ESSAS International Conference on Subarctic and Arctic Science; Open

Compare of UV radiation and CDOM in the Chukchi Sea and East Siberian, Arctic

SUN-YONG HA, Bo-Yeon Lee, Eun Jin Yang, Sung-Ho Kang

Korea Polar Research Institute (KOPRI), Division of Polar Ocean Science, 26 Songdomirae-ro, Yeonsu-Gu, Incheon, 21990, Rep. of Korea

Abstract

We investigated the penetration of solar radiation on the Chukchi Sea and East Siberian, Arctic from 6 to 19 August 2016 using IBRV ARAON. We measured the intensity of UV radiation, CDOM and UVabsorbing compounds (mycosporine-like amino acids) in the 14 stations. The penetration depth (Z: 1%) of UV-A, and PAR on the middle Chukchi Sea relatively deeper than East Siberian stations. The CDOM concentration on East Siberian was relatively higher than middle Chukchi Sea due to influenced organic matter by river off or melting water of permanence frozen zone from East Siberia. Especially, the penetration depth of UV-B showed the average around 5 m at East Siberian and around 15 m at middle Chukchi Sea. Also the CDOM concentration on the Siberian presented higher 0.02 m⁻¹ than middle Chukchi Sea (0.01 m⁻¹). The CDOM was affected the transmission of UV-A and PAR. We suggest that global warming accelerated the melt of permanence frozen zone in the Siberia to supply the CDOM concentration in the sea water. According CDOM protected the penetration of UV-B on the sea water; the limited UV transmission influenced the phytoplankton communities and primary production.

Material and Methods

> To measure for UV radiation on the IBRV ARAON

> To analysis for stable isotope and mycosporine-like amino acids

Fig. 1. Sampling stations on the Chukchi Sea and East Siberian Sea, Arctic

TriOS RAMSES (Hyperspectral Radiance and Irradiance Sensors for the UV, VIS or UV/VIS range)

EA-irMS (EuroEA-Isoprinme IRMS, GV Instruments, UK)

HPLC system – Agilent Technologies 1200 series Mobile phase – Water with 0.1% acetic acid Column – Waters 120DS-AP (5µm) 250mm x 4.6 Detecter – Agilent DAD (G1315D) 310nm (250~750nm Scan) **Fraction collector – Agilent analyt FC (G1364C)**

Fig. 4. Vertical profile of relative CDOM concentration and penetration depth (Z:1%) of UV-B in the Chukchi Sea and East Siberian

The distribution of CDOM concentration appeared difference between site 1 and site 14. The penetration depth of UV-B radiation

Fig. 3. Compare of relative CDOM concentration and penetration depth (Z:1%) of PAR, UV-A, and UV-B in the Chukchi Sea and East Siberian

The CDOM concentration at coastal area showed the higher than open sea. In particularly, the concentration of CDOM on the East Siberian Sea presented higher than Chukchi Sea. The penetration depth (Z:1%) of UV-B radiation on the Chukchi Sea which had less CDOM concentration was deeper than on the East Siberian Sea. The transmission of PAR and UV-A radiation also appeared deeper in the Chukchi Sea than East Siberian Sea.

were a clear difference depending on latitude. East Siberian Sea and Chukchi Sea were showed the difference the penetration of UV-B radiation and CDOM concentration, relatively.

Fig. 5. Plots of carbon uptake and total MAAs concentration of POM in the Chukchi Sea and East Siberian

The phytoplankton that have the relative abundant concentration of UV-absorbing compounds (mycosporine-like amino acids) was shown the relatively high carbon uptake rate due to protect from the harmful radiation. However, the phytoplankton with a high carbon uptake rate at site 1 and site 3 had a constant concentration of total MAAs.

E-mail address: syha@kopri.re.kr(Dr. Sun-Yong Ha)