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Abstract A set of the North American Regional Climate Change Assessment Program (NARCCAP) regional
climate models is used in crop modeling systems to assess economically valuable agricultural production in
the southeast United States, where weather/climate exerts strong impact on agriculture. The maize/peanut/
cotton yield amounts for the period of 1981–2003 are obtained in a regularly gridded (~20 km) southeast U.S.
using (a) observed, (b) a reanalysis, and (c) the NARCCAP Phase I multimodel data set. It is shown that the
regional-climate model-driven crop yield amounts are better simulated than the reanalysis-driven ones.
Multimodel ensemble methods are then adopted to examine their usefulness in improving the simulation of
regional crop yield amounts and are compared to each other. The bias-corrected or weighted composite
methods combine the crop yield ensemblemembers better than the simple compositemethod. In general, the
weighted ensemble crop yield simulations match marginally better with the observed-weather-driven yields
compared to those of the other ensemble methods.

1. Introduction

As an initial research step to detect the possible impacts of climate variability and climate change on agricul-
tural production in the southeast United States, this study is performed to evaluate a regional climate multi-
model data set in crop yield simulations. Climate models tend to have significant biases. These biases could
be due to not resolving fine-scale features, to imperfections in model physics, low resolution, or a number of
other reasons [Shin and Cocke, 2013]. For detailed crop models, biases in the climate input can have a signif-
icant impact, leading to unrealistic results [Ceglar and Kajfez-Bogataj, 2012]. Thus, in order to use climate pro-
jections for crop model simulations, downscaling and/or bias correction techniques might be a prerequisite
step [e.g., Baigorria et al., 2007, 2008; Shin et al., 2010].

To address the above issue, a set of downscaled weather/climate data is utilized. The North American
Regional Climate Change Assessment Program (NARCCAP) [Mearns et al., 2009, 2012] Phase I is perhaps
the most comprehensive set of regional climate model simulations available over North America. This is a
large collaborative effort to downscale the World Climate Research Programme Phase 3 of the Coupled
Model Intercomparison Project (CMIP3) [Meehl et al., 2007] climate models by using six participating regional
climatemodels. There is no comprehensive dynamical downscaling effort using the CMIP5 [Taylor et al., 2012]
models yet over North America. The confidence in the regional models is mostly based on how well they
simulate the regional climate compared to the global counterpart. The NARCCAP Phase I shows a promising
result in simulating regional scale climate [Mearns et al., 2012].

What is the distribution of possible outcomes, both for climate and subsequent agriculture production? To
answer this question, the multimodel ensemble (MME) concept of using weather/climate models has been
adopted in a few agricultural studies [e.g., Challinor et al., 2005; Rotter et al., 2011; Rosenzweig et al., 2014].
Most of these studies, at most, used a simple composite method (i.e., regular ensemble averaging).
However, it is expected that some models are superior to others, based on certain metrics applied to histor-
ical simulations where observations are available. To take into account differential skill, a weighting method
can be used. In this research, the aim is to provide reliable maize (Zea mays), peanut (Arachis hypogaea), and
cotton (Gossyium L.) crop yield simulations by using the MMEmethod for use in planning and policies for agri-
culture, which might maximize crop yields and minimize risk of low yields in the southeast United States. By
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improving crop yield estimation quantitatively in the region, we will fulfill decision/policy-makers’ desire to
have a more confident and credible crop yield estimate compared to the existing widespread estimates
[Rotter et al., 2011; Martre et al., 2015] for their use. For climate information to benefit society, it must fit into
a decision-making process andmust affect actions of decision-makers [Letson et al., 2005]. For this to happen,
seasonal to decadal climate forecasts should be integrated in the context of a broader information delivery
and decision support system [Letson et al., 2005; McCown et al., 2002; Cash and Buizer, 2005].

The paper is organized as follows: the data and methods used in the present study are described in section 2.
The assessments of crop yield simulations are presented in section 3. The conclusions follow in section 4.

2. Data and Methods

Our system links a global climate reanalysis to downscaling models to dynamic crop models to MME meth-
ods. The NARCCAP data (23 years, 1981–2003) are chosen to obtain temporal and spatial scales appropriate
to drive the dynamical crop model simulations. An ensemble of crop yield simulations is generated by using
six NARCCAP regional climate models. MME methods are then used to produce a better crop yield estimate
by narrowing the uncertainty of the simulations.

2.1. Observed Weather/Climate Data

The Cooperative Observer Network (COOP)-based observed weather/climate data for Alabama, Georgia, and
Florida are provided by the Florida Climate Center—Office of the State Climatologist. The daily weather data
consist of maximum and minimum temperatures, and precipitation on a regularly gridded mesh
(~20 × 20 km, see Figure 1). The 20 km horizontal resolution is chosen because it is roughly resolving the
county scale in the southeast United States. Daily values of incoming solar radiation are estimated by using
the method published by Bristow and Campbell [1984], because these data are not in the COOP data. Data are
available for 1171 grid points across the three states. These data are the baseline data used in the corn, pea-
nut, and cotton models to simulate observed-weather-driven crop yield amounts.

2.2. NARCCAP

NARCCAP engages six regional climate models (RCMs) that are run at a 50 km horizontal resolution and dri-
ven by the National Centers for Environmental Prediction (NCEP)–Department of Energy Reanalysis II (R2)
[Kanamitsu et al., 2002] and four CMIP3 models forced with the Special Report on Emission Scenarios A2 sce-
nario [Nakicenovic et al., 2000]. Downscaling is necessary to adjust coarse resolution output of climate reana-
lysis or model simulations to provide more detailed spatial representation of weather systems, which can
have significant influence on yield simulations of dynamic crop models.

An advantage of dynamical downscaling is that the atmospheric variables are physically consistent with each
other. However, the computational costs of running the RCM are significant. In this study, the Phase I data set
(wherein six RCMs use boundary conditions from the R2) is collected and statistically further interpolated to
~20 km (roughly resolving the county scale) over the southeast United States for use in crop model simula-
tions. Table 1 provides information on the NARCCAP data used in this study.

2.3. Crop System Modeling—Decision Support System for Agrotechnology Transfer

The Crop System Modeling—Decision Support System for Agrotechnology Transfer (CSM-DSSAT) model
[Jones et al., 2003; Hoogenboom et al., 2004] version 4.6 is used to simulate the potential effects of
weather/climate on crops in the southeast United States. Three economically important crops are selected:
peanut, cotton, and corn. The specific models within the DSSAT include the CERES-Maize for corn and the
CROPGRO for peanut and cotton [Jones et al., 2003]. These three models take into account the lower CO2

responsiveness and new information on temperature sensitivities, which was presented in Hatfield et al.
[2008], as derived from publications such as Alagarswamy et al. [2006] and Boote et al. [2010]. CSM-DSSAT
integrates the effects of crop genotype, soil profiles, weather data, and management options into a crop
model. The crop model uses maximum andminimum surface temperature, rainfall, and incoming solar radia-
tion from season-long daily weather records. It simulates plant growth and development processes on a daily
basis in a specific location, from planting data to maturity date.

The crop models described above are developed for single-point locations. A fine horizontal resolution grid,
in the order of 20 km, is set up over the southeast United States that specifies the crop locations. For testing
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and evaluation, the current study uses hypothetical crop coverage on the grid and adopts representative
crop management practices that reflect current agricultural land use by farmers. Soil profiles for the domi-
nant agricultural soils are based on published Soil Surveys for Georgia, Alabama, and Florida at county level
[U.S. Department of Agriculture-National Resources Conservation Service, 2015]. Fixed fertilizer applications are
assumed in management conditions. Identical initial soil moisture conditions are also used in all simulations;
however, simulations are initiated at least 2months prior to planting to let the soil modules of crop model to
stabilize the soil moisture at the time of emergence according to the environmental conditions. The planting
date for each year is 1 April for maize and cotton, and 25 April for peanut. These dates correspond to the mid-
dle of the range of planting dates reported by USDA-National Agricultrual Statistics Service (NASS) [2010].
Therefore, the weather/climate input is the only parameter that can change crop yields in a given year at a
given location. The crop simulations make use of existing soil, historical climate, and management databases
in addition to climate scenarios data provided by the NARCCAP. This study builds on the considerable experi-
ence in using these models for simulating effects of climate on cotton, peanut, and corn in the three States
[e.g., Southeast Regional Assessment Team, 2002; Jagtap et al., 2002; Irmak et al., 2005; Garcia y Garcia et al.,
2006; Paz et al., 2007].

Although the Southeast Climate Consortium has soil data for almost every county in Alabama, Florida, and
Georgia, our analysis indicates that revisions are needed for use in the crop models. Therefore, the soil profile
descriptions obtained from the Soil Surveys at each county and the use of revised algorithms to create
derived soil properties [Romero et al., 2012] are used to complete the soil profile descriptions (e.g., hydraulic
properties such as wilting point, field capacity, and saturation). These additional soil parameters are required
by the crop models and used as inputs to simulate crop yields in all 1171 grid points.

Figure 1. Simulated observed-weather-driven (a) maize, (b) peanut, and (c) cotton dry matter yields (23 year average, 1981–2003) under rainfed conditions. Unit is of
kg ha�1. Area averaged yield values are shown in the map.

Table 1. NARCCAP Phase I Models and Their Available Periods

Full Name Reference Available Period

CRCM Canadian Regional Climate Model Caya and LaPrise [1999] 1.1.1979 to 30.11.2003
ECP2 Scripps Experimental Climate Prediction Center Regional Spectral Model Juang et al. [1997] 1.1.1979 to 31.12.2004
HRM3 Met Office Hadley Centre’s RCM version 3 Jones et al. [2003] 1.1.1981 to 31.12.2004
MM5I Fifth-generation Pennsylvania State University–National Center for Atmospheric

Research (NCAR) Mesoscale Model
Grell et al. [1993] 1.1.1979 to 30.11.2004

RCM3 Regional Climate Model version 3 (RegCM3) Giorgi et al. [1993] 1.1.1979 to 31.10.2004
WRFG Weather Research and Forecasting model Skamarock et al. [2005] 1.1.1981 to 30.12.2004
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2.4. Multimodel Ensemble

The NARCCAP multimodel data set can produce many different realizations of regional climate over the
southeast United States. The uncertainties of the climate can be reduced by proper combination/filtering
techniques. The multimodel ensemble (MME) methods have become a predominant approach to extract
skillful prediction from the available climate data. A wide variety of weighted multimodel ensembles have
been used in seasonal prediction studies [e.g., Shin and Krishnamurti, 2003; Palmer et al., 2004; Kar et al.,
2006; Shin et al., 2008]. In all these previous studies, a simple composite method or a weighted ensemble
method performed better in resolving the mean climate than any individual model in the MME framework.

Three ensemble average methods are used and compared in the NARCCAP MME configurations.

a Regular ensemble (RE)

RE ¼
XN

i¼1

1
N

Fið Þ (1)

b Bias-corrected ensemble (BCE)

BCE ¼ Oþ
XN

i¼1

1
N

Fi � Fi
� �

(2)

c Weighted ensemble (WE)

WE ¼ Oþ
XN

i¼1

wi Fi � Fi
� �

(3)

where N is the number of ensemble members, Fi is a simulation by model i, Ō is a time average of the

observed state, wi is a weighting function for model i, and Fi is a time average of the forecast by model i.
The ensemble calculations in equations 1–3 are done for each gridbox individually. The weighting function
(wi) is computed by using the dynamical linear model method [Shin and Krishnamurti, 2003]. The weights
are varying spatially; that is, the different members have varying relative contributions to the weights
depending on the spatial location of the point in question. The WE differs from the RE in that different mem-
bers are weighed by sets of a priori statistics obtained during a training period before the forecast phase.
Unlike the WE, the BCE simply replaces forecast means with observed means. Due to the short data length
(23 years), the weights are computed with a cross-validation procedure. In other words, 22 years (except
for the one being projected) are used to obtain the weights during the training period. Hence, the weights
in equation (3) are different for each year.

3. Results

The credibility of the DSSAT crop model has been intensively assessed in many previous studies [e.g.,
Dubrovský et al., 2000; Garcia y Garcia et al., 2006; Boote et al., 2010]. When the model was driven by the
“observed” weather/climate data, it has been shown that the crop yields were reasonably reproduced
[Baigorria et al., 2008]. It is assumed, in this study, that all crops could potentially be sowed and grown at
our defined grid point locations (20 by 20 km, see Figure 1) in Alabama, Florida, ad Georgia. However, as
expected, we find that the crops cannot grow well in some areas such as cities or lakes.

The observed weather/climate data are first used to drive the DSSAT maize, peanut, and cotton crop models.
Figure 1 shows 23 year averaged (1981–2003) crop yields under rainfed condition. The average yield dry mat-
ters are 7633 kg ha�1 for maize, 2912 kg ha�1 for peanut, and 2552 kg ha�1 for cotton, respectively. Crop yield
amounts are relatively low in southern GA for all three crops, although this area is currently the primary pea-
nut production zone in the southeast U.S. according to NASS. This might be due to the soil types around this
area. This area correspond to the Coastal Plain in Georgia, where soils are not very fertile because of their high
content of sand and highly meteorized clay minerals, as well as for their poor drainage conditions. No yields
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are found around the metropolitan areas (e.g., around Atlanta). Although these hypothetical crop yield
distributions cannot be verified with any existing observed crop yield data (such as NASS), the authors
assume, in this study, that these observed-weather-driven crop yields can be used as good proxies for the
observed counterparts.

A simple bilinear interpolation is employed to statistically downscale the R2 data (~1.875°; maximum and
minimum temperatures, rainfall, and radiation) to our 20 km resolution grid. The yearly simulated maize, pea-
nut, and cotton yields are averaged for the period of 1981–2003 (Figure 2). Rainfed conditions are assumed
for all simulations. In terms of the area averaged (AL, FL, and GA) yield amount, maize (6938 kg ha�1), peanut
(2842 kg ha�1), and cotton (1969 kg ha�1) are all underestimated, compared to the observed-weather-driven
yields (Figure 1). While maize and cotton are approximately 600–700 kg ha�1 lower, peanut is only 70 kg ha�1

lower than the observed counterparts. The 23 year average June-July-August mean precipitation and
maximum/minimum temperature bias (R2-observation) maps are shown in Figure S1 in the supporting
information. This figure showing climatological averages does not provide in-depth insight as to why the
area-averaged crop yields are underestimated by using R2. As demonstrated in Shin and Cocke [2013],
the subseasonal dynamics may be amajor factor in determining the crop yield amount. However, it is notable
that the bias of the R2 with respect to observations is substantial. The entire domain has a wet bias, and
excess rainfall of up to 5mm/d in the R2 may affect plant growth through N leaching. This would have a
bigger effect on corn and cotton than the legume peanut (Figure 2). Maximum temperature in the R2 is
cooler than observations by 3–4°C, but this is probably partially offset by a consistent warm bias in minimum
temperature, which results in similar overall mean temperature.

Figure 2 includes root-mean-square error (RMSE) and spatial correlation (SCORR) statistics with the observed
yields (Figure 1) for each crop. The RMSEs (SCORRs) are 1926 kg ha�1 (0.68) for maize, 994 kg ha�1 (0.41) for
peanut, and 778 kg ha�1 (0.65) for cotton. These simple skill measures indicate that the reanalysis might not
be good input data for the crop model as it is. Since many scientists consider a reanalysis as being close to
observation, a better performance might be expected, especially with the 23 year averaged statistics. This
poor performance could be due to the reanalysis’s imperfections, such as missing fine-scale features and
having low resolution. It should be, however, noted that the R2 (like most reanalyses) does not assimilate
2m temperatures, rainfall, or solar radiation. Reanalyses provide good large-scale conditions but are known
to have bias in surface conditions.

The corresponding six NARCCAP regional-model-driven maize dry matter yields under rainfed condition are
shown in Figure 3. (The corresponding precipitation climatology bias maps are shown in Figure S2.) Although
the number of ensemble members is too few (only six) to encompass all possible outcomes in this study,

Figure 2. Same as Figure 1 but for the NCEP R2. In each panel, the first value is the area averaged dry matter yield amount, the second one RMSE, and the third one
spatial correlation with the observed yields (Figure 1).
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large variability frommember-to-member is still visible in crop simulations. The performance of six individual
dynamically downscaled models is presented in terms of area averaged yield amount, RMSE, and SCORR. It is
not clear whether the regional models improve the yield simulations in terms of area averaged value and
RSME. However, the spatial patterns of yields from all regional models match distinctively better with the
observed pattern (Figure 1a), compared to the R2 pattern (Figure 2a). The frequency and distribution of rain-
fall events are likely better in the RCM than the overly drizzling R2. While the SCORR of R2 is 0.68, those of
regional models are 0.88 (Canadian Regional Climate Model (CRCM)), 0.94 (ECP2), 0.86 (Met Office Hadley
Centre’s RCM version 3 (HRM3)), 0.87 (Fifth-generation Pennsylvania State University–National Center for
Atmospheric Research (NCAR) Mesoscale Model (MM5I)), 0.90 (Regional Climate Model version 3 (RCM3)),
and 0.92 (Weather Research and Forecasting (WRFG)). Hence, it is evident that the dynamical downscaling
can capture fine-scale spatial features of weather/climate patterns, which are essential information for the
crop yield simulations. Although determining a best model among the regional models is not considered
in this study, it is worthwhile to note that a better performance is shown by the ECP2 model
(RMSE= 933 kg ha�1, SCORR= 0.94) that uses spectral nudging (a form of bias correction). This result is similar
to what Mearns et al. [2012] found for some of the atmospheric variables. To show crop model’s ability to

Figure 3. Simulated six NARCCAP regional-model-driven maize dry matter yields (23 year average, 1981–2003) under rainfed conditions. Unit is of kg ha�1. In each
panel, the first value is area averaged yield amount, the second one RMSE, and the third one spatial correlation with the observed yields (Figure 1a).
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capture the interannual variability, time series correlation maps are presented in Figures S3–S6. The results
are mixed depending on crop varieties and/or RCMs used.

The metrics (RSME and SCORR) for peanut and cotton, in addition to maize, are summarized in Table 2. It is
clear that downscaling improves the crop yield simulations for all three crops. While the ECP2 performs better
than other regional models for maize and peanut, the RCM3 performs better for cotton. This indicates that
good downscaled season-long weather data can play a major role in improving the yield simulation
performance. The planted crop type is also sensitive to the weather/climate in the crop simulation. Similar
to the maize, the spatial patterns of peanut and cotton yields are far better than those of the R2.

Figure 4 shows the 23 year long time series of statistics for the R2, the above six regional-model-based maize
yields, and three ensemble averages (RE: regular ensemble, BCE: bias corrected ensemble, and WE: weight
ensemble). It is evident that three ensemble average methods perform better than most of the individual
models in terms of RMSE (Figure 4a) and SCORR (Figure 4b). Not much distinguishable skill difference can
be found among the three ensemble methods in terms of RMSE. However, the spatial pattern statistics show
that a rather improved performance can be seen in the BCE and the WE, compared to the RE. In general,
individual models have a wide spread interannual variability of metrics. This variability is reduced by all three
ensemble methods. Similar results are obtained for peanut and cotton (Figures S9 and S10).

Table 2. RMSE and SCORR (Spatial Correlation) for 23 Year Average (1981–2003) Crop Yield Under Rainfed Conditionsa

Crop R2 CRCM ECP2 HRM3 MM5I RCM3 WRFG

RMSE maize 1926 2114 933 1728 1495 1120 1423

peanut 994 810 678 1336 680 684 1237

cotton 778 668 456 730 457 407 992

SCORR maize 0.68 0.88 0.94 0.86 0.87 0.90 0.92

peanut 0.41 0.81 0.88 0.79 0.85 0.79 0.87

cotton 0.65 0.73 0.78 0.72 0.74 0.80 0.79
aGray cells denote the best statistics among the analyzed group.

Figure 4. Yearly (1981–2003) (a) RMSE (kg ha�1) and (b) spatial correlation for maize yield. The blue squares represent the
R2, the green dots the regular ensemble, the black dots the bias-corrected ensemble, the red dots the weighted ensemble,
and the open circles the individual members.
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The rainfedmaize yieldmaps for year 1995are shown in Figure 5 to emphasize thedifferences among the three
ensemblemethods. Three simple statistics (average, RSME, and SCORR) do not indicate significant differences
among the ensemblemethods. However, a close visual inspection reveals that the crop yields using theWE or
the BCE appears to match better with the observed-weather-driven yields compared to the regular ensemble
methods. Similar results are obtained inmost of the other years. Due to its performance-based selective nature
for assigning weights (i.e., higher number of degrees of freedom), the WEmethod produces marginally better
crop simulations compared to theBCE approach. Hence, it canbe concluded that theMMEmethod (BCE orWE)
is a very useful tool for delivering improved yield estimation maps to stakeholders for better decision making.

4. Conclusions

This study was performed to improve our understanding of the impacts of weather/climate on agricultural
production in the southeast United States. The NARCCAP data set, using a comprehensive dynamical down-
scaling approach, was employed as a driver in the state-of-art CSM-DSSAT crop model to estimate crop yield

Figure 5. MME maize yield for year 1995 under rainfed conditions; (a) the observed yield, (b) the regular ensemble, (c) the
bias-corrected ensemble, and (d) the weighted ensemble. In each panel, the (top) first value is area-averaged yield amount,
the (middle) second one is RMSE, and the (bottom) third one is spatial correlation.
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amounts which itself is a question of significant interest. The yield amount of three economically important
crops (corn, peanut, and cotton) was simulated by using dynamical crop models to assess the impact of using
regional climate models for downscaling climate/weather data. Crop-growing-season-long daily weather
data from in situ observations, the R2 and the NARCCAP data were used as inputs for the CSM-DSSAT model
for the period of 1981–2003 over a regularly gridded pattern (~20 km) over southeast United States. Six
ensemblemembers of the NARCCAPmodeling systemwere used to produce an ensemble of crop yield simu-
lations. It was shown that downscaling is an inevitable step before using coarse scale weather/climate data in
dynamical crop models. These yield amount estimations were combined to produce improved crop yield
amounts by using bias-corrected or weighted MME methods. The weights in the WE method might be sen-
sitive to sampling over the relatively short training period (22 years) in this study. If much more comprehen-
sive, systematic and longer data sets are used, the WE method might provide more reliable weights to
provide an improved crop simulation.

A comprehensive application of NARCCAP outputs would have to include (a) comparing observations to
reanalyses, (b) comparing observations to downscaled reanalyses, (c) comparing a and b to understand
the benefit of downscaling, (d) comparing observations to downscaled global climate models (GCMs) in
the historical period, (e) comparing (b) and (d) to understand the biases of GCMs, and then (f) comparing
baseline and future GCM output to understand the signal of climate change. While items (a)–(c) were covered
in this paper, items (d)–(f) will be covered in our future study. Hence, the NARCCAP Phase II and CMIP5 data
will be used in our future study to demonstrate the capability of the WE method further and to understand
the possible impacts of climate variability and change on agricultural production in the southeast United
States. Properly designing an ensemble configuration can be a fundamental starting point for successful crop
simulations and could be more important than the ensemble averaging methods to produce a usable crop
yield simulation by stakeholders.

This studydemonstrated thebenefit fromdynamical downscaling,which is important in the larger debateover
the merit of high-resolution climate information [e.g., Pielke and Wilby, 2012]. In addition, the current paper
shows that the coordinated and centrally distributed RCM simulations by groups like NARCCAP may be cost-
effective and have widespread benefits to scientific community for modeling and assessing impact. The
current findings are consistent with other recent studies [e.g., Zhang et al., 2015;Macadam et al., 2016] where
regional climate models were intensively used in studies of the impacts of climate change on agriculture.
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