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Previous biophysical and empirical models of evapotranspiration retrieval are difficult
to parameterize because of the effects of the nonlinear biophysics of plants, terrestrial
and solar radiation and soils, despite attempts made using various satellite products. In
this study, the multilayer feed-forward neural network approach with Levenberg–
Marquardt back propagation (LM-BP) was used to successfully estimate evapotran-
spiration using the input of various satellite-based products. When applying neural
network training, value-added satellite-based products such as normalized difference
vegetation index (NDVI), normalized difference water index (NDWI), land surface
temperature (LST), air temperature and insolation are used instead of only spectral
information from satellite sensors to reflect the spatial representativeness of the neural
network. The evapotranspiration estimated from the neural network with input para-
meters showed better statistical accuracy than the MODIS products (MOD16) and
Priestley–Taylor methods when compared with ground station eddy flux measure-
ments, which were considered as reference data. Additionally, the temporal variation
in neural network evapotranspiration well reflected seasonal patterns of eddy flux
evapotranspiration, especially for the high cloudiness in the summer season.

1. Introduction

Global warming due to enhanced greenhouse effects is considered a major cause of
changes in various climatic variables, such as precipitation, evapotranspiration (ET) and
net terrestrial and global solar radiation (Goyal 2004). ET, which is the process of
converting water into water vapour via surface evaporation and plant transpiration, is an
essential parameter for linking terrestrial water, carbon and surface energy exchanges
(Wang and Dickinson 2012). ET is also a major factor of the post-precipitation hydro-
logical cycle process, and it determines the plant water requirement by returning more
than 60% of the precipitation that reaches land back to the atmosphere (Korzoun and
Sokolov 1978; L’vovich et al. 1990). Although spatially reliable information on ET is
required to understand the hydrological cycle and carbon exchange between the surface
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and atmosphere, it is difficult to obtain in practice because of cost problems associated
with the collection of sufficient field observations to parameterize all ecosystem types,
which hampers the accurate quantification of ET. Here, remote sensing comes into play as
a cost-effective tool/alternative for estimating ET. Generally, a combination of biophysical
models and satellite remote sensing is used for estimating and scaling eddy flux ET
measurements to large areas (Mu, Zhao, and Running 2011). It is important to interpret
the relationship between eddy flux measurements and satellite information with biophy-
sical models or statistical approaches to spatial hydrological information. Kaminsky,
Barad, and Brown (1997) and Cincotti, Marchesi, and Serri (1996) regarded the neural
network approach to be more effective than traditional statistical techniques for use with
remotely sensed data. In this study, the Levenberg–Marquardt neural network (Levenberg
1944; Marquardt 1963) technique is applied to satellite remote sensing to estimate ET by
using surface flux measurements. When training the neutral network for ET, valued-added
satellite-based products that are highly related with ET estimation are retrieved with polar
and geostationary satellites and used as input parameters.

2. Materials and methods

2.1. Data

For the performance of the neural network, the following remote sensing-based input para-
meters were considered and explored for a training network: date, normalized difference
vegetation index (NDVI), normalized difference water index (NDWI), IR1 brightness tem-
perature (10.3 μm), IR2 brightness temperature (11.5 μm), land surface temperature (LST), air
temperature (Ta) and insolation (Rs). When we determined the remote-sensing-based input
parameters, ET-related parameters were selected carefully based on previous studies
(Wanchang, Yamaguchi, and Ogawa 2000; Sánchez et al. 2007; Gao, Long, and Li 2008;
Mu, Zhao, and Running 2011; Sun et al. 2012). Date is used to reflect temporal variation in the
Sun–Earth distance, which determines the extraterrestrial solar radiance. The NDVI and
NDWI, which are estimated primarily using the atmospherically corrected surface reflectance,
were explored to evaluate the status of vegetation growth and vegetation water stress,
respectively. The vegetation indices were selected instead of using the raw near infrared
(NIR) and red bands reflectance to reduce temporally dependent atmospheric effects by using
actual information on vegetation and to reflect the spatial variation in vegetation, as the
normalized band ratios for red, NIR (0.86 μm) and NIR (1.24 μm) are useful for interpreting
the characteristics of vegetation using satellite data (Rouse et al. 1974; Gao 1996).
Additionally, for more reliable value-added satellite products, atmospheric correction with
the second simulation of the satellite signal in the solar spectrum (6S) code and the semi-
empirical bidirectional reflectance distribution function (BRDF) model are applied to the
observed top-of-atmosphere spectral images by considering two different observation char-
acteristics between polar and geostationary satellites (Roujean, Leroy, and Deschamps 1992;
Vermote et al. 1997). In the case of vegetation indices for plant transpiration, surface BRD
effects, which could be relative solar-target-sensor fluctuation errors, are carefully removed
with the BRDFmodel based onMODIS nadir BRDF-adjusted reflectance products composite
criteria (Lucht, Schaaf, and Strahler 2000; Schaaf et al. 2002). To interpret the evaporation
from soil and to estimate ET, water storage under canopy height and transpiration of vegeta-
tion, LST, Ta, IR1 band and IR2 band were used as input parameters in a neural network.
When using thermal channels from satellite observations, two satellite products are used to
interpret the complicated temperature-based evaporation and transpiration by canopy inter-
ception and storage: the polar-orbiting MODIS and geostationary Communication, Ocean
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and Meteorological Satellite (COMS). In this study, we estimated the hourly Rs, one of the
main energy sources for ET, using geostationary COMS MI images to reflect real-time
variation in incident radiance on the canopy (Yeom and Han 2010). Basically, most ET
models combined with satellite imagery have used empirical models such as linear regression,
climate values, etc., due to the complex atmospheric physical processes, especially for the
cloud effect (Heermann, Harrington, and Stahl 1985; Kizu 1998; Isikwue, Amah, and Agada
2012). This study used a physical model that considered atmospheric effects and constituents,
such as Rayleigh scattering, water vapour and total ozone for reliable estimation of Rs. By
combining a physical model and satellite imagery, cloud attenuation of irradiance with high
temporal variation can be reflected in the final ET retrieval. The physical model for Rs is
briefly described as follows (Kawamura, Tanahashi, and Takahashi 1998):

Rs ¼ SI þ SR þ SA (1)

Rs ¼ ðSI þ SR þ SAÞ � ðCFÞ (2)

Here, Rs, SI, SR, SA and CF are the total insolation, direct irradiance, diffuse irradiance due to
Rayleigh scattering, diffuse irradiance due to scattering by aerosols and cloud factor (CF),
respectively. Equations (1) and (2) are executed separately depending on whether cloud
exists. For cloud pixels, CF, which is the amount of attenuation due to cloud, is multiplied
by the clear-sky total Rs in Equation (2). The Rs from COMSMI integrated insolation hourly
based measurement during the daytime is used as the daily value. Finally, the estimation
methods used for the input parameters are presented briefly in Table 1. The data used were
acquired over the Korean Peninsula from 1 April 2011 to 31 December 2012.

A true ET value is a necessary parameter to determine final network weights and biases
when training a neural network. Field-observed values from a flux tower were considered true
values of ET. Field-measured ET values were collected from a 40 m high tower at the KoFlux
Seolmacheon site (SMK) located at Paju, Korea (37° 56' 19″N, 126° 57' 16″E) and a 10m high
tower at the KoFlux Cheongmicheon farmland site (CFK) located at Yeoju, Korea (37° 9' 35″N,
127° 39' 10″ E). Those sites are part of the KoFlux network coordinated under AsiaFlux, which
is dedicated to measuring and studying water, carbon and energy fluxes continuously in key
ecosystems ofmonsoonal Asia. Detailed information about the KoFlux SMK (mixed forest) and
CFK (rice paddy) sites is summarized in Table 2. In this study, we selected two different land
cover types for estimating ET with the neural network, using mixed forest at SMK site and

Table 1. Estimation methods of input parameters used in this study.

Input
parameter Method Developed by

Temporal/spatial
resolution

Date Julian day Day

NDVI (NIR0.86 μm – Red)/(NIR0.86 μm + Red) Rouse et al. (1974) Daily/1 km
NDWI (NIR0.86 μm – NIR1.24 μm)/

(NIR0.86 μm + NIR1.24 μm)
Gao (1996) Daily/1 km

IR1 Brightness temperature at 10.3 μm Hourly/1 km
IR2 Brightness temperature at 11.5 μm Hourly/1 km
LST MOD11A1, MYD11A1 Wan et al. (2002) Daily/1 km
Ta Regression method with MOD11 Han, Viau, and Anctil

(2004)
Daily/1 km

Rs Physical model Yeom and Han (2010) Hourly/1 km

Remote Sensing Letters 431
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validating the neural network performance using a rice paddy at the CFK site to examine the
spatial representativeness problem. Vegetation at the SMK site consists of mixed forest, and the
site has a complex terrain type, whereas the CFK rice paddy site is flat terrain with mixed land
cover, such as farm roads and houses.

The mean annual air temperature at both the SMK and CFK sites is 11.5°C, and the
respective mean annual precipitation is 1332 and 1170 mm, respectively. Eddy correlation
flux measurements of ET at the KoFlux have been collected since 2011. Hourly measured
flux data at KoFlux during 2011 were aggregated to the daily measurements to correlate
with the MODIS and COMS MI image-based products.

Finally, the presented input parameters are matched temporally with eddy correlation
flux measurements to consider the seasonal variation in ET.

2.2. Neural network for estimating evapotranspiration

In this study, a multilayer neural network consisting of an input layer, an output layer and a
hidden layer is used (Figure 1), because three layers, including one hidden layer, is
sufficient to approximate any complex nonlinear function (Coulibaly, Anctil, and Bobée
2000; Yeom et al. 2008). When determining the appropriate number of hidden layers, trial-
and-error testing was performed by changing the number of hidden layers from 1 to 30 to
make network learning efficient. For neural network training, the Levenberg–Marquardt
back propagation (LM-BP) algorithm was selected because it provides a numerical solution
to the problem of minimizing the sum of nonlinear least squares between observed and
predicted outputs in an iterative manner (Levenberg 1944; Marquardt 1963). The
Levenberg–Marquardt algorithm blends the steepest-descent method and the Gauss–
Newton algorithm. It inherits the speed advantage of the Gauss–Newton algorithm and
the stability of the steepest-descent method (Yu and Wilamowski 2011).

Before training the network, we estimated various input parameters using MODIS
products (MOD09, MYD09, MOD11A1 and MYD11A1) and COMS MI products (IR1
band, IR2 band, Rs). Surface meteorological measurements were also used to assist estima-
tion of input parameters. The temporally matched dataset used to estimate ETwas split into
three parts: a training dataset (50% of the data) to determine network weights and biases, a
validation dataset (25% of the data) to evaluate network performance and decide when to

Table 2. Detailed characteristics of the KoFlux sites used for estimating ET.

AsiaFlux site code SMK (KoFlux Seolmacheon site)
CFK (Cheongmicheon

Farmland site)

Location Paju, South Korea Yeoju, South Korea

Position 37° 56' 19″ N, 126° 57' 16″ E 37° 9'35″ N, 127° 39' 10″ E
Elevation 269 m above sea level 141 m above sea level
Slope N/A 0°
Terrain type Complex Flat
Climate Temperate (snow – winter dry – hot

summer)
Warm Continental Climate
(Dwa)

Mean annual air
temperature

11.5°C 11.5°C

Mean annual
precipitation

1332 mm 1170 mm

Vegetation type Mixed forest Rice paddy
Canopy height 15 m ~1 m

432 J.-M. Yeom et al.
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stop training and a test dataset (the remaining 25% of the data) to validate the effectiveness
of the early stopping criterion and evaluate network operations on the dataset not used in
training and validation (Prechelt 1998; Yeom and Han 2010). Each separate dataset still
reflected the temporal variation by selecting a regular series. In this study, to avoid over-
fitting the network training, an early stopping method was applied using a validation
dataset. Neural network training was stopped when the relative validation error increased,
so we could use a complicated neural network without overfitting (Yeom et al. 2008).

3. Results

Twenty-seven hidden layers were determined by the trial-and-error method for an accurate
estimate of ET over the SMK mixed forest site. We compared composited daily ET eddy flux
measurements and modelled ET values from the LM-BP neural network using only a test
dataset during the study, as shown in Figure 2(a). Additionally, for comparative analysis, the
MODIS ET (MOD16) (Mu, Zhao, and Running 2011) and Priestley–Taylor methods
(Priestley and Taylor 1972) are estimated and compared with the ET eddy flux measurement
for the same period. In Figure 2(a), a scatterplot of ET (red circles) estimated from the LM-BP
neural network showed the best results compared with the other methods: the correlation
coefficient (r), root mean square error (RMSE) and mean bias error (MBE) were 0.958,
0.3555 mm day−1 and −0.042 mm day−1, respectively (Table 3). Although the MODIS ET
products (blue circles) were distributed mostly along the reference line, the R (0.847) and
RMSE values (0.650 mm day−1) showed lower accuracy in comparison with our neural
network results. The Priestley–Taylor ET (grey circles) had the worst accuracy. Considering
the number of collaborated data samples, the neural network LM-BP method is sufficiently
powerful to predict the nonlinear relationships of ET without any explicit knowledge of the
physical behaviour of the system. In this study, to examine the problem of the spatial
representativeness of neural-network-based ET, a temporally matched dataset from the CFK
farmland site was used as a validation study area. When estimating ET at the CFK site to
examine the spatial applicability of the neural network, we simply used the determined neural

Figure 1. The neural network structure consisting of input, hidden and output layers. Mi (i = 1, . . .,
9) are the input nodes and Nj (j = 1, . . ., 27) are the hidden nodes. Wji (i = 1, . . ., 9; j = 1, . . ., 27) are
the first neuron weights between the input nodes and hidden nodes and Wkj (j = 1, . . ., 27; k = 1) are
the second neuron weights between hidden nodes and output node.
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Figure 2. Scatterplots of ET estimated from MODIS (blue circles), Priestley–Taylor methods (grey
circles) and the L-BP neural network (red circles) compared with the flux ET over the Seolmacheon
(a) and Cheongmicheon (b) sites.

Table 3. A comparison of the error statistics of the ET products from the MODIS, neural network
and Priestley–Taylor methods for the mixed forest and paddy rice areas.

MODIS Neural network ET Priestley–Taylor ET

Error Forest Rice Forest Rice Forest Rice

Correlation coefficient (r) 0.847 0.791 0.958 0.703 0.620 0.302
RMSE (mm day−1) 0.650 1.827 0.355 0.937 2.920 2.252
MBE (mm day−1) 0.009 1.125 0.042 −0.605 2.602 1.610
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networkweight values and structures from the SMK site without retraining the neural network
over CFK. Figure 2(b) shows the ET (red circles) estimated from the LM-BP neural network,
MODIS ET products (blue circles) and Priestley–Taylor ET (grey circles) over the rice paddy
study area. Although the neural-network-based ETandMODIS ET had opposite distributions,
the accuracy was reasonable when compared with the Priestley–Taylor ET. MODIS ET had a
positive bias value of 1.125 mm day−1, whereas the neural-network-based ET had a negative
MBE (–0.605 mm day−1), as shown in Table 3. We inferred that the accuracy of the rice paddy
ETwas reasonable without retraining the network with spatially dependent input parameters,
which are useful for reflecting the spatial variation in different vegetation types, similar to
integrating remote sensing and biophysical models. Additionally, the rice paddy environment,
which had simple vegetation structure and flat terrain compared with the forest, enabled an
accurate estimate of the ET despite not training the neural network.

Figure 3 shows the temporal variation in the ET products derived from the eddy flux
(black line), neural network (red dash-dot line) and MODIS (blue dashed line) over the

Figure 3. Temporal variation in ET from flux tower, neural network and MODIS products over the
Seolmacheon (a) and Cheongmicheon (b) sites.
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Seolmacheon (Figure 3(a)) and Cheongmicheon (Figure 3(b)) sites. As shown in Figure 3(a),
the seasonal pattern of ET from the neural network has trends similar to those of the eddy flux
tower measurements. Especially for the summer season, and despite the rainy monsoon period
in the study area, ET from the neural network well describes the groundmeasurement because
hourly based insolation from COMSMI is effective for retrieval of ET. Although MODIS ET
products also well trace the variation in eddy flux tower ET, there are some discrepancy
periods, especially during summer. These discrepancies between MODIS ET and eddy flux
measurement would have resulted from the high rate of cloudiness during the rainy summer
season, which hampers the acquisition of surface spectral information by optical satellites. All
of the ET products show the seasonal pattern remarkably well, indicating that summer has the
highest ET values due to the rapid growing period for vegetation, and that winter has the
lowest values because of the dry and cold weather condition. In the study area, the summer
season usually has not only high incident irradiation but also rainymonsoon conditions. These
weather conditions are optimal for forest growth, resulting in high plant transpiration.
Furthermore, during the rainy summer season, the high precipitation value over the forest
area plays a source role in the evaporative conversion of surface water to water vapour.

Figure 3(b) shows that the rice paddy displayed similar seasonal patterns for all ET
products, which had the highest values in summer and the lowest in winter. In the case of
MODIS (blue dashed line), overestimated patterns are shown when compared with the eddy
correlation measurement ET values (black line). Although the neural network ET (red dash-
dot line) has underestimated values, its seasonal variation is reasonable. Although the problem
of the spatial representativeness of the neural network ET emerges with different land cover
types, the feasibility of the neural network ET for spatial representativeness is demonstrated.

4. Summary and conclusions

Despite the use of the combination of the conventional methods and MODIS data, the accuracy
of ETestimation over regional areas still needs to be improved because it is difficult to represent
the local environment using a global spatial-scale ET product. The LM-BP-based neural net-
work approach presented here successfully estimated ET products with high accuracy when
compared with previous studies (Yuan et al. 2010; Mu, Zhao, and Running 2011). In the present
study, value-added products from polar-orbit and geostationary satellites were used to retrieve
ET and its seasonal variation using ground station eddy flux measurements. The statistical
results, such as RMSE and MBE, showed good results when compared with eddy flux-based
ET measurements. Considering temporal variation, the neural-network-based ET showed
variation more similar to eddy flux ET measurements than did MODIS ET products. To
examine the spatial representativeness of the neural network, it was applied to a rice paddy
site, and it gave reasonable results without retraining the network due to the spatially dependent
input parameters. Consequently, ET estimation from a neutral network should be considered as
an alternative method to retrieve ET over a regional area with value-added satellite products.
Nevertheless, the reliability of the results of the neural network ET has two limitations: (1) the
problem of spatial representativeness of neural networks remains, although the spatially depen-
dent input parameters gave reasonable results over the rice paddy, which has a simple vegetation
structure and flat terrain; and (2) despite the outstanding performance of the neural network on a
regional scale, errors inherent to the eddy correlation measurement should be considered
carefully, as propagated error from eddy correlation measurements could affect the output
results of the neural network model. According to Allen et al. (2011), typical errors in eddy
correlation measurements are between 10% and 30%. In this study, we assumed that the eddy
correlation measurements were true values to determine neuron weights similar to the general
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ET. Future work will handle the spatial representativeness and propagating error of the eddy
correlation measurements by considering various land cover types and the systemic character-
istics of eddy flux measurements for accurate ET estimation.

Acknowledgements
We thank anonymous reviewers for providing valuable comments on this study.

Disclosure statement
No potential conflict of interest was reported by the authors.

Funding
This work was supported by ‘PE15040’ project funded by Korea Polar Research Institute (KOPRI).

References
Allen, R. G., L. S. Pereira, T. A. Howell, and M. E. Jensen. 2011. “Evapotranspiration Information

Reporting: I. Factors Governing Measurement Accuracy.” Agricultural Water Management 98:
899–920. doi:10.1016/j.agwat.2010.12.015.

Cincotti, S., A. Marchesi, and A. Serri. 1996. “Neural Network Modelling of Variable Hysteretic
Inductors.” Electronics Letters 32 (12): 1054–1055. doi:10.1049/el:19960708.

Coulibaly, P., F. Anctil, and B. Bobée. 2000. “Daily Reservoir Inflow Forecasting Using Artificial
Neural Networks with Stopped Training Approach.” Journal of Hydrology 230: 244–257.
doi:10.1016/S0022-1694(00)00214-6.

Gao, B. C. 1996. “NDWI: A Normalized Difference Water Index for Remote Sensing of Vegetation
Liquid Water from Space.” Remote Sensing of Environment 58 (3): 257–266. doi:10.1016/
S0034-4257(96)00067-3.

Gao, Y., D. Long, and Z. L. Li. 2008. “Estimation of Daily Actual Evapotranspiration from
Remotely Sensed Data under Complex Terrain over the Upper Chao River Basin in North
China.” International Journal of Remote Sensing 29 (11): 3295–3315. doi:10.1080/
01431160701469073.

Goyal, R. K. 2004. “Sensitivity of Evapotranspiration to Global Warming: A Case Study of Arid
Zone of Rajasthan (India).” Agricultural Water Management 69 (1): 1–11. doi:10.1016/j.
agwat.2004.03.014.

Han, K. S., A. A. Viau, and F. Anctil. 2004. “An Analysis of GOES- and Noaa-Derived Land
Surface Temperatures Estimated over a Boreal Forest.” International Journal of Remote Sensing
25 (21): 4761–4780. doi:10.1080/01431160410001680446.

Heermann, D. F., G. J. Harrington, and K. M. Stahl. 1985. “Empirical Estimation of Daily Clear Sky
Solar Radiation.” Journal of Climate and Applied Meteorology 24 (3): 206–214. doi:10.1175/
1520-0450(1985)024<0206:EEODCS>2.0.CO;2.

Isikwue, B. C., A. N. Amah, and P. O. Agada. 2012. “Empirical Model for the Estimation of Global
Solar Radiation in Makurdi, Nigeria.” Physics & Space Science 12 (1): 59–61.

Kaminsky, E. J., H. Barad, and W. Brown. 1997. “Textural Neural Network and Version Space
Classifiers for Remote Sensing.” International Journal of Remote Sensing 18 (4): 741–762.
doi:10.1080/014311697218737.

Kawamura, H., S. Tanahashi, and T. Takahashi. 1998. “Estimation of insolation over the Pacific Ocean
off the Sanriku Coast.” Journal of Oceanography 54: 457–464. doi:10.1007/BF02742448.

Kizu, S. 1998. “Systematic Errors in Estimation of Insolation by Empirical Formulas.” Journal of
Oceanography 54: 165–177. doi:10.1007/BF02751692.

Korzoun, V. I., and A. A. Sokolov. 1978. “World Water Balance and Water Resources of the Earth.”
Water Management and Development 1: 2199–2215.

L’vovich, M. I., G. F. White, A. V. Belyaev, J. Kindler, N. I. Koronkevic, T. R. Lee, and G. V.
Voropaev. 1990. “Use and Transformation of Terrestrial Water Systems.” In The Earth as
Transformed by Human Action: Global and Regional Changes in the Biosphere over the Past
300 Years, edited by B. L. Turner, 235–252, Cambridge: Cambridge University Press.

Levenberg, K. 1944. “A Method for the Solution of Certain Problems in Least Squares.” Quarterly
of Applied Mathematics 2: 164–168.

Remote Sensing Letters 437

D
ow

nl
oa

de
d 

by
 [

K
or

ea
 P

ol
ar

 R
es

ea
rc

h 
In

st
itu

te
],

 [
H

yu
n-

ch
eo

l K
im

] 
at

 1
7:

20
 0

3 
M

ay
 2

01
5 

http://dx.doi.org/10.1016/j.agwat.2010.12.015
http://dx.doi.org/10.1049/el:19960708
http://dx.doi.org/10.1016/S0022-1694(00)00214-6
http://dx.doi.org/10.1016/S0034-4257(96)00067-3
http://dx.doi.org/10.1016/S0034-4257(96)00067-3
http://dx.doi.org/10.1080/01431160701469073
http://dx.doi.org/10.1080/01431160701469073
http://dx.doi.org/10.1016/j.agwat.2004.03.014
http://dx.doi.org/10.1016/j.agwat.2004.03.014
http://dx.doi.org/10.1080/01431160410001680446
http://dx.doi.org/10.1175/1520-0450(1985)024%3C0206:EEODCS%3E2.0.CO;2
http://dx.doi.org/10.1175/1520-0450(1985)024%3C0206:EEODCS%3E2.0.CO;2
http://dx.doi.org/10.1080/014311697218737
http://dx.doi.org/10.1007/BF02742448
http://dx.doi.org/10.1007/BF02751692


Lucht, W., C. B. Schaaf, and A. H. Strahler. 2000. “An Algorithm for the Retrieval of Albedo from
Space Using Semiempirical BRDF Models.” IEEE Transactions on Geoscience and Remote
Sensing 38 (2): 977–998. doi:10.1109/36.841980.

Marquardt, D. 1963. “An Algorithm for Least-Squares Estimation of Nonlinear Parameters.” Journal
of the Society for Industrial and Applied Mathematics 11 (2): 431–441. doi:10.1137/0111030.

Mu, Q., M. Zhao, and S. W. Running. 2011. “Improvements to a MODIS Global Terrestrial
Evapotranspiration Algorithm.” Remote Sensing of Environment 115 (8): 1781–1800.
doi:10.1016/j.rse.2011.02.019.

Prechelt, L. 1998. “Automatic Early Stopping Using Cross Validation: Quantifying the Criteria.”
Neural Networks 11 (4): 761–767. doi:10.1016/S0893-6080(98)00010-0.

Priestley, C. H. B., and R. J. Taylor. 1972. “On the Assessment of Surface Heat Flux and
Evaporation Using Large-Scale Parameters.” Monthly Weather Review 100 (2): 81–92.
doi:10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2.

Roujean, J. L., M. Leroy, and P. Y. Deschamps. 1992. “A Bidirectional Reflectance Model of the
Earth’s Surface for the Correction of Remote Sensing.” Journal of Geophysical Research 97
(D18): 20455–20468. doi:10.1029/92JD01411.

Rouse, J. W., R. H. Haas, J. A. Schell, and D. W. Deering. 1974. “Monitoring Vegetation Systems in
the Great Plains with ERTS.” In Proceedings, Third Earth Resources Technology Satellite-1
Symposium, Greenbelt: NASA-SP-351, edited by S. C. Freden, E. P. Mercanti, and M. A.
Becker, 310–317. Washington, DC: NASA.

Sánchez, J. M., V. Caselles, R. Niclós, E. Valor, C. Coll, and T. Laurila. 2007. “Evaluation of the B-
Method for Determining Actual Evapotranspiration in a Boreal Forest from MODIS Data.”
International Journal of Remote Sensing 28 (6): 1231–1250. doi:10.1080/01431160600928617.

Schaaf, C. B., F. Gao, A. H. Strahler, W. Lucht, X. Li, T. Tsang, N. C. Strugnell, X. Zhang, Y. Jin, J.
P. Muller, P. Lewis, M. Barnsley, P. Hobson, M. Disney, G. Roberts, M. Dunderdale, C. Doll, R.
d’Entremont, B. Hu, S. Liang, J. L. Privette, and D. Roy. 2002. “First Operational BRDF,
Albedo and Nadir Reflectance Products from MODIS.” Remote Sensing of Environment 83
(1–2): 135–148. doi:10.1016/S0034-4257(02)00091-3.

Sun, Z., M. Gebremichael, J. Ardö, A. Nickless, B. Caquet, L. Merboldh, and W. Kutschi. 2012.
“Estimation of Daily Evapotranspiration over Africa Using Modis/Terra and SEVIRI/MSG
Data.” Atmospheric Research 112: 35–44. doi:10.1016/j.atmosres.2012.04.005.

Vermote, E. F., D. Tanre, J. L. Deuze, M. Herman, and J. J. Morcette. 1997. “Second Simulation of
the Satellite Signal in the Solar Spectrum, 6S: An Overview.” IEEE Transactions on Geoscience
and Remote Sensing 35 (3): 675–686. doi:10.1109/36.581987.

Wan, Z., Y. Zhang, Q. Zhang, and Z.-L. Li. 2002. “Validation of the Land-Surface Temperature
Products Retrieved from Terra Moderate Resolution Imaging Spectroradiometer Data.” Remote
Sensing of Environment 83 (1–2): 163–180. doi:10.1016/S0034-4257(02)00093-7.

Wanchang, Z., Y. Yamaguchi, and K. Ogawa. 2000. “Evaluation of the Effect of Pre-processing of
the Remotely Sensed Data on the Actual Evapotranspiration, Surface Soil Moisture Mapping by
an Approach Using Landsat, DEM and Meteorological Data.” Geocarto International 15 (4):
59–70. doi:10.1080/10106040008542173.

Wang, K., and R. E. Dickinson. 2012. “A Review of Global Terrestrial Evapotranspiration:
Observation, Modeling, Climatology, and Climatic Variability.” Reviews of Geophysics 50 (2):
19–24. doi:10.1029/2011RG000373.

Yeom, J. M., and K. S. Han. 2010. “Improved Estimation of Surface Solar Insolation Using a Neural
Network and MTSAT-1R Data.” Computers & Geosciences 36 (5): 590–597. doi:10.1016/j.
cageo.2009.08.012.

Yeom, J. M., K. S. Han, Y. S. Kim, and J. D. Jang. 2008. “Neural Network Determination of Cloud
Attenuation to Estimate Insolation Using MTSAT-1R Data.” International Journal of Remote
Sensing 29 (21): 6193–6208. doi:10.1080/01431160802175421.

Yu, H., and B. M. Wilamowski. 2011. “Levenberg-Marquardt Training.” In Industrial Electronics
Handbook, edited by M. Bogdan, J. Wilamowsk, and D. Irwin, 1–15. Boca Raton, FL: CRC Press.

Yuan, W., S. Liu, G. Yu, J.-M. Bonnefond, J. Chen, K. Davis, A. R. Desai, A. H. Goldstein, D.
Gianelle, F. Rossi, A. E. Suyker, and S. B. Verma. 2010. “Global Estimates of
Evapotranspiration and Gross Primary Production Based on MODIS and Global Meteorology
Data.” Remote Sensing of Environment 114 (7): 1416–1431. doi:10.1016/j.rse.2010.01.022.

438 J.-M. Yeom et al.

D
ow

nl
oa

de
d 

by
 [

K
or

ea
 P

ol
ar

 R
es

ea
rc

h 
In

st
itu

te
],

 [
H

yu
n-

ch
eo

l K
im

] 
at

 1
7:

20
 0

3 
M

ay
 2

01
5 

http://dx.doi.org/10.1109/36.841980
http://dx.doi.org/10.1137/0111030
http://dx.doi.org/10.1016/j.rse.2011.02.019
http://dx.doi.org/10.1016/S0893-6080(98)00010-0
http://dx.doi.org/10.1175/1520-0493(1972)100%3C0081:OTAOSH%3E2.3.CO;2
http://dx.doi.org/10.1029/92JD01411
http://dx.doi.org/10.1080/01431160600928617
http://dx.doi.org/10.1016/S0034-4257(02)00091-3
http://dx.doi.org/10.1016/j.atmosres.2012.04.005
http://dx.doi.org/10.1109/36.581987
http://dx.doi.org/10.1016/S0034-4257(02)00093-7
http://dx.doi.org/10.1080/10106040008542173
http://dx.doi.org/10.1029/2011RG000373
http://dx.doi.org/10.1016/j.cageo.2009.08.012
http://dx.doi.org/10.1016/j.cageo.2009.08.012
http://dx.doi.org/10.1080/01431160802175421
http://dx.doi.org/10.1016/j.rse.2010.01.022

	Abstract
	1.  Introduction
	2.  Materials and methods
	2.1.  Data
	2.2.  Neural network for estimating evapotranspiration

	3.  Results
	4.  Summary and conclusions
	Acknowledgements
	Disclosure statement
	Funding
	References



