 남극, 우주와 지구의 연결고리

발표자 : 박필호 한국천문연구원장

극지, 그 무한으로의 도전

남극, 우주와 지구의 연결 고리

2011년 11월 9일 -국지포함 제4차 정례세미나 - 국립과천과단관

KV I SASSAS

/OPR 국지연구소

목차

B.	천체관
×υ	전세근-


천문대에 적합한 환경

- · 바람이 없는 곳
- 대기온도가 낮은 곳
- 먼지가 없는 곳
- 주변 불빛이 없는 곳

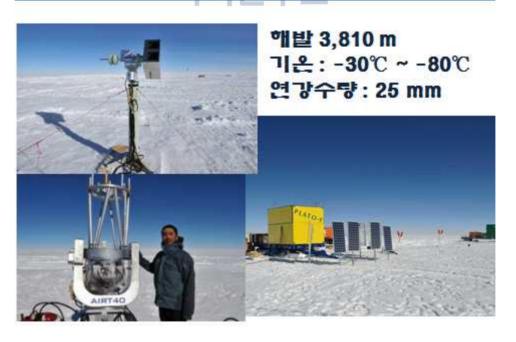
사막, 높은 산, 우주, 그리고…

남극 천문대 후보지는?

PLATO at Dome A (Argus)

· 해발 4,093 m

· 기은 : -10℃ ~ -80℃


• PWV : 0.22 mm

· 연 적설량: 1~3 cm

PLATO-F at Dome F (Fuji)

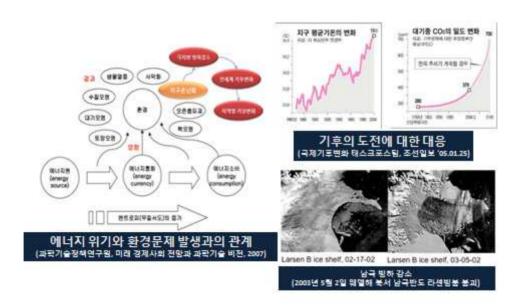
남극에 적합한 천문대는?

전문관측을 위한 남극의 장점

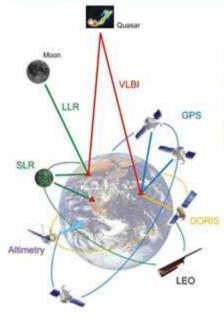
- 깨끗하고 건조한 하늘
- 낮은 대기온도보적외선 배경잡음 낮음
- 주변 불빛이 없음
- → 소형 망원경을 이용한 무인 외계행성 탐사

: 적외선 관측 적합

오로라의 발생



남극 우주기상 관측



남극, 지구 온난화 신호

우주에서 지구변화를 보다.

우주측지(Space Geodesy)=

인공위성이나 전체 등을 이용 함으로서

미세한 지상의 변화양상을 측정하고 살아 움직이는 지구를 이해하여

지구와 우주를 연계시키는 교각 역할을 함

- · 지상의 위치(화표계, Coordinate Reference Frame)
- 시크(시간계, Time Reference Frame)
- 지구의 형상(중력계, Geoid)
- 지구의 자전축 변화 결정(EOP) 등

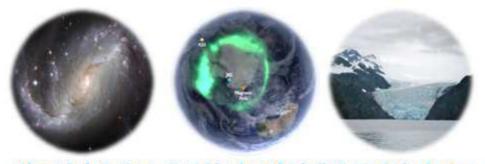
남극 GNSS 상시관측소

- Data from Red dots available through IGS
- Data from blue dots available on request from individual researchers

남극 VLBI 관측소



오이겐스기지에 설치된 독일 우주측지 VLBI 안테나 (직경 :9 m)와 GPS 안테나

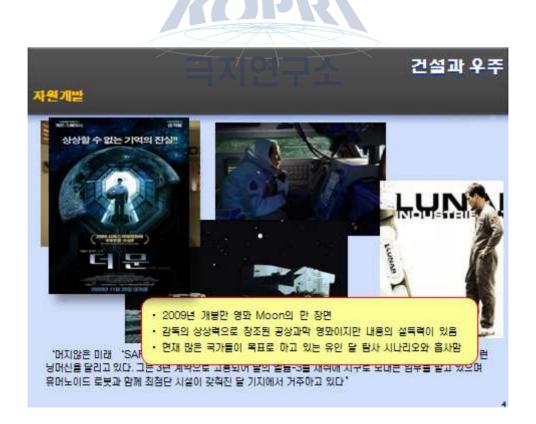

남극 DORIS 관측소

남극, 지구와 우주의 연결고리

지구에서 우주로 우주와 지구의 경계 우주에서 지구로 천문학 우주기상 우주측지

Seminar 2

주 제 : Sustainable Engineering for Extreme Environment


- Earth and Space (지속가능한 극한공학 - 지구와 우주)

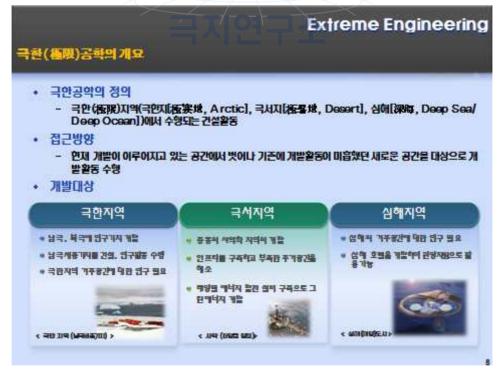
발표자 : 이태식 한양대학교 건설환경공학과 교수

건설과 우주

KBS 과학카페 2010. 3. 13 방영 "행성탐시의 최전선, 우주기지를 건설하라"

Extreme Engineering

미래의 건설기술


E 65	2.35	基金层	연구수중
	상업생산론 무주공장 건성	100.0	20.0%
	발성의 INGN의 발사	100.0	20.0%
	지구 외 명성의 활자 및 건설	88.3	23.2%
	국민지국에서 구조를 설계된 사물기술	61,1	53.3%
	#85# 28 J #82# #89 JYB	77,8	83,3%
	■ 新型 1 日本 1 日	60.0	53.3%
а и	구보고역에서 구조를 받게 된 사용기술	61,1	53.3%
	DATERO TERTETO DE	71.4	54.3%
	単版版 対数単三級数数 10 回版 10 emu 10 emu 	80.0	53.3%
	03 954 Pbs Line, 645 04, 43, 4876	76.3	54.4%
-		20.2	20.00

- 만국의 기술수준은 선진국 대비 평균 58.3%의 기술수준으로 약 6년의 격자를 보임
- 세부 기술 개발 중요도(평균 77.1%)에 비해 연구개발 수준(평균 45.2%)은 턱없이 부족함
- 우주개발 분야의 연구수준이 가장 미흡한 것으로 나타나며, 관련 연구 및 기술개발을 위한 대책이 시급함

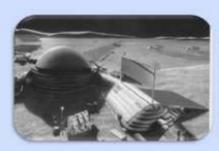
	2000-2009H BRU 02Q10, BRIJEQ109	(N. 34)102457922
2 1 1 2	77.1	45,2%
실상 참결조합들목을 표합하면 난 회장 가장	100,0	45.0%
-082 DARIOR 88 18	34.7	-0.00

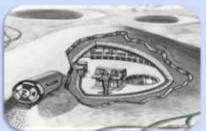
Extreme Engineering

우주개발

⊕ 건설의 새로운 분야 개발 - Moon, Mars (Space)

- ➤ 건설공학 시장과 역말의 확장
 - ●우주탐사를 위한 새로운 자원과 건설 인프라를 개발
- ➤ 미래 건설공학
 - •국한환경과 우주개발은 건설공학자들의 새로운 목표이며 지금부터 시작되어야 함


KOPRI


Extreme Engineering

우주건설의 적용

단기적 측면

- 우주탐사를 위한 전초기지 건설
- 과학적 분석을 위한 연구실 및 쉘터 제공

Extreme Engineering

우주건설의 적용

장기적 측면

- 달과 화성에서 인간 거주를 위한 거주지 (Habitat) 제공
- 생존을 위한 기반시설 제공
- 우주선 발사장 및 착륙장의 건설

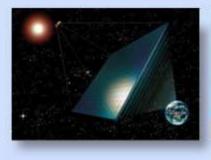
213

KOPRI

Extreme Engineering

우주건설의 적용

- 그린 에너지 자원
 - 달에 축적된 헬륨-3의 채굴 및 저장시설 구축
- 옐름-3
 - 미래의 대체 에너지 자원으로 핵융합에 의한 고효율 에너지 생성 (zero-방사성 폐기물)
 - 지구에는 미량이 존재하지만, 달 표면 토양 아래에는 약100만~5억 ton의 혈륨3가 달에 존재
 - 100만 ton의 헬륨-3는 전 세계가 1만년 동안 쓸 수 있는 에너지 양임
 - 달에 4~5번 왕복하여 혈륨-3를 채취하면 지구상에서 1년 동안 쓸 수 있는 에너지를 마련하게 됨





Lunar Construction

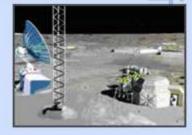
태양광 우주발전(Space Solar Power: SSP)

- 태양광 손실이 적은 우주상에 거대 태양광 잡열판을 설지하여 에너지를 발전시켜 지구로 송신하는 방법
- 빛 에너지를 전기로 변화하므로 이산화탄소 배출과 같은 환경오염이 없어 지구온난화를 발생시키지 않음
- 환경오염이 없고, 에너지 양 무만대, 발전 비용이 틀지 않아 화석연료의 대체제로 주목 받고 있음
- 현재 미국의 NASA, 일본의 시미조 건설 등에서 연구중임

Lunar Construction

Definition

- 전통적으로 지구에서 하면 생활 및 생산기반 시설의 건설활동을 지구가 아닌 달에서 수행하는 것을 의미함
- 달 환경이 아닌 뫄성 등의 다른 행성으로 확장한 개념을 Space Construction이라 지칭
- Lunar Construction은 Space Construction의 중간 개념


<Lunar Construction>

<Space Construction>

Lunar Construction

Definition

태양복사열, 달 먼지 등과 같은 문제를 해결하고, 인류의 장기간 거주를 위한 안전 시설물, 기반시설, 그리고 Life Support Systems을 건설, But--

달 표면은 지구와는 전혀 다른 새로운 환경이다. 따라서, 달 건설을 위한 *새로운 건설기술*이 필요하다!

In-Situ Resource Utilization

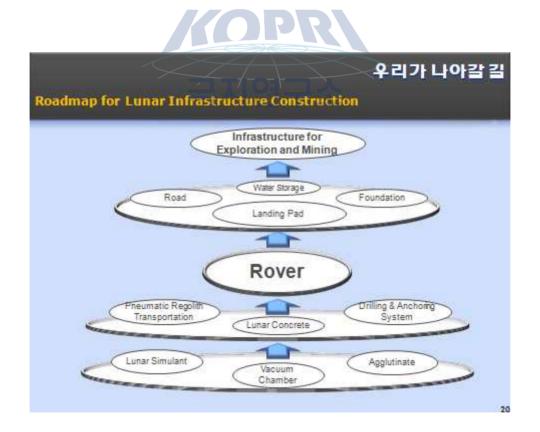
Lunar In-Situ Resource Utilization (ISRU)

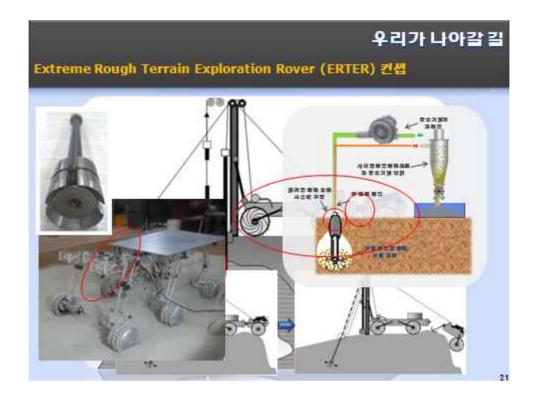
> Lunar ISRU

- 달의 천연자임 또는 폐기물을 이용하여 **유용한 자리를 만들어내기 위한 과정**과 장비의 이용 및 이에 대한 연구
- ISAU는 이동수단, 잘 토망에서의 자일 추초, 플램트 가톨을 위한 돌락 등 다단계의 복합적인 분야 포함
- ISAU는 희망하는 자일을 얻기 위해 다단계의 연계된 정치를 통해 목적을 생산
- 인간 생존, 자일의 수송, 이동능력, 동력, 달 거주지와 연관될
- ISAU를 위에서는 답 자일 수술을 위한 도로, 생산 플랜트, 자일 저장 시설 등 건설약적인 접근이 필요

> 이점

- 새로운 환경에서의 자원 이용에 대한 연구를 통해 새로운 과학 및 탈사 장비 개발
- ISRU를 통해 유인 당 달사의 안전성, 달사 시간, **자급자족 확보**
- 새로 개발된 ISRU 기술등을 지구 또는 우주산업에 작용




- 22

KOPR

In-Situ Resource Utilization NASA Hawaii Field Test > Field Test 개Ω - 일시 : 2010. 01. 18 ~ 2010. 02. 14 - 장소: Mauna Kea, Big Island, Hawall, USA - Test 수행 기관 → 우주국 · Canadian Space Agency · NASA (Johnson Space Center, Kennedy Space Center, Glenn Research Center, Langley Research Center, Goddard Space Fligh Center) • DLR (German Aerospace Center) Field test 웨이스캠프 → 기업 . Electric Vehicle Controllers Ltd. (EVC) · Honeybee Robotics Inc. (NORCAT) . Ontario Drive and Gear Ltd. (ODG) · Orbital Technologies Corp. (Orbitec) · Physical Sciences Inc. (PSI) · Virgin Technologies Inc., Xiphos Technologies Inc. → 質用 University of Toronto Institute for Aerospace Studies (UTIAS) · Arizona State University · Hanyang University 国出的目的以为 空机从

우리가 나아갈 길

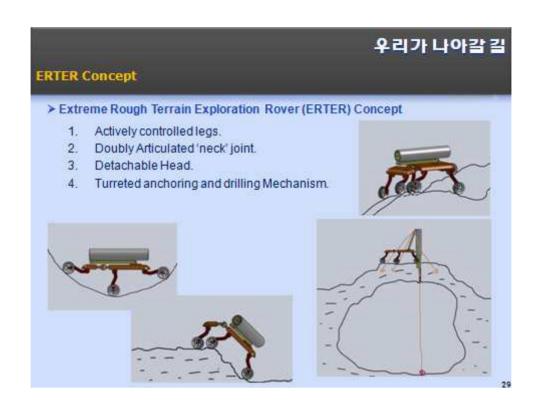

Korean Lunar Simulant

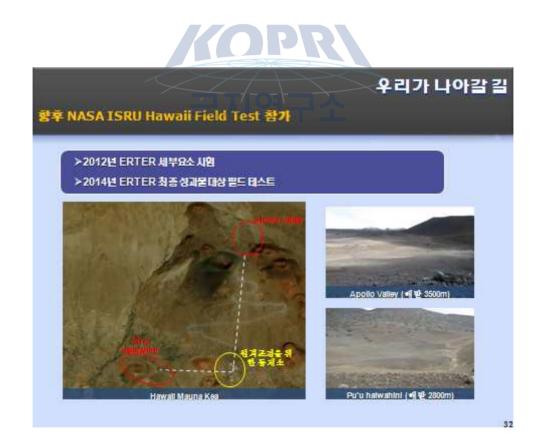
Lunar Simulant(달목궤토)의 개요

- 지구상에서 달의 토양과 구성 성보이 유사한 앞식을 이용하여 달 토양(Lunar soll)과 유사한 토양을 만든 것
- 달에 작절 가서 실업하는 것이 어떻기 때문에 지구에서 잘 확정을 조성하여 실업을 수행하는데 Juner simulant는 잘 확정을 조성하는 중요한 구성 요소 중 아니로 활용될
- 담 환경을 구축하는데 많은 양의 Lunar simulant가 요구될
- 제조에 장 사간 소요되어 대량 구해가 어건을
- 구매 비용이 비쌀
- → 우주개발 선진국들의 경우는 이를 직접 개발
 - → 실업비용 절감
 - → 판매를 들한 경제적 이득 밤생

くLunar simulant 別問題 受用盟국ル>

88	개발국가	명원	개발국가
JSC-1	미국	NAO-1 & CAS-1	중국
MLS-1	미국	OB-1	MUD
MKS-1 & FJS-1	일본	KOHLS-1	한국(한왕대학교)





우리가 나아갈 길

극한공학 저변 확대와 학생교류 및 동기부여

Summer Internship Program

Extreme Engineering Summer Internship Program

> Hanyang University 10명, North Carolina State University 2명, Oklahoma University 1명, Indiana University 1명, KAIST 1명 등의 여름 인턴성을 개최 > 한국공학기술단체연합회에서 달 콘크리트 및 앵커링 연구 관련 수상

6.6

KOPR

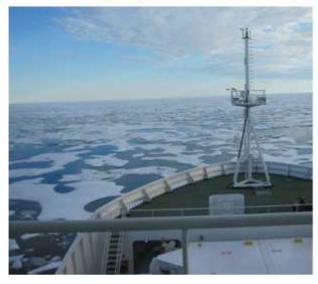
우리가 나아갈길

극한공학 저변 확대와 학생교류 및 동기부여

NASA Lunabotics Mining Competition

- >NASA에서 학생 대상으로매년 주최하는 달 탐사 로버 경연대화
- >로버의 실계/제작/경연등을 통해 학생들의 과학/기술에 대한 관심 고취 및 지식 함양
- >국내 학생들 선별 및 제작완경 지원으로 2012년 경연 참가 예정

KOPRI
국지연구소
· · — · —


Seminar 3

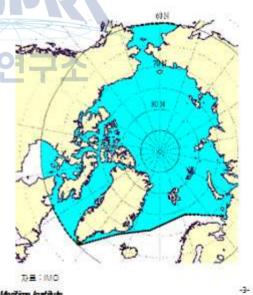
주 제 : 북극해 항로의 활용가능성과 과제

발표자 : 황진회 한국해양수산개발원 해운정책연구실장

극지연구소

북극해 항로 활용 가능성과 과제

애운정책연구실 실장 황진 회



Korea Maritima Instituta

Ⅰ. 서론

북극해 범위

- 북극해 범위 (IMO 규정)
 - ▶ 그린랜드 쪽에서는 북위 67°03'9" 이상, 베링해 쪽에 서는 북위 60° 이상 북극권 에 위치한 바다
 - ▶ 지구 전체 해양의 약 2.8%에 해당하는 약 1,400만㎞ (북 극권 전체 면적은 대략 2,100만km², 지구 지표면의 약 6%)

북극해 변화

자연환경의 변화

- 기온 상승
- 해빙(Sea Ice) 감소
- 해수면 온도 상승

물류 여건의 변화

- 신 항로 개통
- 새로운 자원 개발 단지 발굴

북극권 자원 개발 가속화

- 북극지역 자원 탐사량: 4,120억 배럴(세계 미발견 석유 가 스 자원량의 22%)
- 에너지 생산단계: 러시아 41개, 미국 4개, 노르웨이 1개

Korea Maritimo Institute

북극해 항로 개발 및 발전경과

- 7~8세기
 - ▶ 아일랜드,바이킹족 북극해 이용
- 15~16세기
 - ▶ 유럽~극동항로 개척
 - ▶ 1585: DAVIS (항로①)
- 18~20Mフ
 - ▶ 1725~28: BERING (항로②)
 - ▶ 1878~79: NORDENSKJOLD③
 - ▶ 1903~05: AMUNDSEN ④
 - ▶ 1909: PEARY (5)
 - ▶ 1926: BYRD ⑥
 - ► 1926: AMUNDSEN, ELLSWORTH, NOBILE ⑦
 - ▶ 1958 : USS NAUTILUS ®

자료 : http://www.athropolis.com(일자 수업)

Korea Maritima Institute

최근 북극해 항로 주요 운항사례

	구분	주요 내용 및 의의
1998년	핀란드 유조선 "MT Uikku" 호 (유조선)	• 북극해 항로를 운항한 첫 외국적 선박 <u>(부분적 운항)</u>
2009년 7-9월	독일 벨루가쉬핑 선박 2척 (화물선)	• 울산항-베링해-북극해-로테르담 운항 • <u>북극해항로 전구간을 항해</u> 한 첫 외국적 선박
2010년 8월	Baltica호 (유조선)	유럽~아시아 석유제품 운송 첫 사례 대형 유조선 (10만론) Sovcomflot 사의 유조선은 네네츠주 Varandey 오일터미널에서 아시아로 운항
2010년 9월	노르웨이 MV Nordic Barents 호 (벌크선)	노르웨이 Kirkenes항에서 철광석 적재, 중국 연운항으로 수송 운항시간 15일 정도 단축 러시아 항만을 기항하지 않고 북극해 항로 전구간을 통과하는 첫 외국선박
2010년	러시아 선박 (가스운반선)	• 70,000론의 가스 무료만스크에서 중국 닝보함으로 운송
2011년	러시아 소보콘볼트 (가스운반선)	• Gas Condensate 선적, 대항선(162,000DWT) 투입 • 무르만스~닝보

Korea Maritimo Instituto

Ⅱ. 북극해 항로 여건 분석

북극해 항로 자연적 조건

■ 해빙(Sea Ice)

▶ 최근 감소하고 있으나, 여전히 위협적인 존재

<북극해 지역별 하절기 해빙지역>

월말	남서 카라해	북동 카라해	서부 랍체프해	동부 랍체프해	서부 동시베리아해	동부 동시베리아해	서남 축치해
6월	17	0	10	10	0	0	27
7월	40	18	24	33	10	6	57
8월	85	41	45	69	31	17	75
9월	95	53	51	80	49	27	85

후 : 해탈지역 전체면적합 비율(%) 자료 : Radner(2000)

Korea Maritima Instituto

부극해 항로 자연적 조건

■ 수심

- ▶ 선박 운항의 물리적 제약요인
- ▶ 선박 흘수 13m 이상은 많은 구간에서 운항 불가능

<북극해 주요 해협의 수심

구간	해현	길이(nm)	수심(m)
	Matochkin Shar	55	12
바렌츠-카라해	Karskiye Vorota	18	21
	Yugorskiy Shar	21	12
	Shokalskogo	80	37
카라해-랍체프해	Vilkitskogo	60	25
SHEW ENGLISH	Sannikova	120	13
랍 <mark>체프해-동시베리아해</mark>	Dmiitriya Lapteva	63	6.7
동시베리아해-축치해	Longa		20

乃里:Mulherin(1996).

Korea Maritima Institute

북극해 항로 인프라 및 기술적 조건

■ 선박

▶ 러시아 : 독립적 운항이 가능한 경우, 쇄빙선 지원을 받아야 하는 경우로 구분하고, 이를 다시 해역별 계절별로 구분

▶ IACS : 북극해 운항 가능선박

- 연중 가능: PC1~PC5, 여름철 가능 : PC6, PC7

■ 항만

▶ 러시아: 72개 항만 운영

- 북극해 항로 기타 인프라
 - ▶ 통신시스템
 - ▶ 법률, 보험 등 항해지원시스템
 - ▶ 구난 구조
 - ▶ 연료 급유, 선박 수리, 선원 휴식
 - ▶기타

Korea Maritimo Instituto

-10-

■ 운송거리

- ▶ 수에즈운하 통과하는 경우보다 40% 단축
- ▶ 기항지 항만, 화물에 따라 상이
- 유송시간
 - ▶ 현재는 수에즈운하 통과시와 비슷한 상황(향후 시간 단축 예상
- 유항비용
 - ▶ 선박건조비/용선료, 쇄빙선 이용료, 특수자격 선원 채용, 보험할증 등으로 비용 상승
 - ▶ 컨테이너 경우 북동항로는 TEU당 2,500~2,800달러 소요 (수에즈운 하 통과시 1,400~1,800달러 소요) (Verny 2009)

■ 화물량

- ▶ 1987년 660만톤 기록 후 감소 추세, 150~200만 톤
- ▶ 그러나 무르만스크항에서 2009년에 1,585만톤 처리
- ▶ 2015년까지 1,300~1,700만톤으로 증가 예상(러,수송전략연구소)

Korea Maritimo Instituto

-11-

북극해 항로 법·제도 조건

- 유엔해양법협약 : 결빙해역 규정
- 러시아 「북동항로 운항규정」
 - ▶ 북극지역 내수와 영해, 배타적 경제수역 및 그 외측 공해에서의 선 박운항에 관한 제반 사항 규정
 - ▶ 선박운항절차, 선박에 대한 기술적 요건, 선박통항료 징수, 선박의 환경오염에 의한 책임 등에 대해 규제
- 러시아 북동항로 가이드북
 - ▶ 항로표지, 북극해 항로 진입시 규정, 통항 절차
 - ▶ 선박 요건
 - ▶ 승무원 요건
 - ▶ 쇄빙선 요율
- ※ 현재 북극해항로의 많은 규제는 비용상승 요인으로 작용

Korea Maritima Instituto

-12-

Ⅲ. 북극해 자원 및 항로,항만 개발 실태

북극 지역 석유 및 가스 부존 현황

- 북극지역(Arctic Circle)내 매장된 탐사자원량
 - ▶ 세계 미발견 석유·가스 자원량의 22%
 - ▶ 탐사자원량 4.120억 Boe에 해당
 - 석유약 900억 배럴
 - 천연가스 1,670 TCF(Trillion Cubic Feet)
 - NGL 400억 배럴

〈북극 지역 자원 조사 결과〉

지역코드	지역	석유 (MMBO)	전체가스 (BCFG)	NGL (MMBNGL)	BOE (MMBOE)
WSB	West Siberian Basin	3,659.88	651,498.56	20,328.69	132,571.66
AA	Arctic Alaska	29,960.94	221,397.60	5,904.97	72,765.52
E88	East Barents Basin	7,406.49	317,557.97	1,422.28	61,755.10
EGR	East Greenland Rift Basin	8,902.13	86,180.06	8,121.57	31,387.04
YK	Yenisey-Khatanga Basin	5,583.74	99,964.26	2,675.15	24,919.61
	(이하 생략)		100000000000	***************************************	
	합계	89,983.21	1,668,657.84	44,064.24	412,157.09

Korea Maritimo Instituto

-14-

북극 지역 원유 및 가스 매장지역

- 북극지역 석유 부존지역
 - ▶ 북미 북극지역이 상대적으로 석유 부존량이 많음
 - ▶ Arctic Alaska(AA)의 석유 탐사자원량은 약 300억 배럴로 상위 1위임
 - ▶ Amerasia Basin(AM, 캐나다 북부지역)이 97억 배럴로 상위 2위임. 현재 25억 배럴 정도 개발이 진행된 상태임 (AM 지역 및 NWC 지역)
- 북극지역 천연가스 부존 지역
 - ▶ 유라시아 북극지역에는 탐사 자원량의 88%가 천연가스인 것으로 조사됨
 - ▶ West Siberian Basin(WSB): 651 Tcf
 - ► East Barents Basin(EBB): 318 Tcf
 - ► Arctic Alaska(AA): 221 Tcf

Korea Maritima Instituta

북극 지역 원유 및 가스 개발 동향

- 러시아: 4개 지역으로 구분하여 추진
 - ▶ 바렌츠해, 페초라해, 카라해 남부지역: 2002. 1월 탐사자료 발표
 - ▶ 카라해 북부지역, 랍테프해: 1993년 탐사자료 발표
 - ▶ 동시베리아해, 추크치해: 1993년 탐사자료 발표
 - ▶ 북극해 심해지역: 아직 미발표

■ 노르웨이

- ▶ 북극지역 대륙봉에 생산단계에 있는 매장지가 1개 있음
- ▶ 바렌츠 해에서 2010년 2개의 유정 시추 작업 실시
- ▶ 북해에는 28개 유정, 노르웨이 해에 11개의 유정시추 작업이 예정되 어 있음(www.offshore.no)
- 북극해 대륙봉 개발 및 생산 기술 보유, 북극해 각 지역/각국 자원 개발에 적극적으로 참여

Korea Maritimo Instituto

-16-

북극 지역 원유 및 가스 개발 동향

■ 캐나다

- ▶ Queen Elizabeth Island 지역인 Northwest Territories에 11개의 개 발단계 매장지가 존재하고 있음
- ▶ 이 지역은 Pipeline 설치가 불가능한 지역으로 생산 후 수송은 LNG 등 다른 방법 강구 중

■미국

- ▶ Arctic Alaska 지역 부존 자원개발 진행 중
- ▶ 전체 자원량 중에서 생산량 단계(Production)의 원유가 15억 배럴, 매장량 단계(Reserves)는 7억 배럴, 천연가스 매장량은 35 Tcf임
 - Alaska Platform 지역 자원량: 석유 약 280억 배럴, 천연가스 122 Tcf
 - Alaska Fold and Trust Belt 지역 자원량: 석유 약 20억 배럴, 천연가스 59 Tcf

Korea Maritima Institute

-17

북극 지역 원유 및 가스 개발 전망


- 북극지역 자원 개발 전망
 - ▶ 북극해 연안 각국에서는 석유, 천연가스 등을 이미 개발하고 있으며, 러시아. 미국, 노르웨이에서는 자원을 생산하는 단계에 있음
 - ▶ 향후 북극해 주변의 자원 개발은 더욱 확대될 전망임
- 북극지역 자원개발 긍정적 요인
 - ▶ 전지구적 자원 감소로 북극권 자원개발 필요성 증대
 - ▶ 탐사시추, 개발, 수송기술 개발 및 여건 개선
 - ▶ 온난화에 따른 새로운 수송로 발견 및 해상광구 개발이 용이
- 북극지역 자원개발 부정적 요인
 - ▶ 전형적인 고위험, 고비용 사업구조
 - ▶ 천연가스 부존 비중이 높은 관계로 초기 개발 비용이 높음
 - ▶ 관할권 분쟁
 - ▶ 환경보호 규제로 인한 비용 상승

Korea Maritimo Instituto

-18

부극해 항로 개발 현황 크지야구

- 북극해에는 현재 필요한 대부분의 항로가 개발
- 다만 동서로 연결하는 항로만 해빙 문제 존재

Korea Maritimo Instituta

-19

북극해 항만 개발 현황

■ 북극해 북동항로에 러시아가 72개 항만 운영

북극해 자원, 항만, 항로 개발 분석 시사점

- 북극해에는 자원 개발 사업이 현재 진행 중

 ▶ 다국적 기업이 러시아, 미국, 노르웨이 등 북극해 연안에서 개발 중
- 북극해 항만과 항로는 자원 수송을 위한 기본 요건은 충족
 ▶ 향후 개선 사항이 많으나 선박운항에는 큰 문제가 없는 것으로 판단
- 기후 온난화로 북극권의 육상 운송망 안정성 문제 대두
 - ▶ 결빙 지역에 건설된 도로, 파이프라인이 지반 약화 문제로 안정성 문제 발생 우려
 - ▶ 해상운송에 대한 수요 증대 예상

Korea Maritima Instituta

Ⅳ. 북극해 항로 활용을 위한 5대 과제

국해 항로 활용을 위한 5대 과제 1. 북극관련 국제활동 강화 2. 국적선사 시범운항 추진 및 해운서비스 개발 3. 북극해 운항 경제성 확보 4. 북극해 운항 인력 양성 5. 북극해 운항 정보 및 기술 개발 Korea Maritima Institute

1. 북극관련 국제활동 강화

- 북극이사회 옵서버 가입 추진
 - ▶ 북극해 연안 8개국 외 북극이사회에서 활동하기 위해 옵서버 자격 획득 필요
 - ▶ 그러나 당분간은 옵서버 가입이 쉽지 않을 전망. 다른 활동 개발
- 민간조직(NGO) 활동 개발 및 지원
 - ▶ NGO들이 북극이사회 산하 각종 워킹그룹에서 전문성을 갖고 다양한 정책보고서를 발간하면서 북극해 정책에 참여
 - ▶ NGO의 참가는 전문적인 활동을 통한 조사 및 정책개발 외에 이익단 체나 수익성을 추구하는 기업의 이익논리를 배제하는 장점 있음
 - ▶ 우리나라의 경우 극지연구소 외 비정부조직(NGO)이 북극해관련 국 제기구에서 공식적인 활동은 거이 없음
 - ▶ 우리나라 북극해 영향을 강화를 위해 북극해 정책에 영향을 미치는 NGO 조직과의 연대활동도 필요함
 - ▶ 대학(교수), 연구기관, 환경단체, 엔지니어 등의 조직적 참여 필요
 - ▶ 정부 지원 필요

Korea Maritimo Instituto

-24-

- 한-러 협력 강화
 - ▶ 북동항로 운항시 러시아의 협력 절대적으로 필요
 - ▶ 선박 운항, 쇄빙선 에스코트, 구난구조, 기상 및 해로정보 등
- 향후 러시아와의 협력 내용
 - ▶ 국제관례에 부합하는 해운활동 보장을 위한 협력
 - ▶ 북극해 북동항로 이용에 따른 각종 편의 제공
 - ▶ 우리 기업의 북극해 주변 사업 진출 협력
 - ▶ 우리 기업의 러시아 내륙 물류시장 진출 협력
 - ▶ 북극이사회 활동 상호 협력
 - ▶ 북극해 해양환경 보전을 위한 기술개발
 - ▶ 북극해 안전운항을 위한 조선기술 개발 협력

Korea Maritima Instituta

-25

2. 북극해 항로 국적선사 시범 운항 추진 및 상품개발

♦ 시범 운항 추진

필요성

- •북극해 함로의 경제성, 안정성 등 가능성에 대한 선사 입장에서의 분석 필요
- ·북극해 항로의 문제점 도출, 개선책 마련
- 북극해 운항사업 추진 시기 파악
- 북극해 항로 상용화에 대비한 실제적 준비

추진목적

- 선박 운항기술 측면의 가능성 및 문제점 파악
- 선박 운함 경제성 분석 및 문제점 파악
- 선박 운항 관련 법, 제도, 행정 절차 분석

추진방식

- 국적선사 공동으로 참여
- 역할 분담 : 왕복 화물 수배, 선박 확보, 인력 준비, 러시아와 협력 추진

2. 북극해 항로 국적선사 시범 운항 추진 및 상품개발

◆ 북극해항로 해운서비스 상품 개발

필요성

- •북극해 함로 운함 안정성 홍보
- 북극해 함보 선정

추진목적

- 함후 수요 급증이 예상되는 북극해 함로 운함 통해 중장기 경쟁력 제고
- 새로운 시장 개척 수익성 제고
- 수에즈 운하 정체에 대비한 새로운 대체함로 확보

추진방식

- 국적선사 공동으로 참여
- 역할 분담 : 왕복 화물 수배, 선박 확보, 인력 준비, 러시아와 협력 추진

2. 북극해 항로 국적선사 시범 운항 추진 및 상품개발

◆ 북극해항로 해운서비스 대상 화물

구분	주요 함로	비고
	유럽-극동	
컨테이너	유럽-북미 서안	중장기 가능 화물
	극동-북미 동안	
	시베리아-북동항로-극동	러시아산 목재
벌크	시베리아-무르만스크항-북미	석탄
	시베리아-유럽/북미	니켈
	시베리아-블라디보스톡-극동	가스
액 체	시베리아-무르만스크-유럽	가스
	시베리아-블라디보스톡-극동	원유

-28-

2. 북극해 항로 국적선사 시범 운항 추진 및 상품개발

예시: 러시아 가스 개발과 연계

- 북극해 연안지역에 북미시장을 겨 냥한 신규 LNG 생산터미널 건설을 추진 중임
- 야발지역 가스전의 경우, 아시아 및 북미 서안지역 운송시 북동항로를 이용하면 운송비 절감 가능
- 우리나라 기업의 러시아 가스 수송
 사업에 지출할 수 있는 방안을 모색 해야 함

<러시아 가즈프롬의 가스운송 전략>

Korea Maritima Institute

-29-

3. 북극해 항로 경제성 확보

<북극해 항로 상업적 이용 가능성 및 경제성 분석 자료>

저자(연토)	연구내용	연구방법
	• 3종류 선박 이용(25,000DWT, 40,000DWT, 50,000DWT), 빙황 데이터, 최 스트 파라미터, 선박 속도 알고리즘, 시용레이션 프로그램 이용하여 북	X 2000 X 2000
일본 선박해양재단(2001)	극해 합료와 수에즈 문하의 월별 코스트와 연간문합코스트 분석 • 북극해 합료를 계절에 따라 선택적으로 항용시 수에즈운하를 이용하는 것보다 10% 정도 비용 절감되는 것으로 전망	실중분석
활진회 외 (2009)	 복극해 자연환경, 국제사회의 등향, 인포라, 선박문항여건 및 규정, 상업 적 이용가능성 등용 중한적으로 검토 	문헌연구
활진회 외 (2010)	• 봉극해 항로의 현황과 여건변화, 국제기구 및 주요국의 봉극해 정책, 봉 극해 항로 관련 주요 규정, 봉극해 항로 경제성 등 분석	문한연구, 실중분석
Verny & Grigentin(2009)	• 항부르크한-상하이항간 컨테이너 운송비용용 여타 운송투호와 비교 분석	실중분석
Ulu & Kronbak(2010)	•로테로당-요코하마간 북극항로를 이용한 컨테이너 운송의 경제적 타당 성을 통행로, 항해일수 그리고 벙커유 가격 세 가지 죽면에서 시나리오 분석	실중분석
Schoyen & Brathen(2011)	 노르웨이-중국간 비로 및 철광석용 문송하는 별로선용 대상으로 복극합 로의 경제성 본석 	실중연구

로의 경제성 분석 충격화 화(2000), 「기후보험에 파르 등급하 변화 대통험한 J. 한국하함+산개발합 충격회 의(2010), 「문급에 함도 충설화 대통점한 연구」, 그룹에함무 Jérome Venny, Container Biologica on the Northern Sea Route, 2000. Llu,M,S. Kronbak, J (2010), The potential economic vizibility of using the Northern Sea Route as an alternative route between Asia and Europe, Journal of Transport Geography, Vol. 18, pp. 434-444. Bakhula, V(2010), Northern Sea Route and Russia's Resource Evolutiation Strategy, Indian Council of World Affair.

-30-

3. 북극해 항로 경제성 확보

<북극해 항로와 경쟁항로 운송비 비교 (상하이-함부르크/프랑크푸르트)>

Cost Heading	Asla-Europe (via Suez)	Trans-Siberian Rallway	NSR	Sea 8 (VIa D		Air (Direct)
Mode	Sea	Rall	Sea	Sea	Alr	Alr
Distance (nautical miles)	10,200	5,375	7,700	7,700	2,690	4,325
Transport Time (door-to-door)	28-30	18-20	18-20	18-20	2	2
Average speed (knots)	24	54	17-24	17-24	486	486
Type of transport used	cs	Unit train	Special CS	cs	Cargo Alrcraft	Cargo Aircraft
Carrying capacity (TEU/ a 14tonne)	9,600	110	2,800	7,200	8	8
Capacity supply (TEU/year/unit)	124,800	1,980	72,000	216,000	832	832
Approximate rates (USD/TEU)	1,000	1,800-2,200	2,000	15,0	000	48,500
Estimated surcharges (USD/TEU)	400-800	Not determined	500-800	10,	000	22,500
Total (USD/TEU)	1,400-1,800	1,800-2,200	2,500-2,800	25,	000	71,000
Baseline 100 (Royal Route)	100	+30%	+100%	+1,5	00%	+5,000%

주 : 현재 북극해 말로는 비름이 높지만, 말후 러시아 쇠빔십 비름이 조절되고 대립십이 주인되면 경제설이 개십립 전말입 八丑: Jerome Verny & Christophe Grigentin (2009)

3. 북극해 항로 경제성 확보

- 쇄빙선 이용료 인하
 - ▶ 북극해 항로의 러시아 쇄빙선 이용료는 35\$/1ton 수준(컨테이너)
 - ▶ 북극해 항로는 기존항로에 비해 거리시간 단축으로 선박의 연간 항 차수와 운항수입이 증가하지만, 높은 쇄빙선 요율로 손실 발생
 - ▶ 현재 상황에서 경쟁력을 갖기 위해서는 쇄빙선 요율 80% 인하 필요 (Liu & Kronbak, 2010)
 - ▶ 비현실적인 쇄빙선 요율 개정을 위한 국제 협력 필요

	쇄법선 이	용 요품
구분	ROUBLE/ton	달라 (0
컨테이너	1,048.0	34.9
비절급속	2,050.0	88.3
Converter matte	1,905.0	63.5
골산품 및 부속 부품	2,484.0	82.1
자종차 및 그 부종	2,578.0	85.8
절제품	1,747.0	58.2
별크 화물	707.0	23.8
역체 화물	530.0	17.7
8.8	118.0	3.8
목재 가구 및 기타 목재 제품	145.0	4.8
기타	1,048.0	34.8

-22-

3. 북극해 항로 경제성 확보

■ 북극해 항로 적격 선박 개발

▶ 해방(Sea ice), 연간운항일수, 경제성을 고려한 선형 개발

자료 : 엄합섭. "복극해 선박문합 여건과 조선분야 기술 과제", [복극해 변화에 따른 대용받인, KMI, 2009. 6.23. (수정) Korea Maditina Instituta

4. 북극해 운항인력 양성

- 운항 인력 양성 필요성
 - ▶ IMO 관련 규정
 - IMO '북극해 빙하해역 선박운항지침(Guidelines for Ships Operating in Arctic Ice-Covered Waters)'에서 Ice Navigator 탑승 의무화를 권고
 - "빙하해역에 항해하는 모든 선박에는 최소한 1명 이상의 빙하해역 항해 사를 탑승해야 한다"
 - ▶ STCW 협약
 - 2010년 STCW 협약 전면 개정에 자격과 훈련요건이 B 코드에 삽입됨
 - 향후 STCW 협약에서 Ice Navigation 훈련을 강제화할 예정임
- 극한기후에서 에너지자원의 탐사 및 개발에 필요한 전문인 력과 선박운항에 필요한 항해사 및 선원을 국가 차원에서 확보하여 향후 북극해 개발 및 항로 상용화에 대비해야 함

Korea Maritimo Instituto

-34-

4. 북극해 운항인력 양성

■ ICE Navigation 교육과정을 개설 운영중인 주요 국가

국가	교육기관	교육과정명	대상자	비고
덴마크	Marstal Navigationsskole	Ice Navigation	함해사	4일 과정 연간 3회
-171 -	Aboa Mare	Basic Ice Navigation in the Baltic Sea	발틱해 운항 선박의 선장. 1항사 및 기타 승무원	3일 과정 연간 2회
핀란드	ICETRAIN Partners	ICETRAIN Course for Deck Officers	함해사	3일 과정
러시아	Admiral Makarov State Maritime	Ice Navigation	함해사 및 기관사	4개 과정 운영 - 전문 병하해역 함해 훈 번 - 삼급 병하해역 함해 훈 턴 - 실습 병하해역 함해훈 턴 - 병하해역 함해연자 원관리

Korea Maritimo Instituto

-35-

4. 북극해 운항인력 양성

- 운항 인력 양성 방안
 - ▶ Ice Navigator 교육수요
 - 빙하해역안전교육
 - Ice Navigator
 - ▶ Ice Navigator 교육과정 개설
 - 러시아 Makarov 등과 협력 체제 개설
 - 빙하해역안전교육과정과 Ice Navigator 과정을 함께 개설
 - 한국해양수산연수원의 "국제해양특수인력양성센터" 활용
 - 수요가 많지 않고 교육투자비가 많기에 국내의 경쟁적 중복투자는 지양
 - ▶ 러시아의 Ice Navigator와 Ice Pilot
 - Ice Navigator : 얼음 정보를 분석하고 제공하는 사람
 - Ice Pilot : Ice Navigator의 정보를 받아 안전운항을 지휘하는 사람

Korea Maritima Institute

-26.

5. 북극해 정보 및 기술 개발

■ IMO의 해역 구분과 해역별 통신 요구 사항

해역	특성	커버리지	통신기술
A1	연근해	20~30 해리이내	VHF(극초단파) 해안국의 무선전화범위내 지역
A2	연근해	100~150 해리이내	MF(중파):계속적으로 DSC정보 이용 가능 A1지역 제외한 해역
A3	국제항행	북위 70°~ 남위70°	HF(단파 3M~30Mhz) Inmarsat 정지위성을 이용한 지구상의 모든 지역 북위 70도, 남위 70도 이상은 사용 불가능
А4	국제항행	남극, 북극	A1, A2, A3 제외 해역 (남북, 북극) HF 사용, EPIRB 탑재 Sky Wave 이용

Korea Maritimo Instituto

-37-

5. 북극해 정보 및 기술 개발

■ 해역별 설치 필수장비 목록

설비	1	2	8	4	5	8	7	8
					INMARSAT	200	구명	경용
해력	VHP선비 (DSC 및 무선전화	MP센비 (DSC 및 쿠센전화)	MP/HP 실비 (DSC, 무선권화및 NBDF)	MAVTEX 또는 MSI 수신기	선박 기구국 (표준 A형 또는 표준 C형)	위성용 EPIRB (408MHz 또는 1.8GHz)	9GH: 테이다 트덴스 폰더 2대	휴대용 VHP 무선 건화기 3대
A1해역	00	×	X	0	жO	X 또는 VHP EPIRB	0	0
A2해역	09	04	Δ	0	Δ	0	0	0
A8해역	00	O8항이 없을 때	○△ 5항의대안	0	○△ 8합의대안	0	0	0
A4해역	09	Ж	09	0	Ж	0	0	0

주: 선박의 합첩구역별 강추어야 한 『무선설비의 2골실치』의 요건 골 ② 는 추가로, 스의 것은 그 골의 어느 하나를 설치하여도 되는 설비를 나타낼

Korea Maritima Institute

.22.

5. 북극해 정보 및 기술 개발

■ A3 해역 및 A4 해역 선박의 통신장비 목록 비교

변호	장비명	A3 해역문함선박 (대형 컨테이너선)	A4 해역문함선박 (쇄빙선)
1	MF/HF DSC Transceiver	0	0
2	VHF Radio Telephone	0	0
3	NAVTEX Receiver	0	0
4	Satellite EPIRB	0	0
5	RADAR Transponder	0	0
6	Portable Two-way VHF Tel	0	0
7	Portable Two-way UHF Tel		0
8	Portable VHF Transceiver		0
9	Portable UHF Transceiver	0	0
10	INMARSAT-F(F77)	0	0
11	INMARSAT-C	0	0
13	IRIDIUM Satellite Tel		0
14	Sound Reception Sys	The state of the s	0
書: KV	II 조사Visual V/UHF Transceiver	Maritima Instituto	0

5. 북극해 정보 및 기술 개발

- 북극해 운항 관련 정보 및 기술 선점 과제
 - ▶ GMDSS 관련 장비 표준화 및 기술 선점
 - ▶ 선박 위성 통신 시스템
 - ▶ 해로정보 시스템 및 기상관측정보시스템
 - ▶ 북극해 운항 표준선형 개발
 - ▶ 극한온도 에 견딜 수 있는 선박 장비, 재료 개발
 - ▶ 북극해 운항 선원 의복, 의료시스템 및 건강관리 메뉴엘

Korea Maritimo Instituto

KOPR\ 국지연구소

V. 결 론

Korea Maritimo Instituto

-40-

북극해 활용 전망

- 2030년경 상업적 서비스가 가능할 것으로 가정
 - ▶ 최근 해빙속도 및 기술발전 수준을 고려시 북극해 얼음 여름철에 완 전 감소(Ice Free)
- 향후 북극해 항로 개발의 주요 변수
 - ▶ 자연적 요인 : 지구 온난화에 따른 북극 해빙(Sea Ice) 정도
 - ▶ 정치적 요인 : 북극해를 둘러싼 국가간 정치적 대립 혹은 협력 정도
 - ▶ 즉. 경제성, 안전성, 경제성 문제는 제외됨

<북극해 항로 활용 전망 시나리오>

구분	주요 내용	향후 전망
1시나리오	자원기지 시나리오 (From Russia with Oil)	원유나 LNG 수송은 가능하지만, 정치적 이유와 기후조건 으로 동서기간 함로로 발전하는데 한계가 있음
2시나리오	신생 동서기간함로 시나리오 (Stormy Passage)	여름 해빙기간 동안 아시아-유럽, 아시아-북미 동안 서비 스가 삼업적으로 가능함
3시나리오	정치 영토분쟁 시나리오 (Arctic Great Game)	정치적 요인으로 혼돈도 있지만, 급격한 약화는 없다.

자료: 노트웨이 Bean사 원선명 보고서 (Arctic Shipping 2030, 2008) **Korea Manifima Institute**

-42-

/KOPR

북극해 항로 통행 선박 전망

- 북극해 항로 통행 선박 전망
 - ▶ 2030년 : 전세계 선박 통행량의 2%
 - ▶ 2050년 : 전세계 선박 통행량의 5%
 - (자료: 대기화학과 물리학 저널)
- 현재 주요 운하 통과 선박량
 - ▶ 수에즈 운하 : 세계 선박 통행량의 4%
 - ▶ 파나마 운하 : 세계 선박 통행량의 8%
- 아이슬란드 Olafur Ragnar Grímsson 대통령:
 - ▶ "북극해 항로는 이제 북극횡단 파나마운하가 되었다"

Koroa Maritima Instituta

정책 제 언

- 북극해 권역 자원개발 사업 참여
 - ▶ 북극해 자원 개발, 수송 문제는 전 지구적 이슈로 등장
 - ▶ 심해 자원 개발 필요성 증대, 선박/플랜트 수요가 증대될 것임
 - ▶ 러시아와 미국 등 북극해 연안국들과의 협력 관계가 필요함
- 민간 회사의 적극적 시장 참여
 - ▶ 북극해 항로 참여 여부에 따라 선사 경쟁력 상이
 - ▶ 선점을 통한 서비스 표준화, 서비스 독점
- 러시아와의 경제 및 해운협력 강화
 - ▶ 러시아는 북극해에서 가장 긴 해안선을 접한 연안국
 - ▶ 북동항로 활용을 위해 경제 및 해운협력 확대와 강화가 시급

Korea Maritima Institute

-44-

북극해 진출을 위한 주체별 역할

정부

- 화물·기술·운송 연계 및 협력 체계구축
- •국제협력 추진: 운항지원
- •관련 산업 육성 지원

연구기관

- •북국해 운항 관련 기초연구
- 운항 타당성 및 경제성 평가
- •관련 정보 DB 구축

해운기업

- •화물 개발
- 선박, 인력 확보
- •육로와 연계 함로 개최

• 북극함로 개척을 위한 투자

북극해 항로 진출 및 서비스 선점

Korea Maritima Institute

-45-

감사합니다.

KOPRI
극지연구소
コペピナエ

◇ 극지포럼 사무국

주소 : 인천광역시 연수구 갯벌로 12 갯벌타워 809호 (406-840)

전화 : 032)260-6097 팩스 : 032)260-6049

E-mail: polarforum@kopri.re.kr