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Abstract

Antarctic marine invertebrates face extremely cold temperatures and many of decapod crustacean and fish groups became extinct because of extreme climate for over the last 30 million
years. In that matter, species which have survived in Antarctic region may have evolutionary strategies and understanding their adaptation mechanisms in response to the extreme
environment has received considerable attention. Here we present the first draft genome sequence and annotation for Antarctic copepoda Tigriopus kingsejongensis, the first Antarctic
Crustacean to be sequenced using lllumina Miseq platform The final assembly consists of 48,368 contigs with an N50 contig length of 17.5 kilobases (kb) and 27,823 scaffolds with N50
contig length of 138.2 kb and a total of 39,717 coding genes were inferred using the MAKER annotation pipeline approach. The comparative genome analysis among 3,254 orthologs in 4
arthropod species (T. kingsejongensis, Tigriopus japonicus, Daphnia pulex and Drosophila melanogaster) revealed the T. kingsejongensis specific signals of molecular adaptation in genes
associated with mitochondrial electron transport, deacetylase activity, proteasomal ubiquitin-dependent protein catabolic process, endoplasmic reticulum, and tryptophan metabolism. This
suggest that T. kingsejongensis have changed adaptation mechanisms such as energy production and metabolism, proteolytic complex, and sterol biosynthesis. The results have important
implications for understanding of Crustacean evolution and their adaptations to the Antarctic environment.
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" Copepods
= Highly diverged with long evolutionary history

= Can survive temperatures below 0°C in polar regions and 45°C in hot
springs

= Survive under a wide range of environments are also advantageous in
genetic comparative analysis for physical and biological studies

= Potential good model organisms
" Antarctic Tigriopus kingsejongensis
= Temperate Tigriopus japonicus
" Report the first draft genome sequence of T. kingsejongensis

" Exhibit genome-wide signatures of adaptation to Antarctic
environment

Results

1. Comparative Genome Analyses
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Figure 1. Venn diagram of the shared gene families. Comparison among the
four arthropod species (copepod, mosquito, fruit fly and water flea) identified that 2,063
gene families were shared by the four species. T. kingsejongenesis shares 4,562 (73.5%)
gene families with Daphnia pulex the most which belong to the same Crustacean lineage.
The T. kingsejongensis specific gene families were 1,028 and significantly enriched in
ATPase activity (8 genes; P < 0.01) and active transmembrane transporter activity (12
genes; P < 0.01).
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2. Adaptive Evolution
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Figure 3. Global mean dN/dS distribution by GO categories of T.

kingsejongensis and T. japonicus. The gene ontology (GO) categories showing
accelerated evolution in T. kingsejongensis were ‘regulation of cellular response to stress),
carbohydrate metabolism, including ‘glutamate metabolic process, ‘glutamine family
amino acid metabolic pathway’ and ‘cellular amino acid biosynthetic process’ and energy
metabolism such as ‘ATP binding’ and ‘mitochondrial transport’.

3. Positively Selected Genes

Table 1. Enriched GO categories identified by PSGs from the T. kingsejongensis.
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Figure 5. Total enzyme coding genes were PGS involved in metabolic pathways.

Positively Selected Genes Involved in Metabolic Pathways

ATP synthase have a catalytic core composed of two catalytic domains alpha (ATP5A) and beta (ATP5B) subunits and these undergo a subsequent
conformational changes and form ATP from ADP. Generally, mtDNA- and nuclear- encoded mitochondrial genes especially enzymes from the OxPhos
pathway are highly conserved even between the distantly related species 2. In that respect, mutations in mitochondrial genes are known to be lead to
variety of negative effects including increased oxidative stress, reduction in body mass and survival, metabolic disorders 3. However, polymorphism of
ATP5A reported in ovenbirds is result in higher individual fitness leading by increased body mass 4 implying possible role in environmental adaptations.
Additionally, UQCRC1 polymorphism in human is significantly associated with body lipid accumulation > and ETF polymorphism also discovered in human
altered resistance to thermal stability of enzyme activity . As T. kingsejongenesis face extreme conditions, especially constant low temperatures and
seasonal food scarcity similar with other Antarctic invertebrates, efficient energy production, adequate energy sources to save and cold tolerance
mechanisms is important for organisms living in high altitude. Additionally, we found four PSGs belong in metabolic pathways: nucleotide, lipid, and
carbohydrate metabolic pathways.
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= Survive under a wide range of environments are also advantageous in
genetic comparative analysis for physical and biological studies

= Potential good model organisms
" Antarctic Tigriopus kingsejongensis
= Temperate Tigriopus japonicus
" Report the first draft genome sequence of T. kingsejongensis

" Exhibit genome-wide signatures of adaptation to Antarctic
environment

Genome Sequencing, Assembly and Annotation Pipeline

Figure 1. Venn diagram of the shared gene families. Comparison among the
four arthropod species (copepod, mosquito, fruit fly and water flea) identified that 2,063
gene families were shared by the four species. T. kingsejongenesis shares 4,562 (73.5%)
gene families with Daphnia pulex the most which belong to the same Crustacean lineage.
The T. kingsejongensis specific gene families were 1,028 and significantly enriched in
ATPase activity (8 genes; P < 0.01) and active transmembrane transporter activity (12
genes; P < 0.01).
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Figure 3. Global mean dN/dS distribution by GO categories of T.

kingsejongensis and T. japonicus. The gene ontology (GO) categories showing
accelerated evolution in T. kingsejongensis were ‘regulation of cellular response to stress),
carbohydrate metabolism, including ‘glutamate metabolic process, ‘glutamine family
amino acid metabolic pathway’ and ‘cellular amino acid biosynthetic process’ and energy
metabolism such as ‘ATP binding’ and ‘mitochondrial transport’.

3. Positively Selected Genes

Table 1. Enriched GO categories identified by PSGs from the T. kingsejongensis.
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Figure 5. Total enzyme coding genes were PGS involved in metabolic pathways.

Positively Selected Genes Involved in Metabolic Pathways

ATP synthase have a catalytic core composed of two catalytic domains alpha (ATP5A) and beta (ATP5B) subunits and these undergo a subsequent
conformational changes and form ATP from ADP. Generally, mtDNA- and nuclear- encoded mitochondrial genes especially enzymes from the OxPhos
pathway are highly conserved even between the distantly related species 2. In that respect, mutations in mitochondrial genes are known to be lead to
variety of negative effects including increased oxidative stress, reduction in body mass and survival, metabolic disorders 3. However, polymorphism of
ATP5A reported in ovenbirds is result in higher individual fitness leading by increased body mass 4 implying possible role in environmental adaptations.
Additionally, UQCRC1 polymorphism in human is significantly associated with body lipid accumulation > and ETF polymorphism also discovered in human
altered resistance to thermal stability of enzyme activity . As T. kingsejongenesis face extreme conditions, especially constant low temperatures and
seasonal food scarcity similar with other Antarctic invertebrates, efficient energy production, adequate energy sources to save and cold tolerance
mechanisms is important for organisms living in high altitude. Additionally, we found four PSGs belong in metabolic pathways: nucleotide, lipid, and
carbohydrate metabolic pathways.
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