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Abstract Results and Discussion
Melt ponds are common features of the summertime Arctic sea ice, absorbing incoming
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Figure 1. Processing flow of melt pond retrieval. o W % 4w e 7w % s w i

Construction of reference dataset Figure 4. Comparison between (a) the airborne SAR- and Figure 5. Relative variable

In order to construct a reference dataset to classify open water, sea ice, and melt pond, machine learning results-based melt pond maps: (b) the DT :;T:pgrtgnfe of (a) the DT and (b)
the objects of each class were delineated using image processing software, ENVI. First, model and (c) the RF model. Moeset
water and ice were classified from the object extraction procedure. The water objects
within the ice were defined as melt ponds. In some airborne SAR Iimages, open water
within interconnected ice floes was misclassified as a melt pond. To reduce the
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misclassification, the melt pond objects with an area larger than 700 m2 were i it dof o I & i AR
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