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Abstract To more correctly estimate the error covari-
ance of an evolved state of a nonlinear dynamical
system, the second and higher-order moments of the
prior error need to be known. Retrospective optimal
interpolation (ROI) may require relatively less infor-
mation on the higher-order moments of the prior errors
than an ensemble Kalman filter (EnKF) because it uses
the initial conditions as the background states instead
of forecasts. Analogous to the extension of a Kalman
filter into an EnKF, an ensemble retrospective optimal
interpolation (EnROI) technique was derived using the
Monte Carlo method from ROI. In contrast to the
deterministic version of ROI, the background error
covariance is represented by a background ensemble in
EnROI. By sequentially applying EnROI to a moving
limited analysis window and exploiting the forecast
from the average of the background ensemble of En-
ROI as a guess field, the computation costs for EnROI
can be reduced. In the numerical experiment using a
Lorenz-96 model and a Model-III of Lorenz with a
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perfect-model assumption, the cost-effectiveness of the
suboptimal version of EnROI is demonstrated to be
superior to that of EnKF using perturbed observations.
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1 Introduction

Optimal interpolation (OI) yields a variance-minimum
solution by combining observation and background
states at a given time. While the formulation of a
Kalman filter (KF) is based on OI, the use of a fore-
cast as a background state was derived from a time-
dependent linear system [13]. If the associated system is
linear, the forecast error covariance can be represented
by transforming the initial error covariance with a lin-
ear system in matrix form. However, since the govern-
ing system of the atmosphere is intrinsically nonlinear,
another method of estimating the forecast error covari-
ance that is acceptable for nonlinear dynamic systems
is needed in order to apply a KF to the atmosphere.

One way to implement a Kalman filter in nonlinear
dynamic systems is to use an ensemble Kalman filter
(EnKF) in which the forecast error covariance is re-
placed with a forecast ensemble covariance [7, 10, 11].
Because the forecast error covariance in nonlinear
systems depends on the higher-order moments of the
initial condition errors, it is intrinsically difficult to
accurately estimate the forecast error covariance, even
when an initial error covariance is correctly given [19].
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Generally, two approaches have been used to restrict
the sampling error when estimating the forecast error
covariance. One method is to regulate the previously
generated covariance matrix using a priori information
such as the correlation distribution, which depends on
the distance between the state vector grid and the
observation position or the insufficient error variance
that is to be inflated [3, 9].

Hamill et al. [9] demonstrated that a localization
algorithm can correct the errors that originate from
suspicious correlation values among the model state
variables and the observed variables. As the analysis
progresses, these errors cause the analysis error vari-
ance to be underestimated. Such an underestimation
can be mitigated by reducing the extent of the odd cor-
relation value with a function of the physical distance
between an observation position and a model grid.
However, severe localization may produce a significant
imbalance in the EnKF analysis [8].

To avoid the filter divergence yielded by the under-
estimation, which decreases the quality of the analysis,
[3] proposed a variance inflation algorithm. This algo-
rithm expands the total variance of the forecast errors
by amplifying the distinction between each ensemble
member and the ensemble mean with an inflation
factor before assimilating the observations. However,
excessive inflation can place too much weight on the
observations, which has motivated the development of
an adaptive inflation algorithm [2].

Another strategy for reducing the error in estimating
the forecast error covariance (namely the background
error covariance) is to use a background state of which
the error covariance can be more easily estimated. A
method related to this approach will be outlined in
this study: An earlier state instead of a forecast will be
used as a background state. Such an approach simplifies
the error covariance estimation exploiting limited en-
semble members. Retrospective optimal interpolation
(ROI) provides a mathematical framework in which a
background state can be fixed at a past time [21–23].
Analogous to the extension of a KF into an EnKF,
ensemble retrospective optimal interpolation (EnROI)
is formulated by implementing ROI with a Monte Carlo
method. It will be shown that the background ensem-
ble covariance of EnROI better represents the error
covariance of the corresponding population than the
forecast ensemble covariance of an EnKF.

The disadvantages of using an EnKF rather than
EnROI to represent the background ensemble covari-
ance are described in the next section. In Section 3, the
EnROI algorithm with improved efficiency is detailed.
To demonstrate the advantages of EnROI, ideal exper-
iments were carried out using a Lorenz-96 model and a

Model-III of [18] under the perfect-model assumption;
the results are presented in Section 4.

2 Retrospective optimal interpolation implemented
with the Monte Carlo method

2.1 Ensemble Kaman filter with perturbed
observations under the perfect-model assumption

In this study, the formulation of [5] is used for the
EnKF. Suppose that there is an initial condition xb

0 at
time t0. The initial ensemble members xb(k)

0 are ob-
tained by adding perturbations that are produced from
the initial error covariance B to xb

0 . Furthermore, it is
assumed that a forecasting model Mi+1|i(xi) perfectly
describes the evolution of the atmosphere, namely,

xt
i+1 = Mi+1|i

(
xi

t) , (1)

where xt
i is an atmospheric state captured at model grids

at time ti. The forecast ensemble x f (k)

1 is attained by
evolving the initial ensemble members xb(k)

0 :

x f (k)

1 = M1|0
(

xb(k)
0

)
, (2)

where k = 1, 2, ..., K is the index denoting the ensemble
members. Assuming that an observation yo

1 satisfies a
normal distribution with an error covariance R0, the
observation ensemble yo(k)

1 is defined as

yo(k)
1 = yo

1 − ε
o(k)
1 , (3)

In Eq. 3, yo
1 is a given observation and ε

o(k)
1 is derived

from a random sampling of the probability distribution
of yo

1 − yt
1 with a mean of zero, where yt

1 is a capture of
an atmospheric state xt

1 in the observation space. The
analysis ensemble of the EnKF, xa(k)

1 , is obtained by
assimilating the perturbed observation yo(k)

1 into each
member of the forecast ensemble x f (k)

1 using the OI
formulation:

xa(k)
1 = x f (k)

1 + P f
1 HT

[
HP f

1 HT + R1

]−1

×
[
yo(k)

1 − Hx f (k)

1

]
. (4)

The forecast error covariance P f
1 is expressed as

P f
1 ≈ 1

K − 1
X f

1

[
X f

1

]T
, (5)

where the ensemble of the EnKF forecast perturba-
tions, X f

1 , is

X f
1 =

[
x f (1)

1 − x f (k)

1 | · · · |x f (K)

1 − x f (k)

1

]
. (6)
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The forecast ensemble for the next analysis step is
derived from the first analysis ensemble xa(k)

1 :

x f (k)

2 = M2|1
(

xa(k)
1

)
. (7)

The general analysis and forecast steps of the EnKF are
written as follows:

X f
i =

[
x f (1)

i − x f (k)

i | · · · |x f (K)

i − x f (k)

i

]
, (8)

P f
i ≈ 1

K − 1
X f

i

[
X f

i

]T
, (9)

xa(k)

i = x f (k)

i + P f
i HT

[
HP f

i HT + Ri

]−1

×
[
yo(k)

i − Hx f (k)

i

]
, (10)

x f (k)

i+1 = Mi+1|i
(

xa(k)

i

)
. (11)

where the time index i ≥ 1.
An EnKF is expected to pursue a true state in a

nonlinear system better than a KF [7]. However, knowl-
edge of only the error covariance of an initial state is
insufficient for estimating the forecast error covariance
in a strongly nonlinear system [19]. When the analysis
ensemble perturbations are defined as

δxa(k)

i ≡ xa(k)

i − xt
i, (12)

the error covariance of the analysis at time ti can be
defined as:

Pa
i = 1

K − 1

K∑

k=1

δxa(k)

i

[
δxa(k)

i

]T

≡ δxa(k)

i

[
δxa(k)

i

]T
. (13)

Using Eqs. 1 and 13, the sample of the forecast error at
time ti+1 can be related to that of the analysis at ti:

δx f (k)

i+1 ≡ x f (k)

i+1 − xt
i+1

= Mi+1|i
(

xa(k)

i

)
− Mi+1|i

(
xt

i

)

= Mi+1|i
(

xt
i + xa(k)

i − xt
i

)
− Mi+1|i

(
xt

i

)

= Mi+1|iδxα(k)

i + o
(∣∣

∣δxα(k)

i

∣∣
∣
2
)

, (14)

where Mi+1|i is the tangent linear model of Mi+1|i (xi).
The forecast error covariance is

P f
i+1 = δx f (k)

i+1

[
δx f (k)

i+1

]T

= Mi+1|i δxa(k)
ι

[
δxa(k)

ι

]T
MT

i+1|i + O
(∣

∣∣δxa(k)

i

∣
∣∣
3
)

,

= Mi+1|i δPa(k)

i MT
i+1|i + O

(∣
∣∣δxa(k)

i

∣
∣∣
3
)

, (15)

The second term in Eq. 15 comes from the skewness
and the higher-order moments of the probability dis-
tribution of an estimate at a prior time ti. Such a term
implies that the forecast ensemble covariance depends
on the second and higher-order moments of an analysis
ensemble at a prior time. In other words, it is hard
to estimate the evolved ensemble covariance correctly
without information on the higher-order moments of
the prior ensemble. It should be noted that it is also
difficult to represent the skewness and the higher-
order moments of a prior estimate beyond the error
covariance using the ensemble members in the large
dimension of a numeric atmospheric model [26].

The expression in Eq. 15 also signifies that the
ensemble evolved by a nonlinear model may become
non-Gaussian even if the prior ensemble is Gaussian.
When the probability distribution of a background en-
semble is not Gaussian, the minimum-variance analy-
sis is far from the most probable state. While short
intervals for model integration and frequent observa-
tions support the linear growth of the forecast error,
the dependency of an EnKF on such an implemented
configuration may raise questions regarding the robust-
ness of EnKF analysis when it is applied to a nonlinear
dynamic system.

2.2 Ensemble retrospective optimal interpolation

To successfully carry out data assimilation with the
variance-minimum approach for an atmospheric non-
linear model, we should at most preserve the linearity
of the error growth. To preserve the Gaussianity of the
background ensemble for nonlinear model integration,
in this study, future observations are retrospectively as-
similated into the past background state. Retrospective
optimal interpolation (ROI) offers a suitable frame-
work for this task [21–23]. ROI consists of the following
equation set:

xa
0|<1:i> = xa

0|<1:i−1>

+ W0|i
[
yo

i − Hi
(
Mi|0

(
xa

0|<1:i−1>

))]
, (16)
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Pa
0|<1:i> = [

I − W0|iHiMi|0
]

Pa
0|<1:i−1>, (17)

W0|i = Pa
0|<1:i−1>MT

i|0HT
i

× [
HiMi|0 Pa

0|<1:i−1>MT
i|0HT

i + Ri
]−1

, (18)

for i ≥ 0. Equation 16 represents the ROI analysis vec-
tor, Eq. 17 is the ROI analysis error covariance matrix,
and Eq. 18 is the ROI optimal weight matrix. The sub-
script 0|i of the optimal weight matrix W0|i means that
the matrix is used to calculate the analysis increment
at time t0 by exploiting yo

i at ti. The subscript 0| <1:i >

of xa
0|<1:i> denotes the ROI analysis xa

0|<1:i> results from
the assimilation of observations, yo

1, . . . yo
i into a back-

ground state at initial time t0. For i = 0, the model
M0|0(x) and its derivative M0|0 are equivalent to iden-
tities. The initial background state xa

0|<1:0> and back-
ground error covariance Pa

0|<1:0> are equal to the given

background field
√

eT
0|<0:n>[Pb

0|<0:n> − Pa
0|<0:n>]e0|<0:n>

and the corresponding error covariance matrix B, re-
spectively. ROI is different from conventional OI in
that it sequentially assimilates observations over the
analysis window for the variance-minimum estimate of
an atmospheric state xt

0 at t0. Such a process is analo-
gous to that of four-dimensional variational assimila-
tion [15]. Note that the first analysis step of ROI is the
same as in conventional optimal interpolation [14]. ROI
is equivalent to the quasi-static variational assimilation
process presented by [20] in that it is suitable for finding
the global minimizer of its cost function [22].

Based on Eqs. 16–18, a variant of ROI can be devised
using the Monte Carlo method. Hereafter, this method
will be called EnROI. The analysis and forecast steps
of EnROI are formulated as follows:

Xa
0|<1:i−1> =

[
xa(1)

0|<1:i−1> − xa(k)

0|<1:i−1>| · · · |xa(K)

0|<1:i−1>

− xa(k)

0|<1:i−1>

]
, (19)

x f (k)

i|<1:i−1> = Mi|0
(

xa(k)

0|<1:i−1>

)
, (20)

X f
i|<1:i−1> =

[
x f (1)

i|<1:i−1> − x f (k)

i|<1:i−1>| · · · |x f (K)

i|<1:i−1>

− x f (k)

i|<1:i−1>

]
, (21)

Paf
0|i ≈ 1

K − 1
Xa

0|<1:i−1>X f
i|<1:i−1>, (22)

P f f
i ≈ 1

K − 1
X f

i|<1:i−1>X f
i|<1:i−1>, (23)

xa(k)

0|<1:i> = xa(k)

0|<1:i−1> + Paf
0|iH

T
[
HP f f

i HT + Ri

]−1

×
[
yo(k)

i − Hx f (k)

i|<:i−1>

]
, (24)

where i ≥ 1. Equation 24 is used for an ROI analysis in
which an observation yo

i at ti is assimilated into a pre-
vious ROI analysis xa

0|<1:i−1> at t0. Since a background
state is fixed at initial time t0, we expect that EnROI can
eliminate the need for knowledge of the higher-order
moments of a previous sample space to a some de-
gree. However, after assimilating future observations,
EnROI is affected by the nonlinearity of the employed
model because the integrated state x f (k)

i|<1:i−1> is used
as an observation guess. In contrast to an EnKF that
uses the evolved state xi

f (k) as a background state, the
background ensemble of EnROI will be relatively less
affected. If the probability distribution of an initial en-
semble is Gaussian, it can be demonstrated that EnROI
preserves the Gaussianity from the initial ensemble
and the observation ensemble better than the forecast
ensemble of an EnKF.

EnROI is analogous to the process of four-
dimensional ensemble Kalman filtering (4D-EnKF)
reported by [12]. They asserted that a 4D-EnKF is
equivalent to an EnKF and is advantageous in that
it can assimilate asynchronous observations. We insist
that the assimilation of an observation into a back-
ground at a past time can improve the quality of the
analysis in addition to the assimilation of observations
distributed at different times. Unlike the 4D-EnKF,
EnROI maximizes these advantages by assimilating
observations over an analysis window into a fixed point
on the time window.

3 Implementation of EnROI

3.1 Restriction of the analysis window size

In EnROI, the period of the model integration for the
forecast ensemble is overlapped in the analysis window
[21]. When the analysis window and the observation
interval are 24 and 6 h, respectively, the times of the
model integration for EnROI are three times greater
than those for EnKF. Using an EnKF with three times
more ensemble members may be better than employ-
ing EnROI. Therefore, a method should be devised
that enables a reduction in the computation costs for
EnROI. Firstly, the analysis window size of EnROI is
restricted to a finite number of observation times N
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and EnROI is applied to a moving analysis window as
follows:

(Outer loop I = 0, N, 2N, ...)

(Inner loop n = 1, 2, ..., N)

*EnROI step

Xa
I|<1:I+n−1> =

[
xa(1)

I|<1:I+n−1> − xa(k)

I|<1:I+n−1>| · · ·

· · · |xa(K)

I|<1:I+n−1> − xa(k)

I|<1:I+n−1>

]
, (25)

x f (k)

I+n|<1:I+n−1> = MI+n|I
(

xa(k)

I|<1:I+n−1>

)
, (26)

X f
I+n|<1:I+n−1>

=
[

x f (1)

I+n|<1:I+n−1> − x f (k)

I+n|<1:I+n−1>| · · ·

· · · |x f (K)

I+n|<1:I+n−1> − x f (k)

I+n|<1:I+n−1>

]
, (27)

Paf
I|I+n ≈ 1

K − 1
Xa

I|<1:I+n−1>X f
I+n|<1:I+n−1>, (28)

P f f
I+n ≈ 1

K − 1
X f

I+n|<1:I+n−1>X f
I+n|<1:I+n−1>, (29)

xa(k)

I|<1:I+n> = xa(k)

I|<1:I+n−1> + Paf
I|<1:I+n>HT

×
[
HP f f

I+nHT + RI+n

]−1

×
[
yo(k)

I+n − Hx f (k)

I+n|<1:I+n−1>

]
, (30)

(End of inner loop)

*Forecast step

xa(k)

I+N|<1:I+N> ≡ x f (k)

I+N|<1:I+N>

= MI+N|I
(

xa(k)

I|<1:I+N>

)
(31)

(End of outer loop)

EnROI draws information from future observations
back to a past time using the correlation between en-
sembles of different times in Paf

0|i . As the time interval
increases, the temporal correlation decreases, but the
integration time for the observation guess Hx f (k)

i|<1:i−1>

increases. This means that x f (k)

i can lose its Gaussian
probability distribution. If the analysis window to which
EnROI is applied is too long, the background ensemble

of EnROI will also have a non-Gaussian probability.
For analysis accuracy, as well as reduction of compu-
tation cost, the analysis window size may need to be
restricted.

3.2 Avoiding overlap of the integration period
for estimating forecast error covariance in EnROI

In addition to the restriction of the analysis window
size, the forecast ensemble of EnROI will be approxi-
mated by exploiting the analysis ensemble of the EnKF.
To perform this task, the method of reducing computa-
tion costs for ROI reported by [21] was referenced. If
the following tangent linear assumption is valid in the
analysis window of EnROI,

MI+n|I
(

xa(k)

I|<1:I+n>

)

= MI+n|I
(

xa(k)

I|<1:I+n−1> + xa(k)

I|<1:I+n> − xa(k)

I|<1:I+n−1>

)

= MI+n|I
(

xa(k)

I|<1:I+n−1> + Paf
I|I+nHT

×
[
HP f f

I+nHT + RI+n

]−1

×
[
yo(k)

I+n − Hx f (k)

I+n|<1:I+n−1>

])

≈ MI+n|I
(

xa(k)

I|<1:I+n−1>

)
+ MI+n|IPaf

I|I+nHT

×
[
HP f f

I+nHT + RI+n

]−1

×
[
yo(k)

I+n − Hx f (k)

I+n|<1:I+n−1>

]
, (32)

it can be assumed that the forecast ensemble of EnROI
is equal to the analysis ensemble of the EnKF one
step before the following observation time tI+n in the
analysis window:

x f (k)

I+n|<1:I+n> ≈ xa(k)

I+n, (33)

where xa(k)

I+n is the analysis ensemble of the EnKF at tI+n.
When Eq. 33 is used, EnROI becomes equivalent to
the EnKF. To preserve the advantages of EnROI, we
intend to modify the EnKF analysis ensemble so that it
has the same ensemble mean as the forecast ensemble
of EnROI, MI+1|I(xa(k)

I|<1:I+n−1>).

Obtaining the forecast ensemble mean of EnROI
also requires ensemble forecasting to yield the over-
lapping of the model integration periods in EnROI.
To avoid this computational burden, we adopt an as-
sumption that a single forecast from the averaged state
of the EnROI background ensemble is equal to that
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of the EnROI forecast ensemble from the background
ensemble at tI+n:

MI+n|I
(

xa(k)

I|<1:I+n>

)

= MI+n|I
(

xa(k)

I|<1:I+n> + xa(k)

I|<1:I+n> − xa(k)

I|<1:I+n>

)

≈ MI+n|I
(

xa(k)

I|<1:I+n>

)

+ MI+n|I
[

xa(k)

I|<1:I+n> − xa(k)

I|<1:I+n>

]

≈ MI+n|I
(

xa(k)

I|<1:I+n>

)

+ MI+n|I
[

xa(k)

I|<1:I+n> − xa(k)

I|<1:I+n>

]

= MI+1|I
(

xa(k)

I|<1:I+n>

)
(34)

Since the variance of the analysis ensemble becomes
smaller after the EnROI analysis, the validity of
Eq. 34 is expected to be reinforced by the EnROI
analysis [21]. Also note that it is easier for Eq. 34
to be valid when compared to Eq. 32 because the

norm of xa(k)

I|<1:I+n> − xa(k)

I|<1:I+n> is smaller than that of

xa(k)

I|<1:I+n> − xa(k)

I|<1:I+n−1>. Therefore, even when Eq. 32
is not guaranteed to be valid, we can still expect the
validity of Eq. 34. Finally, the forecast ensemble of
EnROI is approximately given as follows:

x f (k)_Sub
I+n|<1:I+n−1> ≈ xa(k)

I+n − xa(k)

I+n

+ MI+1|I
(

xa(k)

I|<1:I+n−1>

)
. (35)

We replaced the forecast ensemble in Eq. 26 with
Eq. 35 so as to establish a ‘suboptimal version of
EnROI’ (EnROI_Sub in this study). Notice that while
the analysis window size is small enough for EnROI
to give a more accurate analysis than the EnKF, the
approximation in Eq. 35 can have a negative impact on
the analysis of EnROI_Sub.

3.3 Covariance inflation

Following the work of [3], the covariance inflation in
the EnKF is carried out as follows:

x f (k)_inf l
i+1 = α(x f (k)

i+1 − x f (k)

i+1 ) + x f (k)

i+1 , (36)

where α is an inflation factor. In this work, this co-
variance inflation method of the EnKF is adopted
for EnROI. Since the analysis ensemble is used as a

background ensemble in EnROI, the implementation
is written as:

xa(k)_inf
I|<1:I+n−1> = α

(
xa(k)

I|<1:I+n−1> − xa(k)

I|<1:I+n−1>

)

+ xa(k)

I|<1:I+n−1>, (37)

In EnROI_Sub, Eq. 37 is used for the inflation of
the background ensemble covariance. Meanwhile, the
forecast ensemble of the EnROI_Sub is not given by
model integration, but by approximation Eq. 35. Thus,
we need to inflate the forecast ensemble covariance
obtained by exploiting Eq. 35. To accomplish this, we
simply spread out x f (k)_Sub

I+n|<1:I+n−1> with the same inflation
factor used for the background ensemble covariance:

x f (k)_Sub_inf l
I+n|<1:I+n−1> = α

(
x f (k)_Sub

I+n|<1:I+n−1> − x f (k)_Sub
I+n|<1:I+n−1>

)

+ x f (k)_Sub
I+n|<1:I+n−1>. (38)

In fact, a tangent linear assumption underlies Eq. 38
such that the evolution of the background ensemble
into the forecast ensemble is linear.

In the practical application of EnROI_Sub, we
should consider the adoption of a localization algo-
rithm. At present, we do not have sufficient knowledge
of the localization method for a temporal correlation in
Paf

I|I+n. The development of a localization method for
the time lag covariance will be presented in a future
study. Therefore, we restrict the scope of this study to a
configuration without the use of a localization method.

3.4 EnROI_Sub in the form of ensemble transform
Kalman filter

An ensemble square root filter seems more appro-
priate to use in this setting as these so-called ‘deter-
ministic’ ensemble filters manipulate the mean in the
analysis equations and have the ensemble re-sampled
after each analysis step. We describe the algorithm of
EnROI_Sub in the form of ensemble transform
Kalman filter (ETKF; [4]):

(Outer loop I = 0, N, 2N,...)

(Inner loop n = 1, 2, ..., N)

x f (k)

I+n|<1:I+n−1> = MI+n|I+n−1(x
a(k)

I+n−1|<1:I+n−1>), (39)
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X f
I+n|<1:I+n−1> =

[
x f (1)

I+n|<1:I+n−1>

− x f (k)

I+n|<1:I+n−1>| · · · |x f (K)

I+n|<1:I+n−1>

− x f (k)

I+n|<1:I+n−1>

]
, (40)

Paf
I|I+n ≈ 1

K − 1
Xa

I|<1:I+n−1>X f
I+n|<1:I+n−1>, (41)

P f f
I+n ≈ 1

K − 1
X f

I+n|<1:I+n−1>X f
I+n|<1:I+n−1>, (42)

xa(k)

I|<1:I+n> = xa(k)

I|<1:I+n−1>

+ Paf
I|I+nHT

[
HP f f

I+nHT + RI+n

]−1

×
[

yo
I+n − Hx f (k)

I+n|<1:I+n−1>

]
, (43)

Xa
I|<1:I+n> = Xa

I|<1:I+n−1>

√[
(K − 1)I +

[
HI+nX f

I+n|<1:I+n−1>

]T
R−1

I+nHI+nX f
I+n|<1:I+n−1>

]−1

(44)

Xa
I+n|<1:I+n> = X f

I+n|<1:I+n−1>

√[
(K − 1)I +

[
HI+nX f

I+n|<1:I+n−1>

]T
R−1

I+nHI+nX f
I+n|<1:I+n−1>

]−1

(45)

xa(k)

I+n|<1:I+n> ≡ MI+n|I
(

xa(k)

I|<1:I+n>

)
(46)

xa(k)

I+n|<1:I+n−1> = xa(k)

I+n|<1:I+n−1> + Xa(k)

I+n|<1:I+n>, (47)

(End of Inner loop)

(End of outer loop)

Equations 39–47 are called as ‘ETROI_Sub.’ The
schematic of the ETROI_Sub is shown in Fig. 1.

4 Numerical experiments

4.1 Experimental settings

The analytical ability of the EnROI and EnROI_Sub
methods was compared with an EnKF using perturbed
observations by conducting twin experiments. Because
the localization algorithm and the model error were
not considered in this study, a low-order numerical
model that was assumed to have no external errors
was used. The Lorenz-96 model was chosen because
stable analysis solutions can be obtained without lo-
calization in the assimilation system. This model also
mimics the error growth of the atmospheric general
circulation model (GCM) and has been used pre-
viously to compare the ability of data assimilation
methods [1, 6, 16]. The Lorenz-96 model is assumed
to have 40 grid points equally spaced along a lati-
tude circle. The equations of the model, which are

integrated numerically by a fourth-order Runge–Kutta
scheme, are

dX j

dt
= (

X j+1 − X j−2
)

X j−1 − X j + 8, (48)

where j = 1, ..., 40 denotes the longitudinal coordi-
nates. The time step was set at �t = 0.05 for the nu-
merical implementation, which roughly corresponds to
6 h in GCMs [17]. The doubling time of the initial error
is 2.1 days, which is similar to that of GCMs.

The model in Eq. 48 was integrated for a 5-year
period starting with an arbitrary initial condition and
assuming the resulting state to be a true state. Referring
to [27], the initial background error covariance B is
constructed by adding a Gaussian-distributed random
error with a zero mean and a variance of 0.25 to every
component of the true state in order to create 100 en-
semble members. The ensemble members are then in-
tegrated over 2.5 days, which is slightly longer than the
doubling time of error growth in the Lorenz-96 model,
to produce a forecast ensemble. Finally, B is found
using 100 anomaly fields obtained by subtracting the
average of the ensemble members from each member.
We integrate the true state corresponding to the time of
B and denote it as xt

0. To ensure the robustness of the
experimental results, the average of the results for over
100 realizations was taken. One hundred realizations
of the initial estimate xb

0 were provided by adding a
random noise vector with a Gaussian distribution of
mean zero and covariance B to xt

0.

To ensure that the observation configuration mim-
icked the distribution of surface stations in the mid-
latitudes, we locate the observation on j = 1, 2, ..., 15
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Fig. 1 A schematic diagram of ETROI_Sub in Eqs. 39–47. The
solid arrow means that the process requires a model integration
and especially the process corresponding to the bold solid arrow

requires model integrations of which the number is equal to the
number of ensemble members. The dashed arrow denotes that
the process does not require model integrations

and j = 21, 22, ..., 35. Observations were distributed
every 6 h by adding uncorrelated random noises with
Gaussian distributions (mean = 0, variance = 0.25) to
true values on the observation points. The number of
observation times with a fixed time interval of 6 h is 120
from Day 0.25 (t1) to Day 30 (t120).

In the operational centers, the EnKF is applied with
ensemble members smaller than the observation num-
bers. We use K = 26 ensemble members for the EnKF
because it is the minimum number of members that
provides stable solutions with only covariance inflation.
The difference between an average of the background
(observation) ensemble and a given background (ob-
servation) can unexpectedly bias the EnKF analysis.
To eliminate these errors, the ensembles of background
xb(k)

0 and observation yo(k)

i were adjusted so as to guar-
antee that the averages of those ensembles are equiv-
alent to the given background state and observations,
respectively.

To confirm the cost-effectiveness of the reduced-
rank ROI, we test our new approach on an addi-
tional model of higher dimensions than the Lorenz 40-
variable model. We select the model-III of [18], which
is used for comparisons of variants of ensemble Kalman
filters in [24] and [22]:

dZn/dt = [X, X]K,n + b 2[Y, Y]1,n

+ c[Y, X]1,n − Xn − bYn + F, (49)

where the grid index n = 1, ..., 120, and the forcing F =
15. For any two sets of variables X and Y, [X, Y]k,n is
defined as follows:

[X, Y]K,n =
∑′J

j=− j

∑′J
i=− j

(−Xn−2K−iYn−K− j

+ Xn−K+ j−iYn+K+ j
) /

K2,

(50)

where the operator
∑′ denotes a modified summation,

which is equal to the ordinary summation denoted by∑
except that the first and last terms are to be divided

by 2, and J = K/2. If K is odd, J = (K − 1)/2 and∑′ is replaced with
∑

. The variable X is the sum of
the longest-wave components of the control Z , and Y
denotes the remaining components:

Xn =
∑′l

i=−I
(α − β |i|) Zn+i, (51)

Yn = Zn − Xn, (52)

where α, β, and I are chosen such that X will be
effectively smoothed:

α = (
3I2 + 3

)/(
2I3 + 4I

)
, (53)

β = (
2I2 + 1

)/(
I4 + 22) , (54)

The coefficient b determines the frequency and ampli-
tude of Y, and coefficient c the extent of the coupling
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of X and Y. The choice of K determines the number
of slow waves on the latitude circle. In this study, we set
b = 10, c = 3, K = 32, J = 16, and I = 12. Equation 49 is
numerically integrated by a Runge–Kutta fourth-order
scheme with the time step �t = 0.001, which is equal
to 7.2 min. Settings for the assimilation experiments
are the same as for the Lorenz-96 model except for
observation numbers and observation time intervals;
the background and observation error variances are
0.25 and the observations at each time are located on
all model grids. The number of observation times with
a fixed time interval of 7.2 min is 200 from 7.2 min
(t1) to 24 h (t200). We use ETKF and ETROI_Sub,
Eqs. 39–47, for application to the Model-III. We use
K = 33 ensemble members for the ETKF and 30 for
ETROI_Subop with 28.8-min analysis window.

4.2 Experimental results

The root-mean-squared (RMS) errors of the EnKF,
Eqs. 8–11, EnROI for an analysis window size of 6 to
30 h, represented in Eqs. 25–31, are shown in Fig. 2a
with different inflation factors. The EnKF produces
the best analysis for an inflation factor of 1.23. With
an increase in the inflation factor, the analysis quality
worsens. While similar tendencies appear for EnROI,
EnROI surpasses the EnKF for all of the inflation
factors. Note that when the analysis window is 12 h,
the analytical ability of EnROI is poor for an inflation
factor of 1.23. The average over the inflation factors
again shows the superiority of EnROI in terms of
analysis accuracy (Fig. 2b). For an inflation factor of
1.23, the time series of the analysis RMS error confirms
a more accurate analysis with EnROI (Fig. 2c). The
relatively inaccurate result from EnROI, when using a
12-h analysis window, is consistent with the averaged
result of Fig 1a.

To ascertain the cause of the excellent results with
EnROI, the representative ability of the background
ensemble covariance of the EnKF and EnROI was
examined. For the EnKF, the background ensemble
covariance means the forecast ensemble covariance. A
score μ was defined to evaluate the representative abil-
ity of the background ensemble covariance as follows:

μ = 1
K − 2

K−2∑

k=1

∣
∣∣
∣
∣
1 − 1

100

100∑

r=1

εk,r√
λk,r

∣
∣∣
∣
∣
, (55)

where the index l is the realization number. The numer-
ator εk,r in Eq. 55 is the RMS difference between the
background ensemble means of the EnKF and EnROI
and the true state projected on the kth eigenvector
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Fig. 2 a Average RMS errors of the analysis ensemble mean of
the EnKF and the forecast ensemble mean of EnROI over the
analysis days as functions of the inflation factors. The forecast
ensemble of EnROI is initially evolved from the analysis ensem-
ble of EnROI into the analysis time of the EnKF. The analysis
window size of EnROI ranges from 6 to 30 h. b Difference in the
RMS error between the EnROI analysis and the EnKF analysis
averaged over the inflation factors. c Time series of the analysis
RMS errors of the EnKF and EnROI for an inflation factor of
1.23

of the background ensemble covariance, ranked in de-
scending order. The denominator λk,r is the eigenvalue
corresponding to the kth eigenvector. A smaller mag-
nitude of μ indicates that the background ensemble
covariance appropriately represents the RMS error of
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the background state. Although the rank of the back-
ground ensemble covariance is K − 1, sometimes the
last eigenvalue is extremely close to 0. Therefore, the
eigen-pairs up to K − 2 were considered. The back-
ground ensemble covariance represents the expectation
of the RMS error of the background state, not one real-
ization. By averaging the ratio εk,r/

√
λk,r, this limitation

in the evaluation of the representative ability of the
ensemble covariance can be overcome. The results of
the evaluation show that the background ensemble of
EnROI represents the RMS errors of the background
states better than that of the EnKF (Fig. 3a).
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Fig. 3 a Representative ability of the background ensemble
covariance for the EnKF and EnROI as a function of the analysis
day. The representative ability is defined in Eq. 40. For the EnKF,
the background ensemble means the forecast ensemble. The six
curves of a correspond to the curves of Fig. 2c. b Normal proba-
bility plots for the EnKF (in gray) and EnROI (in black) using a
30-h analysis window. If the given data (crosses) follow a normal
distribution, the crosses lie along a straight line. The plotted data
were produced by projecting the background ensemble on its first
eigenvector

In Section 2, it was stated that an improvement in
the representative ability comes from the conservation
of linearity in EnROI. If this is the case, the back-
ground ensemble of EnROI should be more Gaussian
than that of the EnKF. Normal probability plots of
the background ensembles of the EnKF and EnROI
using a 30-h analysis window show how well the back-
ground ensemble members follow a Gaussian distribu-
tion (Fig. 3b). If the data expressed with crosses follow
a Gaussian distribution in the normal probability plot,
the crosses lie along a straight line. The first eigenmode
of the background ensemble has the most uncertainty;
Gaussianity is easily lost in that eigenmode. Therefore,
the probability distribution of the first eigenmode of
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Fig. 4 a Autocorrelation distribution averaged over 24 com-
posite members of EnROI using a 30-h analysis window as a
function of the time difference between the initial time and the
observation time over the analysis window. b RMS error of
the background ensemble mean of EnROI at the initial time
of the analysis window. The error was averaged over the 24
composite members
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Fig. 5 Normal probability plots for the background ensembles of
the EnKF and EnROI for a 6-, b 12-, c 18-, d 24-, and e 30-h time
differences between the initial and observation times over each
analysis window. The background ensemble of EnROI is at the

initial time of every analysis window. The background ensemble
of the EnKF means the forecast ensemble at the observation
time. Samples were collected every 30 h for the 24 composite
members
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Fig. 6 a Average RMS errors for the analyses of the EnKF and
EnROI_Sub over the analysis days as a function of the inflation
factor. As in Fig. 2, the analysis window of EnROI_Sub varies
from 6 to 30 h. To equate the computation costs of EnROI_Sub
for model integration to the EnKF case, the ensemble size of
EnROI_Sub becomes smaller than that of the EnKF. b Dif-
ference between the RMS error of the EnROI analysis and that
of the EnKF analysis averaged for all inflation factors

the background ensemble covariance from both meth-
ods was examined to evaluate the ability of conserv-
ing Gaussianity. The average was subtracted from the
background ensemble over all analysis days and the
anomaly fields were restricted to the first eigenvector.
The restricted anomaly fields were then normalized by
the root of the first eigenvalue. While the background
ensemble of the EnKF exists at every analysis time,
that of EnROI exists at the initial time of each moving
analysis window. We can see that, in the right-side

tail of Fig. 3b, the EnKF diverges farther from the
straight line designating the Gaussian distribution than
EnROI. This is because the background ensemble is
less affected by the nonlinear operator in EnROI than
in the EnKF. The result also implies that the back-
ground ensemble covariance of EnROI can represent
the second moment of the sample space of the popula-
tion better than the EnKF.

Note that the maximum difference between the
EnKF and EnROI in terms of the averaged analysis ac-
curacy occurs when EnROI is used with a 24-h analysis
window. For EnROI with a 30-h analysis window, the
correlation map between the initial background ensem-
ble and the forecast ensemble of EnROI in the analysis
window reveals the reason for this result (Fig. 4a). All
variables gradually forget their own information as the
time lag increases. Shown in Fig. 4b is the background
RMS error corrected by EnROI with a 30-h analysis
window at the initial time of the analysis window. The
result was composited according to a criterion of the
same time difference between the initial time and the
observation time. The number of the composite mem-
ber is 24. It steeply shrinks as the time of the assimilated
observation gets longer. Therefore, it can be inferred
that the past background has difficulty in receiving
information from observations that are too far away.

To validate the above statement, a normal proba-
bility plot for the composite samples was generated
(Fig. 5). We collected the first eigenmode of the
background ensemble with the same time difference
from the observation time in each analysis window.
For EnROI with a 30-h analysis window, we have 24
composite members for each time difference. Up to a
24-h time difference, the right-side tail of the EnKF
has a shape that is more non-Gaussian than that of
EnROI. However, at a 30-h time difference, the proba-
bility distributions of both the EnKF and EnROI stray
from a Gaussian distribution. This result supports the
statement based on Fig. 4.

While EnROI exhibits better performance than the
EnKF, the computation cost for model integration in
EnROI is much larger than with the EnKF. The subop-
timal version of EnROI (EnROI_Sub) was compared

Table 1 Selected cases to compare the EnKF with EnROI_Sub

Experiment Assimilation Ensemble Inflation Analysis RMS error
classification method size factor window size of analysis

EnKF EnKF 26 1.23 0 h 0.397
EnROI_Sub 1 EnROI_Sub 24 1.27 18 h 0.379
EnROI_Sub 2 EnROI_Sub 23 1.21 24 h 0.353
EnROI_Sub 3 EnROI_Sub 23 1.25 30 h 0.345

Among the various results that depend on inflation factors, the cases that produce the best analysis results are selected



Comput Geosci (2012) 16:177–192 189

with the EnKF under the same computational costs
for model integration. For EnROI_Sub, the ensemble
size should be decreased by (N+1)/2, where N denotes
the observation times covered by an analysis window.
When the ensemble size of the EnKF is 26, the number
of ensemble members of EnROI_Sub is 25 for the
6-h window, 24 for the 12- and 18-h windows, and
23 for the 24- and 30-h analysis windows. Unlike the
results of EnROI (Fig. 2), the RMS error of analysis of
EnROI_Sub using 6-h analysis window is larger than
that of the EnKF over most of the inflation factors
(Fig. 6a). This is because the ensemble size is smaller
than the EnKF and the assumption detailed in Eq. 35
harms the optimality of EnROI_Sub. However, the av-
eraged RMS error for EnROI_Sub with 18, 24, and 30-h
analysis windows (Fig. 6b) exhibits significant improve-
ments. While EnROI_Sub uses a smaller ensemble than
the EnKF, EnROI_Sub surpasses the performance of
the EnKF through its retrospective approach.

To examine the performance of each method in
detail, the best analysis results from the EnKF and
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Fig. 7 a RMS errors of the analysis ensemble mean of the EnKF
and the forecast ensemble mean of EnROI_Sub as a function
of the analysis day. All curves correspond to the best cases of
Table 1. b The ensemble forecast starting from the final analysis
ensemble of a. Forecast day 0 is equal to analysis day 30 in Fig. 6

EnROI_Sub with 18, 24, and 30-h analysis windows
were selected (Table 1). A comparison of the time
series reveals the superior performance of EnROI_Sub
(Fig. 7a). The forecast results emphasize the distinction
in analytical ability (Fig. 7b). From the result attained
with an 18-h analysis window, no significant improve-
ment in the forecasting ability is observed with EnROI-
Sub. When the analysis window sizes are 24 and 30 h,
the forecasting ability of EnROI_Sub is superior to that
of the EnKF by about 12 lead-hour even though using
smaller ensemble members.

To demonstrate how EnROI_Sub outperformed the
EnKF, a plot of the representative ability of the back-
ground ensemble of the EnKF and EnROI_Sub (as
defined in Eq. 40 corresponding to the RMS errors of
Fig. 7a was generated (Fig. 8a). It can be seen that
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Fig. 8 a Representative ability of the background ensemble
covariance of the EnKF and EnROI_Sub 3 as a function of the
analysis day. The background ensemble covariance of the EnKF
stands for the forecast ensemble covariance. b RMS difference
between a single forecast from the average of the EnROI_Sub
background ensemble at the initial time and the average of the
forecast ensemble from the EnROI_Sub background ensemble
(in black). Also shown is the RMS difference between the analy-
sis ensemble of the EnKF (in white) and the forecast ensemble
of EnROI_Sub adjusted with (Eq. 35; in gray) from the forecast
ensemble from the EnROI background ensemble
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the superior performance of EnROI_Sub comes from
its ability to better represent the background ensemble
covariance. Such a result entails that Eq. 35 is effective
in approximating the forecast ensemble from the initial
background ensemble. Shown in Fig. 8b is the RMS
difference (black bar) between the single forecast from
the initial background ensemble mean of EnROI_Sub
3 and the average of the forecast ensemble starting
from the initial background ensemble of EnROI_Sub
3. The RMS difference was obtained from 24 composite
members of EnROI_Sub 3 and normalized by the RMS
error of the single forecast from the initial background
ensemble mean of EnROI_Sub 3. The RMS difference
between the analysis ensemble of the EnKF procedure
in EnROI_Sub 3 (previous to correction of Eq. 35)
and the forecast ensemble of the initial background
ensemble is denoted with white bars. While the RMS
difference of the single forecast slightly increases by
less than 4% as the time difference in an analysis
window increases, that of the EnKF analysis ensemble
in EnROI_Sub increases by more than 16%. Such a
result indicates that the validity of Eq. 34 is stronger
than that of Eq. 32, as mentioned in Section 3. The RMS
difference of the EnKF analysis ensemble decreases by
correction of Eq. 35 (gray bar). It is thus confirmed that
Eq. 35 positively works for EnROI_Sub to preserve
the advantage of EnROI even though using the EnKF
analysis ensemble to obtain the forecast ensemble.

As shown in Section 3.4, the EnROI_Sub has a
natural description in the form of the ETKF, which
we denote the ETROI_Sub, and describe by Eqs. 39–
47. We compare the applications of both the ETKF
and ETROI_Sub to the model-III of Lorenz. We use
K = 33 ensemble members for the ETKF and 30 for

Fig. 9 Timeseries of RMS errors of the analysis ensemble mean
of the ETKF and the ETROI_Sub. The analysis window of
ETROI_Sub is 28.8 min. The inflation factor for both methods
is 1.25

ETROI_Subop with 28.8-min analysis window. The
inflation factor for both methods is 1.25. The analysis
window of ETROI_Sub is 28.8 min. Up to 6 h, the RMS
error of ETKF is smaller than that of ETROI_Sub
because of larger ensemble members of ETKF (Fig. 9).
After 6 h, the analysis of ETROI_Sub is more stable
and accurate than that of ETKF.

5 Summary and discussion

The KF is often seen as the gold standard of sequen-
tial data assimilation, a variance-minimum method for
a nonlinear atmospheric system [14]. In this study, a
different formulation known as EnROI was proposed.
This formulation was motivated by the idea that, as the
ensemble of an EnKF is evolved in a nonlinear system,
an estimation of its covariance requires a higher-order
moment of the background ensemble sample space that
is not integrated by a numerical model (refer to Eq. 15).
The initial background ensemble covariance is easier to
represent using a restricted ensemble member size than
the covariance of the evolved ensemble members.

EnROI is a variant of ROI that was implemented
through the use of the Monte Carlo method. In ROI,
an observation is assimilated into a past analysis state,
not an evolved state [21, 23] The background ensemble
of EnROI is fixed at the initial time of an analysis
window. Therefore, it is expected that EnROI will
yield a maximum-likelihood estimation that is better
than that attained with an EnKF using only the mean
and covariance without information on the higher-
order moment. Because the EnROI analysis ensemble
is also affected by the nonlinearity involved in obtaining
the observational guess, the background ensemble is
changed from a Gaussian to a non-Gaussian. However,
the speed of the change can be retarded with EnROI.
The numerical experiments demonstrate this phenom-
enon in the Lorenz-96 model with the formulation of
EnKF using perturbed observations.

One must be cautious when using EnROI. Since
autocorrelation between the initial analysis ensemble
and the evolved ensemble decreases as the time interval
between them increases, EnROI cannot obtain a sig-
nificant analysis correction from observations that are
too far from the analysis time. At the same time, the in-
crease in the model integration period for the observa-
tional guess causes the background ensemble of EnROI
to lose its Gaussianity. In ROI, the model integration
period for obtaining the observational guess and the
forecast error covariance partially overlap those of the
previous analysis step [21]. The analysis window size
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of EnROI needs to be restricted and EnROI must be
applied to a moving analysis window with a limited
size.

To reduce the computation costs of EnROI, we can
use the EnKF analysis ensemble in place of the forecast
ensemble of EnROI. By adjusting the analysis ensem-
ble of the EnKF so that it had the same mean as a
single forecast from the background ensemble mean of
EnROI at the initial time of an analysis window, the
higher accuracy of the EnROI analysis is introduced
into the EnKF analysis ensemble at a future time.
The modified algorithm is called suboptimal EnROI
(EnROI_Sub). With the same computation costs for
model integration, EnROI_Sub produced a more accu-
rate analysis than the EnKF in numerical experiments
with the Lorenz-96 model (Figs. 6 and 7).

As shown in Section 3.4, the EnROI_Sub has a
natural description in the form of the ETKF, which
we denote the ETROI_Sub, and describe by Eqs. 39–
47. We compare the applications of both the ETKF
and ETROI_Sub to the model-III of Lorenz. Up to
6 h, the RMS error of ETKF is smaller than that of
ETROI_Sub because of larger ensemble members of
ETKF (Fig. 9). After 6 h, the analysis of ETROI_Sub is
more stable and accurate than that of ETKF.

The spread of the EnROI background ensemble de-
creases after it is corrected by assimilation of the obser-
vation ensemble. Therefore, the linear assumption of
equality between a single forecast from the background
ensemble mean of EnROI and the forecast ensemble
mean from a background ensemble of EnROI (Eq. 35)
is more likely to be valid than the equivalency between
the analysis ensemble of the EnKF and the forecast en-
semble of EnROI (Eq. 32). When 24- and 30-h analysis
windows were used, the forecast ability of EnROI_Sub
leads the EnKF by 12 h. Since difficulties in deal-
ing with nonlinearity in the assimilation are inevitable
with any form of an EnKF, it is expected that our
result will be still applicable even when both methods
are implemented using the square root forms of the
EnKF [25].

We are not sure if 24- and 30-h analysis win-
dows are suitable for a realistic model and observa-
tion configuration. Nevertheless, the theory and the
numeric experimental results demonstrate the poten-
tial of EnROI_Sub as an alternative to the EnKF
and promote ongoing research of the application of
EnROI_Sub for practical purposes. Because of its rank
deficiency, EnROI_Sub may require a localization al-
gorithm. However, the lag covariance matrix in the
EnROI_Sub formulation, P af

I|I+n, is not easy to localize
since localization of the temporal correlation has not

yet been attempted. In the numeric experiments of
this study, we decided not to consider localization and
simply used covariance inflation. However, the practi-
cal application of EnROI_Sub should be accompanied
by the study of the localization method of correlation
between model variables and observation variables at
different times. This problem will be addressed in fu-
ture research in a realistic setting with a complex model.
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