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1. Introduction

Active layer, the surface layer of permafrost, 

provides a potential indicator of climate change (Gug-

lielmin, 2004), because the active layer depth is 

sensitive to changes in air temperature. According to 

the prediction of current models (Lawrence and 

Slater, 2005), the near-surface permafrost thawing, 

that is, active layer formation will be accelerated 

during the first half of the 21st century. Thawing 

areas of permafrost are associated with increased 

fluxes of CH4, CO2 and N2O (Zimov et al., 2007). 

And there is a concern that this thawing will be 

caused by large-scale emissions of methane due to 

increased microbial activity, linking to the feedback 

loop on global warming (Christensen et al., 2004). 

However, compared to the study of permafrost, the 

study of microorganisms in active layer is very 

limited (Zhou et al., 1997; Liebner et al., 2009; Mar-

tineau et al., 2010; Yergeau et al., 2010). 

DNA sequencing-based microbial community stu-

dies have been widely propagated by the invention 

of pyrosequencing, which produces millions of se-
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quences in a single run (Ronaghi, 2001). Pyrose-

quencing generates millions of sequences in a single 

run excluding the time-consuming step of construc-

ting clone libraries. Therefore, tremendous sequence 

information in a sample can be obtained, from whi-

ch deep insights of microbial community can be ga-

ined. The soil microbial community structure of acti-

ve layer is essential to understand microbial proce-

sses in the emission of CH4 and CO2 by permafrost 

melting. Therefore, we analyzed the bacterial and 

archaeal community in the active layer soil through 

pyrosequencing as an initial step to understand the 

microbial contribution to the greenhouse gas produc- 

tion in permafrost ecosystem. 

Fig. 1. Sampling site and soil sample from Resolute, Canada.

2. Materials and Methods

2.1 Sampling and DNA Extraction

Soil sampling was conducted in Resolute on Corn-

wallis Island in Nunavut, Canada (74°41 N, 94°54ˊ ˊ

W) on 6th August 2009 (Fig. 1). Study area can be 

identified as a polar desert constituted of limestone 

and dolomite pebbles in a matrix of sand and silt 

with pH 7.0 to 8.0 (Cruickshank, 1971). A mean air 

temperature and annual precipitation of Resolute is 

—16.4 and 161 mm, respectively (En℃ -vironment 

Canada, 2014). The soil sample was collected from 

the surface of the marsh covered with moss and 

Carex (Fig. 1). Soil was collected by using of 50 
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mL conical tubes from active layer (Fig. 1), and 

fixed in RNAlater (Ambion). Genomic DNA was 

extracted using the UltraClean Soil DNA kit (Mo-

Bio), following the manufacturer's guidelines. Con-

centration and quality of the gDNA was checked by 

electrophoresis on 0.8% agarose gels.

2.2. Pyrosequencing 

In order to obtain amplicons of 16S rRNA gene 

fragment of the appropriate size and sequence va-

riability for 454 pyrosequencing, primer sets of 27f 

(GAG TTT GAT CMT GGC TCA G) and 518r 

(WTT ACC GCG GCT GCT GG) for bacteria 

(Weisburg et al., 1991) and 21f (TCC GGT TGA 

TCC YGC CGG) and 516r (GGT DTT ACC GCG 

GCK GCT G) for archaea (DeLong, 1992; Qian et 

al., 2011) were chosen, which contained the hyper-

variable regions from V1 to V3. Three independent 

PCR reactions were carried out for each sample. 

PCR was set up in a total volume of 50 L μ

containing 10 ng of DNA as a template, 20 pmol of 

each primer, 1×PCR buffer (10 mM Tris-HCl; 15 

mM MgCl2; 50 mM KCl, pH 8.3), 10 nmol of each 

dNTP and 1 U of Taq polymerase (Roche). The 

amplification consisted of an initial denaturation at 

94 for 5 min, followed by 10 cycles at 94 for ℃ ℃ 

30s, 60 to 55 with touch-down program for 45s ℃ ℃ 

and 72 for 90s and additional 25 cycles at 94℃ ℃ 

for 30s, 55 for 45s and 72 for 90s. The size of ℃ ℃ 

amplicons was checked by electrophoresis in 2.0% 

agarose gel stained with ethidium bromide. The 

triplicates were pooled together and purified using 

Qiaquick PCR purification kit (QIAGEN). The pu-

rified products were quantified using a spectropho-

tometer (NanoDrop Technologies, Rockland, DE, USA) 

and mixed in equivalent proportions. Pyrosequencing 

was performed by ChunLab, Inc. (Seoul, Korea) us-

ing a 454 Genome Sequencer FLX (Roche).

2.3 Bioinformatic Analysis 

Sequencing reads were separated by barcodes, and 

2 bp of linker and forward and reverse primers were 

trimmed. Sequencing reads with two or more Ns 

and short reads (the number of base calls of Q<20 

is less than 200) were omitted from the dataset. 

Raw flowgrams (sff files) were filtered. Additionally, 

noise and chimera sequences were omitted. Indivi-

dual sequencing read was compared to sequences in 

the EzTaxon-e database (http://eztaxon-e.ezbiocloud. 

net) (Kim et al., 2012). Five sequences with the 

highest hit scores were searched to sequence simi-

larity using global sequence alignment. The best mat-

ch with the highest sequence similarity value was 

used for taxonomic assignment of query sequences. 

We used the cutoff values for taxonomic assignment 

of each read; species 97%; 97% > genus ≧ ≧

94%; 94% > family 90%; 90% > order 85%; ≧ ≧

85% > class 80%; 80% > phylum 75% (Sta≧ ≧ -

ckebrandt & Goebel, 1994). When the similarity va-

lue is below the cutoff, the read is assigned as 

unclassified group. For the analysis of microbial 

diversity, OTUs were defined by using the CD-HIT 

program (Li and Godzik, 2006). Species richness/ 

evenness was estimated using Chao1, ACE, Shannon 

and Simpson indices by using the MOTHUR pro-

gram v.1.8.0 (Schloss et al., 2009). To compare the 

diversity of the 16S rRNA gene sequences in this 

soil, number of OTUs and statistical richness esti-

mate of Chao1 and ACE were performed using ≦

3% distance cutoff at DNA level to define OTU, 

which is most frequently used for 16S rRNA gene 

(Hughes et al., 2001). The results were visualized 

by CLcommunity software provided by ChunLab 

(http://www.chunlab.com).

3. Results and Discussion 

We investigated the microbial community structure 
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from permafrost-affected soil in Resolute, Canada. 

We obtained a total of 8,393 bacterial reads and 

1,111 archaeal reads with an average length of 457 

bp (a range from 300 to 530 bp) from the pyro-

sequencing of PCR amplicons (Table 1). Among 

these sequence reads, 597 bacterial reads and 866 

archaeal reads belonged to eukaryote. Since we are 

only concerned with prokaryotic cell affiliated reads 

these eukaryotic reads were removed in the final 

dataset for further analysis. Hierarchical taxonomic 

classification of refined 7,796 bacterial and 245 ar-

chaeal reads were performed on the basis of the 

alignment of reads to the sequence of EzTaxon-e 

Database (Table 1). Although the number of read 

analyzed was uneven, when we compared the bac-

terial and archaeal communities through diversity 

indices, bacterial abundance and diversity were sig-

nificantly higher than that of Archaea (Table 1). 

This difference in diversity/evenness between the 

bacterial and archaeal communities corresponded to 

other studies (Hansel et al., 2008; Steven et al., 

2008). 

Various bacterial groups were revealed in this 

study. Bacterial sequences were hierarchically cla-

ssified into 40 different phyla; Proteobacteria, Bac-

teroidetes, Firmicutes, Cyanobacteria, Actinobacteria, 

Chloroflexi, Acidobacteria, Gemmatimonadetes, Pla-

nctomycetes, Verrucomicrobia, Spirochaetes, Fusobac-

teria, Nitrospirae, Chlorobi, Deferribacteres, Lentis-

phaerae, Caldiserica, Fibrobacteres, Tenericutes and 

other 21 candidates (Fig. 2a). The dominant phyla

No. of total 

reads

No. of target 

reads
No. of OTUs Chao1 ACE Shannon Simpson

Bacteria 8,393 7,796 2,547 5,062 7,080 7.1 0.002

Archaea 1,111 245 14 17 16 2.1 0.162

Table 1. Summary of bacterial and archaeal sequences including the number of total and target reads, 

estimated number of OTUs, richness by Chao1 and ACE and evenness by Shannon Simpson indices using 

MOTHUR program by 3% distance cutoff value≦

were Proteobacteria (Alphaproteobacteria, 13.1%; 

Betaproteobacteria, 13.6%) and Bacteroidetes (30.1 

%), which accounted for more than half of the total 

bacterial sequences (Fig. 2a). The community st-

ructure in this study showed a good agreement of 

soil bacterial communities in other biome (Roesch et 

al., 2007). However, the bacterial community in this 

study showed a slightly different community com-

position compared with other Arctic soil as showing 

Actinobacteria and Acidobacteria were dominant 

(Steven et al., 2008; Liebner et al., 2008; Wilhelm 

et al., 2011).

The difference in dominant bacterial groups may 

be caused by environmental factors of the sampling 

site. Acidobacteria and Actinobacteria were dominant 

bacterial groups in typical soil samples (Chu et al., 

2010), and the dominant bands in DGGE analysis of 

active layer from Canadian high Arctic belonged to 

Proteobacteria, Bacteroidetes and Actinobacteria (St-

even et al., 2008). However, Acidobacteria and Acti-

nobacteria, were a minor group in this study. The 

sampling site in Resolute was very wet and covered 

with moss, and the soil pH was relatively higher 

(pH 7.1∼7.8) (Cruickshank, 1971; Anaka et al., 

2008) than usual Arctic soil (pH 4∼5). The pH 

level of the sampling site was higher than typical 

Arctic soil which may result in lower number of 

Acidobacteria in this study. Currently, some studies 

reported that arctic soil bacterial community com-

position and diversity are influenced by local varia-

tion in soil pH (Chu et al., 2010). 
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                           (a)                                                (b) 

Fig. 2. Hierarchical classification of 16S rRNA gene sequences in bacterial (a) and archaeal community (b). 

The innermost annulus indicates the composition in phylum level; each outer annulus progressively breaks 

these down by finer taxonomic levels; class, order, genus, and species. 1. Acidobacteria, 2. Actinobacteria, 3. 

Bacteroidetes,, 4. Cyanobacteria, 5. Firmicutes, 6. Proteobacteria, 7. Alphaproteobacteria, 8. Betaproteobacte-

ria, 9. Deltaproteobacteria, 10. Gammaproteobacteria, 11. Euryarchaeota, 12. Thaumarchaeota.

Although a minor portion of reads were classified 

in species level, relatively dominant species were 

identified using the 97% similarity. Among the 

bacterial reads, an OTU was the most dominant 

sequence with 2.4% in sequence abundance (data not 

shown). It showed the highest similarity with the 

sequence FM872756 which was uncultured bacterium 

isolated from floor dust (Täubel et al., 2009). OTUs 

showing high sequence similarities with Anabaena 

solitaria (Cyanobacteria) and Rhodoferax antarcti-

cus (Betaproteobacteria) also predominated with 1.7 

% and 1.1% in sequence abundance, respectively. 

Unfortunately, the understanding of the relationship 

between community compositions and their potential 

functions is limited because of the most of OTUs 

were not cultured. 

In case of Archaea, a relatively simple commu-

nity composition was recognized, detecting Euryar-

chaeota (51.4%) and Thaumarchaeota (46.1%) as 

major constituents of the archaeal community (Fig. 

2b). Interestingly, the archaeal community composi-

tion in this study was significantly different with 

other active layer soils which showed predominant 

group was Crenarchaeota (Steven et al., 2008; Wil-

helm et al., 2011). Thaumarchaeota which is a new-

ly-proposed phylum has been supposed to play im-

portant roles in biogeochemical cycles such as N 

and C cycles (Muller et al., 2010). The most do-

minant Archaea were uncultured and poorly provide 

functional information. 

Among archaeal reads, however, an abundant read 

was affiliated with the Methanosarcina laticus (18.4 

%) which might be potentially large source of 

atmospheric methane (Cadillo-Quiroz et al., 2008). 

Among the bacterial species, methane oxidizing Pro-

teobacteria belong to Methylococcaceae (0.9%), 

Methylocystaceae (0.03%) and Beijerinckiaceae (0.01 

%) (Bowman et al., 1997; Dedysh et al., 2002; De-

dysh et al., 2004) were detected. Therefore, both 

methane production and consumption processes could 
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occur simultaneously in the active layer soil of 

Resolute, Canada.

This study showed the composition of bacteria 

and archaea community in active layer soil of the 

Canadian high Arctic environment. Proteobacteria and 

Bacteroidetes were major groups, but Actinobacteria 

and Acidobacteria was a minor group in Resolute 

active layer. Euryarchaeota and Thaumarchaeota we-

re dominant in the archaeal community. The micro-

bial community structure showed that methane pro-

duction and consumption may occur in the active 

layer soil of Resolute, Canada. Although it might be 

difficult to characterize microbial community with 

only one sample in this habitat, it could be used for 

the basis of assessing the relative importance of the 

specific groups with a high resolution on the sha-

ping of the bacterial and archaeal community in 

Arctic active layer. 
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