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ABSTRACT

The present study examines the impacts of snow initialization on surface air temperature by a number of

ensemble seasonal predictability experiments using the NCAR Community Atmosphere Model version 3

(CAM3) AGCM with and without snow initialization. The study attempts to isolate snow signals on surface

air temperature. In this preliminary study, any effects of variations in sea ice extent are ignored and do not

explicitly identify possible impacts on atmospheric circulation. The Canadian Meteorological Center (CMC)

daily snow depth analysis was used in defining initial snow states, where anomaly rescaling was applied in

order to account for the systematic bias of the CAM3 snowdepthwith respect to theCMCanalysis. Two suites

of seasonal (3 months long) ensemble hindcasts starting at each month in the colder part of the year

(September–April) with and without the snow initialization were performed for 12 recent years (1999–

2010), and the predictability skill of surface air temperature was estimated. Results show that considerable

potential predictability increases up to 2 months ahead can be attained using snow initialization. Relatively

large increases are found over East Asia, western Russia, and western Canada in the later part of this period.

It is suggested that the predictability increases are sensitive to the strength of snow–albedo feedback de-

termined by given local climate conditions; large gains tend to exist over the regions of strong snow–albedo

feedback. Implications of these results for seasonal predictability over the extratropical Northern Hemi-

sphere and future direction for this research are discussed.

1. Introduction

The prediction of weather and climate for more than

2 weeks ahead relies largely on memories from slowly

varying processes in the ocean, sea ice, and the land

surface. In particular, present-day dynamical seasonal

prediction greatly benefits from the skillful prediction

of tropical and extratropical sea surface temperature

(SSTs), mainly but not exclusively based on advances in

physical understanding of the El Niño–Southern Oscil-

lation (ENSO) (Shukla et al. 2000; Wang et al. 2008).

However, the major contribution of such SST prediction

to seasonal forecasts is currently largely confined to the

tropics and subtropics though an ENSO signal in higher

latitudes has been identified in later winter (Ineson and

Scaife 2009). Although tropical SSTs do have consider-

able remote impacts on extratropical climate (Kumar

et al. 2005; Trenberth et al. 1998), overall seasonal pre-

dictability by general circulation models (GCMs) is still

poor in extratropics and continental interiors where the

influences of SST forcings are indirect and insignificant

(Wang et al. 2008).

Recently there has been a growing interest in other,

slowly varying, physical processes in the climate system,

which can provide conventional seasonal prediction

with additional sources of skill especially on extratrop-

ical continents. Possible contributions to subseasonal

and seasonal predictability from land surface conditions

(e.g., Koster et al. 2011, 2010b), stratospheric circulation
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(AmbaumandHoskins 2002; Baldwin et al. 2003; Folland

et al. 2011; Ineson et al. 2011), and sea ice extents

(Alexander et al. 2004;Deser et al. 2007, 2004;Honda et al.

2009) have been identified. Among them, contributions of

soil moisture conditions to subseasonal and seasonal pre-

diction have recently been quite extensively studied. Ac-

cording to multimodel retrospective forecast experiments

with realistically initialized soil moisture from the Global

Land–Atmosphere Coupling Experiment (GLACE2)

project, initial soil-wetness conditions provide significant

increase in the skill of air temperature predictionswith up

to 2 months lead time during summer, in particular, over

semiarid continental interiors where the land–atmosphere

interaction is strong (Koster et al. 2011, 2010b).

During the winter half year, snow cover or depth has

been regarded as a candidate predictor for climate over

continental interiors in the middle to high latitudes (e.g.,

Cohen and Fletcher 2007; Cohen and Jones 2011; Orsolini

and Kvamstø 2009). This results from the physical

properties of snow: high reflectance to shortwave radi-

ation (high albedo), strong emissivity, and low thermal

conductivity, which lead to significant impacts on local

weather and climate. For instance, above-normal snow

tends to cool the near-surface air by reflecting more

incoming solar radiation and emitting longwave radia-

tion more efficiently but keeps underlying soil temper-

ature higher. During snowmelt, the melting snowpack

absorbs large amounts of latent heat and releases water

to the soil, affecting the land surface energy budget and

hydrological cycle and leading to local cooling. Not

surprisingly, the important role of snow-related feed-

backs on climate model simulations has previously been

recognized (e.g., Cohen and Rind 1991; Yeh et al. 1983)

with an early attempt at assessing its influence on sea-

sonal predictability (Saunders et al. 2003). Moreover,

the influence of snow on local climate variability is

known to be much larger than that of SST over many

parts of the extratropical land (Kumar and Yang 2003).

In addition to local impacts on near-surface climate, it

has been suggested that large-scale snow cover change

could invoke remote and delayed influences through

altering the large-scale atmospheric circulation. For in-

stance, the impacts of fall Eurasian snow cover on

hemispheric circulation modes, like the northern annular

mode or the North Atlantic Oscillation, have been found

in both observations and climate model experiments

(Cohen et al. 2007; Fletcher et al. 2009a; Saito et al. 2001).

The rate of Eurasian snow cover increase duringOctober

was found to be highly correlated to the wintertime

Arctic Oscillation (Cohen and Jones 2011). In addition,

a marked impact of snow cover changes and associated

feedback effects has been identified on long-term future

climate projections by the Intergovernmental Panel on

Climate Change (IPCC) Fourth Assessment Report

(AR4) climate models (Fletcher et al. 2009b; Jeong et al.

2011; Winton 2006a,b).

Despite its apparent importance, the utilization of

snow information for extended-range and seasonal

forecasts by GCMs is limited. In addition to difficulties

in accurate physical parameterization of snow and the

associated feedbacks, the lack of snow observations has

been a major obstacle for practical applications. A few

instrumental records are available for regions in the high

latitudes (Armstrong 2001; Brown et al. 2003), but these

are in general insufficient to perform multiyear global

model experiments, in terms of both spatial coverage

and temporal availability. Remote sensing by satellite

enables snow cover concentration and areal extent to be

retrieved globally and such data has been utilized in

investigations of the impact of large-scale snow anom-

alies on climate (Fletcher et al. 2009a; Orsolini and

Kvamstø 2009). However, rather than snow cover ex-

tent, depth information is preferable for climate pre-

diction as it contains a better source of memory for

influencing subsequent climate. Besides the fractional

cover, physical variables like snow mass or snow water

equivalent can be estimated from the depth information.

There are empirical techniques to estimate snow mass

from snow cover, but these two variables are not nec-

essarily well related; thus, on a continental scale there is

almost no association between them (Ge and Gong

2008). An alternative approach is to derive snow states

from offline calculations using a land surface model in-

directly, driven by observed surface meteorological

forcings. This approach has been utilized for springtime

predictions of temperature (Peings et al. 2010) and

streamflow (Koster et al. 2010a).

In the present study, we construct snow state param-

eters for the initial condition of climate model hindcasts

using an observation-based, daily snow depth analysis

over the Northern Hemisphere for the period 1999–

2010. By performing retrospective ensemble seasonal

prediction experiments, the impacts of initialized snow

states on predictability are examined. Details of the

modeling system, initialization procedure, and experi-

ments are described in section 2; the analysis and dis-

cussions of potential and practical predictability skills

are presented in section 3; and a summary and discussion

are presented in section 4.

2. Experiments

a. Climate model

This study utilized the Community AtmosphereModel

version 3 (CAM3), an atmospheric general circulation
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model developed by the National Center for Atmo-

spheric Research (Collins et al. 2004). To save time and

resource required for the model runs, in this preliminary

study, we chose to use an atmospheric GCM (AGCM)

for hindcasts rather than a coupled ocean–atmosphere

GCM. We updated the cloud scheme in the CAM3 with

the freeze-dry modification, which reduces an excessive

bias in cloud cover in the Arctic (Vavrus and Waliser

2008). The chosen horizontal resolution of the CAM3

experiments is 28 longitude by 2.58 latitude (for both at-

mosphere and land), with 26 hybrid-sigma vertical levels

encompassing the surface to themidstratosphere (1 hPa).

Incorporated into CAM3 is the Community Land Model

version 3 (CLM3; Oleson et al. 2004), which simulates

various geophysical and hydrological processes at the

land surface and its subsurface layers. The CLM3 simu-

lates snow states with multiple snow layers (maximum of

five layers) of different thickness and age parameterizing

new snowfall accumulation, compaction, melting, and

freezing of snow layers. Therefore, synchronous land–

atmosphere coupling enables the CAM3–CLM3 to sim-

ulate snow-related feedback processes.

b. Snow initialization

The Canadian Meteorological Center (CMC) daily

snow depth analysis data (Brasnett 1999; Brown and

Bruce 2010) were used to initialize snow states in the

CAM3 experiments. The CMC data, which are a synthe-

sis of surface synoptic observations and aviation reports,

provide monthly averages and monthly climatologies of

snow depth and estimated snow water equivalent. They

are available since 12 March 1998 and cover the entire

Northern Hemisphere with a horizontal resolution of

24 km by 24 km. Prior to model initialization, data from

the original horizontal resolution were converted to the

model grid (28 longitude 3 2.58 latitude) by local area

averaging.

In Figs. 1 and 2, the long-term average snow depth and

estimated snow cover from the CMC are compared to

these variables derived from other observational and

reanalysis datasets and the AMIP-type CAM3 simula-

tions. The CMC data shows higher snow depths com-

pared to the European Centre for Medium-Range

Weather Forecasts (ECMWF) Interim Re-Analysis

(ERA-Interim; Dee and Uppala 2009; Dee et al. 2011)

throughout the whole winter period over middle to high

latitudes (Fig. 1). Compared to CAM3, however, the

CMCdata tend to exhibit lower snow depths overmost of

the high latitudes and pan-Arctic regions, except for

higher depths over the Tibetan Plateau and Eastern Eu-

rope. Figure 2 compares with the long-term mean snow

cover estimated from the CMC data, the satellite-based

snow cover data produced by the National Oceanic and

Atmospheric Administration (NOAA) (Robinson et al.

1993), and the CAM3 simulation. The CMC data show

lower fractional snow cover over the high latitudes but

slightly higher cover over the high latitudes compared to

NOAA data. The CMC mean snow cover and snow line

patterns in the midlatitudes and its seasonal march

overall agree quite well with the CAM3 simulation, but

notable differences are found over many high-latitude

regions and the Tibetan plateau. As expected from the

mean snow depth comparison, the CMC snow cover is

slightly lower over most high latitudes.

This systematic bias of CAM3 simulation compared

with CMC data suggests that the CMC data need some

calibration in order to be directly applied to the CAM3

input. Besides the bias in the mean, the CAM3 snow

depth exhibits generally weaker interannual variability

(lower standard deviation) compared to the CMC (fig-

ure not shown), a common bias found in most of the

current GCMs (Hardiman et al. 2008). If the CMC data

are used directly in the model simulations without cali-

bration, such biases may result in poor GCM forecasts.

For instance, relatively large amounts of snow in the

CMC analysis in high latitudes could mean relatively

small amount of snow in terms of the CAM3 average.

Alternatively, a small depth change in the CMC analysis

could mean huge depth change in the CAM3 as model

variability is much smaller than that of the CMC anal-

ysis. Therefore, biases in the initial conditions often lead

to a serious climate drift; thus, inappropriately initial-

ized snow quickly converges to the model default state

or creates an artificial shock in the model system, rather

than providing a useful memory for the seasonal fore-

cast. To prevent this happening, we applied a standard

normal deviate scaling to the CMC snow depth analysis.

Based on long-term statistics (mean and standard de-

viation) for model and observation, the scaled snow

depth for the model initial condition (Fm) can be esti-

mated from following relationship:

Fo2Fo

s(Fo)
5

Fm 2Fm

s(Fm)
,

where the overbar indicates long-term mean and s in-

dicates standard deviation of the variable. Themean and

standard deviation of the model were estimated from

the preexisting AMIP-type 16-member ensemble simu-

lations, forced with observed SSTs and sea ice concen-

trations. We call this the rescaled anomaly initialization.

Similar approaches have beenwidely used for observation-

based soil-moisture initialization of climate model simu-

lations and shown to be effective (Jeong et al. 2008; Koster

et al. 2004, 2011).
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From the rescaled anomaly snow depth data, snow

states need to be defined. The total number of snow

layers and the thickness of each layer are defined with

the rescaled snow depth according to the initialization

processes stated in Oleson et al. (2004). This is sum-

marized in Table 1. Here, the age and liquid water

content of the newly defined snow layers are set to zero,

assuming all the snow layers consist of fresh snow only.

A bulk density of snow, 250 kg m23, is used for snow

density of all layers.

Figure 3 shows several examples of the evolution of

snow depth simulated by the CAM3 with and without

snow initialization (S1 and S2, respectively; details are

given in the next section). For the selected points in

central Russia and Canada, initialized snow depths

seem to be within reasonable range of model variabil-

ity, and anomalies tend to persist more than a month

without a significant drift. We have checked the entire

Northern Hemisphere (NH) and found that the re-

scaled snow depth anomaly method performs well in

the model.

c. Experimental design

Two suites of retrospective ensemble seasonal pre-

diction experiments are performed with and without

snow initialization (S1 and S2, respectively) during the

cold season (September–April) for the period 1999–

2010. Starting from the first day of each month, 16

member ensemble runs are performed for 3 months.

Consequently, the S1 and S2 series each consist of 1536

simulations (8 months 3 12 yr 3 16 ensembles), pro-

viding large enough samples to test the impact of snow

initialization on predictability.

Initial and boundary conditions for the two series are

identical except for the initial snow states. The atmospheric

initial conditions are obtained from the National Centers

for Environmental Prediction (NCEP)–U.S. Department

of Energy (DOE) Atmospheric Model Intercompari-

son Project II (AMIP-II) reanalysis (Kanamitsu et al.

2002). The 16 initial atmospheric states (wind, tem-

perature, specific humidity, and surface pressure) are

sampled at 6-h intervals at times equal or before the

FIG. 1. (top) Long-term means of CMC snow depth for the cold season and their differences from those of (middle) ERA-Interim snow

depth and (bottom) AMIP-type CAM3 simulations.
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nominal start time of each hindcast. Thus, initial con-

ditions for hindcasts staring at 0000 UTC December 1

are taken from reanalyses at 0000 UTC December 1,

1800 UTC November 30, 1200 UTC November 30, . . . ,

0600 UTC November 27. Land surface initial condi-

tions including soil moisture and temperature are taken

from the preexisting AMIP-type 16-member ensemble

simulations forced with observed SSTs and sea ice

concentrations. Like other land surface conditions, the

snow states for the S2 series are taken from the AMIP-

type simulation, while those for the S1 series are initial-

ized with the rescaled CMC anomaly data. Therefore,

there is a smaller spread among initial land surface con-

ditions in S1 compared to that in S2 as the same snow

FIG. 2. Long-term means of snow cover from (top) the CMC data, (middle) NOAA/Climate Prediction Center (CPC), and (bottom)

AMIP-type CAM3 simulations for the cold season. The red contour line indicates the 15% snow cover fraction. Here, CMC snow cover is

transformed from snow depth by an empirical relationship: SC5D/(103 zlnd1D), where SC is snow cover (fraction),D is snow depth

(m), and, zlnd is the momentum roughness length for soil (0.01 m in the CLM3).

TABLE 1. The definition of snow layers from the rescaled snow depth.

Depth (D) (m) Tot No. of layers Snow layer structure [dN: depth (m) of the Nth snow layers]

0.01 # D # 0.03 1 d1 5 D

0.03 , D # 0.04 2 d2 5 D/2, d1 5 d2
0.04 , D # 0.07 2 d2 5 0.02, d1 5 D 2 d2
0.07 , D # 0.12 3 d3 5 0.02, d2 5 (D 2 0.02)/2, d1 5 d2
0.12 , D # 0.18 3 d3 5 0.02, d2 5 0.05, d1 5 D 2 d3 2 d2
0.18 , D # 0.29 4 d4 5 0.02, d3 5 0.05, d2 5 (D 2 d4 2 d3)/2, d1 5 d2
0.29 , D # 0.41 4 d4 5 0.02, d3 5 0.05, d2 5 0.11, d1 5 D 2 d4 2 d3 2 d2
0.41 , D # 0.64 5 d5 5 0.02, d4 5 0.05, d3 5 0.11, d2 5 (D 2 d4 2 d3 2 d2)/2, d1 5 d2
0.64 , D 5 d5 5 0.02, d4 5 0.05, d3 5 0.11, d2 5 0.23, d1 5 D 2 d5 2 d4 2 d3 2 d2

1960 JOURNAL OF CL IMATE VOLUME 26



condition is used for all ensemble members. The SST

boundary condition is prepared by using the conven-

tional anomaly persistence method used with AGCM

forecasts. We assume that the anomalous SST observed

at the beginning of the hindcast persists through the

hindcast period where the initial SST anomaly ob-

served on the starting dates is taken from the NOAA

optimum interpolation sea surface temperature (OISST)

V2 (Reynolds et al. 2002) weekly data. The anomaly is

added via linear interpolation to the climatological

mean seasonal cycle of SST for the duration of the

hindcast. The sea ice concentration (SIC) is prescribed

differently, with only the climatological mean seasonal

cycle being used. Climatological mean seasonal cycles of

both SST and SIC are taken from the Hadley Centre

Global Sea Ice and Sea Surface Temperature dataset

(HadISST) (Rayner et al. 2003).

3. Results

a. Potential predictability gain

We first examine the contribution of snow initializa-

tion to the potential predictability of near-surface air

temperature (SAT). The potential predictability is es-

timated by the r2 value suggested by Koster et al. (2004)

with a minor modification in averaging r. Here r2 value

(square of the correlation coefficient) measures the de-

gree of agreement between ensemble members as fol-

lowing procedure. Assuming the first ensemble member

to be an observation and the ensemble mean of rest of

ensemble members (members 2–16) to be a hindcast, r is

calculated by linearly regressing hindcast–observation

pairs for a chosen month and lead time throughout the

12-yr simulations. This procedure is repeated with the

second ensemble member and ensemble mean of rest of

ensemble members (members 1 and 3–16). The same

process is further repeated with the other remaining

ensemble members to get 16 r values. Then we calculate

an average of the 16 r values (Fisher’s Z transformation

is applied to the r values prior to taking an average and

then inverse transformation is taken to the average) and

square it to yield r2 value. Therefore, we can assume that

higher (lower) r2, higher (lower) agreement between

ensemble members, indicates stronger (weaker) in-

fluence of the initialized snow state boundary and thus

higher predictability can be possibly obtained from it. In

other words, the resulting r2 values represent the upper

limit of predictability, which can be gained by the

modeling system with prescribed boundary and initial

conditions.

FIG. 3. Simulated snow depth evolution for the ensemble hindcasts started at (left) 1 Dec 2009 and (right) 1 Feb 2010. Blue and black–

gray lines indicate simulations with and without snow initialization (S1 and S2), respectively. Thin lines indicate snow depth simulated by

16 ensemble members, and thick lines are ensemble averages: (a) 668N, 958E; (b),(d) 608N, 1108W; and (c) 558N, 908E.
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The potential predictability (r2) for S1 and S2 is calcu-

lated separately and the difference represented in Fig. 4.

Because all other conditions but snow condition were

identical for S1 and S2, we may assume the difference as

an impact of snow initialization. Figure 4 indicates the

difference between S1 and S2 representing increases in

potential predictability by the snow initialization.

Overall, more than 10% (0.1) increases in potential

predictability are found over large areas of the Eurasian

and North American continents. The predictability in-

crease is highest in the earliest period of hindcast (days

1–15) and decreases with time. Even so, considerable

gains exist even at more than 1-month lead, especially

over the central and eastern part of the Eurasian con-

tinent, northwestern parts of United States and Canada,

and the Tibetan Plateau. Large gains beyond 15 days

ahead are mostly confined to the midlatitudes. Relatively

small or even negative changes are found in northern-

most and western Eurasia. It is notable that the degree

and spatial pattern of potential predictability improve-

ment is dependent on the season: potential predictability

improvements become larger in the later part of cold

season. This is likely related to the seasonal cycle of snow

depth and associated meridional march of the snow line,

which gives drastic differences in local climate sensitivity

to imposed snow anomalies. This tendency, large gains in

FIG. 4. Change in potential predictability (r2; see text for details) of SAT hindcast using the snow depth initialization (S1 2 S2): (left to

right) Sep–Oct to Mar–Apr and (top to bottom) day 1–15 to 46–60.
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the midlatitudes in the later part of cold season, is very

consistent with Overland et al.’s (2011) finding; during

snowmelt season, snow–atmosphere coupling is strongest

over many parts of midlatitude Eurasia and America.

These are further discussed in the following sections.

From the definition of the r2 metric, we may presume

that the potential predictability improvement is attrib-

uted to forced external signals invoked by the initialized

snow depth. We check this with the signal-to-noise ratio

(SNR), the ratio of the variance that is generated ex-

ternally by given forcings or boundary conditions (snow

depth in this study) to the variance that is generated

internally by the chaotic atmosphere. Following Rowell

(1998), the total variance of ensemble simulation (s2
tot)

can be decomposed into the external (signal; s2
ext) and

internal (noise; s2
int) variances. The quantities s2

ext and

s2
int are expressed as

s2
ext 5s2

ensm2
1

n
s2
int and

s2
int 5

1

N(n2 1)
�
N

i51
�
n

j51

(xij 2 xi)
2 and

s2
ensm 5

1

N2 1
�
N

i51

(xi 2 x)2

where i is the number of ensemble hindcasts performed;

j is the number of ensemble member (n 5 16); xi is the

ensemble mean; and x is the climatological mean. The

SNR of the modeling system is defined as the ratio be-

tween s2
ext and s2

int.

Figure 5 shows the difference in SNR between S1 and

S2 series. The spatial pattern and seasonality of SNR

increase are almost same to those of the r2 increase. This

indicates that the initialized snow depth provides forced

variance in themodel hindcasts, which contributes to the

potential predictability increase.

Despite overall increase in r2 values and SNR, it

should be noted that those only represent idealized po-

tential increase in the predictability skill, which is not

directly linked with a practical increase in prediction

skill. Increases in r2 values and SNR could only result

from higher agreement in prescribed initial land surface

conditions used for S1 series since the unperturbed,

identical snow condition was used throughout 16 en-

semble members. The practical predictability gain with

respect to the observation is examined in section 3d.

b. Snow–albedo feedback strength and predictability
gains

Presumably, the impacts of snow initialization on

simulated SAT can mainly be attributed to the changes

in surface albedo and the resulting change in absorption

of incoming solar radiation. For instance, a positive

anomaly of snow depth and snow cover can lead to more

reflection of incoming solar radiation that will decrease

surface air temperature, which, in turn, will sustain snow

depth and cover anomaly. Repetitions of this cycle tend

to lead a positive feedback between snow and temper-

ature, the so-called snow–albedo feedback. According

to Cess and Potter (1988) and Qu and Hall (2006), the

strength of snow–albedo feedback can be quantified as

›Qnet

›Ts

52Q
›ap

›as

Das

DTs

.

Here, Q and Qnet are incoming and net shortwave ra-

diation at the top of atmosphere, ap and as are planetary

and surface albedo, and Ts is surface air temperature.

The Q can be assumed to be a constant and the co-

efficient ›ap/›aS mainly depends on the average trans-

missivity of the clear-sky atmosphere, not directly

associated with snow. Therefore we may regard the

factor DaS/DTS as an indicator of the snow–albedo

feedback strength (SAF). This term can be further de-

composed into the product of two sensitivity terms as

Das

DTs

5
Das

DSC

DSC

DTs

,

where SC indicates snow cover and Ts indicates surface

air temperature.

We estimate the two terms, the sensitivity of surface

albedo to snow cover and the sensitivity of snow cover to

surface air temperature, from the linear regression

analysis between the two variables. Monthly anomalies

of surface albedo, snow cover, and SAT from the S1

experiments are utilized. Note that the results from the

S2 experiments are similar to those of S1. Figure 6 shows

calculated SAF for the late winter and fall. Strong SAF

is mainly found over the midlatitudes between 308 and
508N in both continents while SAF is relatively weak

over higher latitudes. When comparing fall and late

winter, SAF shows a notable difference. Strong SAF is

found over larger areas in the middle to high latitudes in

late winter compared to fall. High SAF agrees well with

large predictability gains seen in Fig. 4, regarding both

regions and seasonality, which indicates a dominant in-

fluence of the snow–albedo feedback on predictability

gains.

Of the two terms included in SAF, the first term

(DaS/DSC), the sensitivity of surface albedo to snow

cover, remains more or less constant for the two periods.

This means the intrinsic sensitivity of surface albedo to

snow cover change has little variation during the cold
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season. Vegetation and soil characteristics may affect

this term also, but they also have little variation during

the cold season. On the contrary, the second term

(DSC/DTs), the sensitivity of snow cover to SAT, shows

large difference between the two periods, showing larger

sensitivity in the late winter. The spatial pattern and

seasonality of SAF in Figs. 6a,b is mostly contributed by

this term. In high latitudes, in particular, this sensitivity

is relatively low. This is because the very low air tem-

perature prevailing during the cold period does not

permit a phase change of snow. In addition, a large

amount of snow has already accumulated in these re-

gions, particularly in the later period of cold season,

which leads to relatively less sensitivity of snow cover

changes to imposed SAT anomalies. This is further an-

alyzed in the next section in association with the snow

depth–snow cover sensitivity. In the midlatitudes a clear

seasonal dependency is found in the sensitivity of snow

cover to SAT with slightly stronger sensitivity in the late

winter compared to autumn. This can be due to the

seasonal difference in the direction of the marching

snow line (representing the 15% snow cover fraction in

Fig. 2). From fall to early winter, the snow line gradually

moves southward from high latitudes to midlatitudes. In

other words, local snow anomalies over the midlatitudes

are largely determined by the amount of new accumula-

tion of snowfall, rather than by preexisting snow anom-

alies. In late winter to spring, on the contrary, snowpack

FIG. 5. As in Fig. 4, but for signal-to-noise ratio.
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is disappearing from midlatitudes and snow line retreats

toward north, presumably with relatively less new snow

accumulation. This means that local snow anomalies are

more determined by preexisting snow anomalies. There-

fore, existing snow anomalies more directly lead to pro-

longed or shortened snow cover, and consequently lead

to higher SAF in the late winter. Additionally, latent heat

changes during and after snowmelt give additional im-

pacts on SAT, which can extend the memory of winter

snow mass into spring as suggested by Yeh et al. (1983).

c. Sensitivity of snow cover to snow depth change

In CAM3, the fractional snow cover is necessary for

calculating the surface albedo. Therefore, the snow

cover is estimated from snow depth following a simple

empirical relationship,

SC5D/(103 zlnd1D) ,

where SC is snow cover (fraction),D is snow depth (m),

and zlnd is the momentum roughness length for soil

(0.01 m by default). Figure 7b represents this relation-

ship between snow cover and depth in the model simu-

lation. Here, it is clearly seen that a little (large) change

in snow depth could result in a large (little) change in

snow cover if there is little (large) amount of preexisting

snow. Therefore, we can expect that, with same snow

depth anomalies, the relatively shallow snow at middle

latitudes will make a bigger change in snow cover frac-

tion. Therefore, this sensitivity is dependent on the sea-

sonality and spatial variation of background snow

depths and therefore affects SAF as we initialize snow

depth in the model.

Figure 7a indicates the sensitivity of monthly snow

cover to snow depth anomalies estimated from the S1

experiment through the linear regression analysis. As

expected, high sensitivity is found over midlatitudes in

both Eurasia and North America, but the sensitivity is

very low over the high latitudes, where mean snow

depths are relatively high. Note that the sensitivity is low

also over the southwestern part of Tibetan Plateau,

where background snow depth is high because of high

altitude. Overall, regions of high sensitivity match well

with regions of high predictability increases from snow

depth initialization. This means that over high-latitude

regions, where the background snow depth is high, ini-

tialized snow depth anomalies may lead to smaller

changes in snow cover compared to the midlatitudes.

This can directly affect the SAF and predictability

gains, their seasonality, and spatial variation. A scatter

FIG. 6. (a),(b) Snow–albedo feedback strength (Das/DSAT) in the S1 experiments. Red contour lines indicate21%K21 for comparison.

(c),(d) Sensitivity of surface albedo to snow cover (Das/DSC). (e),(f) Sensitivity of snow cover to SAT (DSC/DSAT). Red contour lines

indicate 22 K21 for comparison: (top) Feb–Apr and (bottom) Sep–Nov.
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diagram of snow cover anomalies versus snow depth

anomalies during a specific period (Fig. 7c) shows a clear

contrast between low sensitivity in the high latitudes

(608–908N; blue dots) and high sensitivity in the mid-

latitudes (308–508N; red dots). It is notable that the

change from low sensitivity regime to high sensitivity

regime seems to happen abruptly. Therefore, this sen-

sitivity could contribute strongly to a clear distinction

between high and low SAF region. In addition, a sharp

latitudinal difference in incoming solar radiation in the

winter Northern Hemisphere reinforces the distinction

of high and low SAF with latitude. In boreal winter,

incoming solar radiation over the high-latitude regions is

extremely low (e.g., polar night). Therefore, even with

large snow depth or fraction anomalies, snow–albedo

feedback is very weak. Figure 7d indicates the sensitivity

of monthly snow cover to snow depth anomalies multi-

plied with incoming shortwave radiation at the surface.

This approximates the snow depth to albedo effect at

surface energy balance and more clearly highlights the

FIG. 7. (a) Sensitivity of snow cover to snow depth changes (DSC/DSD) estimated from the S1 experiments for

February–April. Scatterplots of (b) snow depth vs snow cover fraction and (c) snow depth anomalies vs snow cover

anomalies. (d) DSC/DSD multiplied with incident shortwave radiation at surface (SSR).
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region of strong snow–atmosphere coupling over mid-

latitudes in this period.

d. Predictability increases conditional to sign of initial
snow depth anomalies

One notable feature found in the impacts of snow

initialization is a large asymmetry in the degree of pre-

dictability increase with respect to the sign of initial

snow depth anomalies. The potential predictability

gains from hindcasts started with above- and below-

normal snow depth anomalies are compared in Fig. 8.

Across all lead times, predictability increases are larger

for hindcasts starting with positive snow depth anoma-

lies compared to those with negative anomalies. This

tendency is distinct in the midlatitude regions where

largest predictability increases from snow depth initial-

ization exist. This asymmetry can be explained by the

possible dependence of snow depth memory on the sign

of its anomalies. If snowpack melts over a large area

under large-scale warming in the atmosphere, a snow-

packwith negative depth anomalies will bemore quickly

melted away compared to a snowpack with positive

depth anomalies. Snow–albedo feedback [less snow

cover leads to more absorption of shortwave radiation

(SW) and warming] may accelerate snow melting and

thus the snowpack loses its memory more quickly. On

the contrary, a snowpack with positive depth anomalies

persists longer by attenuating the initial warming signal

through a negative feedback, which may provide the

modeling system with a longer memory and higher

predictability increases.

e. Gains in practical predictability with respect to
observation

Finally, we estimate the practical predictability gain

from snow initialization by comparing hindcasts with

observations. Practical predictability for each experi-

ment series is also quantified by the r-square metric (r*2).

Here, r* indicates ordinary correlation coefficients be-

tween the ensemble mean hindcasts and the SAT ob-

servations. Before calculating r*2, negative correlations

were set to 0 by assuming that they reflects sampling

noise by following Koster et al. (2010b). This inhibits

spurious predictability gains to be rewarded from large

negative correlation in the simulation (e.g., a change

from20.3 to 0.2 of r* would get too much gains but is of

no practical value). Figure 9 shows difference of r*2

between the S1 and S2 experiment sets. Daily 2-m air

temperature from NCEP–NCAR reanalysis II is used as

an alternative to observations. Significance levels of the

differences are determined by a Monte Carlo approach.

At a given location, for a given lead, r*2 difference is

calculated repeatedly by reshuffling the observation time

series (i.e., generating random permutations of original

time series). For each period and lead, 10 000 iterations

are performed, and differences at targeted confidence

limits (upper and lower 1%) are determined.

Although most of potential gains found in Fig. 4 dis-

appear or are reduced, positive contributions to pre-

dictability are still found over somemid- to high-latitude

regions. Many features are consistent with the potential

predictability gains in Fig. 4. The increase in prediction

skill is modest in early fall but a considerable increase in

skill is found in the rest of the cold season, particularly

over East Asia, central and northeastern Eurasia, and

northwestern America. Again, increases in skill are

minimal in the high latitudes, where the SAF in the

model is shown to be weak. A distinct difference from

the potential predictability increases is that their large

gains in the day-1–15 hindcasts almost disappear in the

practical predictability estimates. This is thought to be

because the impacts of atmospheric initial conditions

dominate the predictability increases from snow ini-

tialization on relatively short (less than 2 weeks) time-

scale hindcasts. Although the large potential predict-

ability increases found over western Russia, Eastern

Europe, the Tibetan Plateau, and northern North

America mostly vanished in the practical predictability

estimates, there are consistent skill increases across

different lead times in some specific regions, like East

Asia, central Eurasia, and North America. This sug-

gests a useful contribution of snow initialization may

exist even beyond the subseasonal time scale. How-

ever, over some places in the middle to high latitudes,

snow initialization rather lowers hindcast skill (nega-

tive gains). Uncertainties arisen from used snow data,

model’s parameterization, and initialization method

might contribute to this negative impact. This is further

discussed in the next section.

4. Summary and discussion

In the present study, a number of retrospective en-

semble hindcasts of the CAM3were performedwith and

without snow initialization for 12 cold seasons (1989–

2010) in order to investigate the impacts of snow ini-

tialization on the subseasonal to seasonal prediction of

air temperature. The CMC daily snow depth analysis

was used to define initial snow states with an anomaly

rescaling method to account for model’s bias compared

to observed snow. The results show that a considerable

increase in potential predictability can be achieved by

snow initialization, especially in the midlatitudes in late

winter and early spring, where the strength of surface

albedo feedback is strong. East Asia, central Eurasia,

and western North America are key regions where
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FIG. 8. Change in potential predictability (r2) of SAT using the snow depth initialization (S1 2 S2) in

hindcasts starting February–April initialized with (left) positive and (right) negative snow depth anomalies:

(top to bottom) day 1–15 to 46–60.
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potential predictability increases are relatively well re-

lated to practical predictability increase.

There are some important caveats to bear in mind

when interpreting the results of this study. First, the

initialized snow states in these preliminary experi-

ments, which are replaced rather than assimilated, are

not physically balanced with initial atmospheric condi-

tions as well as other land surface conditions. This may

lead to little increases in practical predictability in short-

term (1–15 days) hindcasts (Fig. 9), although large in-

creases are obtained in potential predictability (Fig. 4).

Because snow states are physically linked with other

land surface properties like soil temperature and mois-

ture, these need to be balanced with initialized snow

depth. An appropriate assimilation system may further

enhance the predictability increases. Second, predict-

ability increases are relatively small over high-latitude

regions near theAtlantic andArctic Ocean likeWestern

Europe, Scandinavia, and eastern North America. This

may be due to the limitation of using an atmospheric

only GCM. Despite its likely considerable importance

for regional climate over theArctic and extratropics, the

impacts of Arctic sea ice variations are not included in

the experiments. Moreover, the anomaly persistence

FIG. 9. Change in SAT forecast skill (r*2 values from ensemble mean forecasts and observations) using snow depth initialization (S12
S2). Dots indicate regions where the change is statistically significant at the 99% confidence level, which is determined by a Monte Carlo

approach (see details in the section 3e): (left to right) Sep–Oct to Mar–Apr and (top to bottom) day 1–15 to 46–60.
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method for prescribing SSTs might be a reasonable

method for tropical SST anomalies but is very likely to

have negative effect on climate simulations over the

Atlantic basin where air–sea interaction is very strong

on shorter time scales than in the tropics. Third, the

present study considers only the local impacts of ini-

tialized snow through local feedback process. However,

large-scale snow condition may excite planetary waves

perturbing the large-scale atmospheric circulations,

which may well exert remote impacts (Cohen et al. 2009;

Saito et al. 2001). As recently suggested by Smith et al.

(2011) and Brands et al. (2012), the atmospheric circu-

lation responses to the imposed snow anomalies and

their impacts on predictability are key features of the

impact of snow on seasonal climate that need further

investigation. Fourth, present study focuses on the SAF

in interpreting the impacts of snow on potential pre-

dictability. Even though the SAF is a major factor deter-

mining snow–atmosphere interaction, thermal insulation

and hydrological effect from snow are known to have

significant impacts on surface climate. According to

recent model studies, the thermal insulation effect of

snow cover strongly affects heat fluxes between soil and

atmosphere (Woo et al. 2012). This can be a slower

process compared to the SAF process, which can have

significant effect during and after snow melting period.

Hydrological change through soil moisture also has an

important indirect effect on evaporation and energy

fluxes after snow melting (Brands et al. 2012; Overland

et al. 2011), which may have a secondary impact on

precipitation as well as temperature. Therefore, these

factors should be considered particularly for assessing

predictability gains in association with snow melting.

Fifth, although meaningful gains in SAT predictability

can be achieved by initialized snow depth, this can be

model dependent as it is widely known that climate

models still have large biases and intermodel spread in

the high latitudes and Arctic. Simulated SAF and as-

sociated impacts of snow initialization can be sensitive

to model bias. Therefore, model deficiencies in the

snow parameterization need to be considered to in-

terpret results. The representation of the snow cover

fraction has a significant influence in determining sur-

face albedo and thus on the surface radiation balance,

but it varies greatly with parameterization method (Kim

et al. 1996). This could be a source of large uncertainty.

This study was based on a relatively old version of CAM

with a relatively simple parameterization of snow frac-

tion based on the snow depth. Therefore, we plan to use

an updated CAM with an improved parameterization

of snow cover fraction that considers the snow compact

and snow density variation (Kim 2002). In addition to

the model’s deficiency, the limitation of the snow data

should be considered. Apart from the quality of used

snow data, relatively short availability (12 yr) of snow

data limits statistical robustness of the results. We plan

to reassess this with an extended hindcast experiment

of the updated CAM with an idealized snow data ei-

ther from reanalysis or from long-term simulation of

model.

Despite limitations, overall results in the present

study clearly demonstrate the usefulness of snow depth

information to improve the predictability of subseasonal

prediction. This emphasizes the importance of accurate

snow data and improvements in snow parameterization.
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