Detection of sea ice and evaluation of passive microwave ice concentrations in the Chukchi Sea using KOMPSAT-5 SAR images

Hyangsun Han and Hyun-cheol Kim

Unit of Arctic Sea-Ice Prediction Korea Polar Research Institute

Arctic Sea Ice

- Importance of Arctic sea ice
 - Strong indicator of global climate change
 - Important for biological habitats
 - arctic mammals (seals, polar bears) hunt, breed, and feed on the ice
 - Important for human activities
 - Shipping, exploration of resources, development of Northern Sea Route
 - Need of accurate sea ice map

Remote sensing for sea ice observation

- Satellite optic sensors
 - reasonable detection over very wide area
 - limited by weather conditions and sun altitudes
 - not enough to observe small scale ice, especially in melting peak season
- Passive microwave (PM) Sensors
 - Have observed sea ice distribution and provided daily sea ice concentration (SIC) since 1970s
 - Sea ice observation regardless of weather conditions and sun altitudes
 - Large errors of SIC in summer season
 - Error assessment of PM SIC is required

Sea ice observation by SAR

- Synthetic Aperture Radar (SAR)
 - all weather, day and night imaging
 - melt onset/freeze onset, sea ice characteristics
 - can observe wide area (100 ~ 500 km)
 - can detect small scale ice by present-day high-resolution SAR
- KOMPSAT-5 SAR (X-band)
 - South Korea's first satellite SAR operating various imaging modes (~100 km)
 - X-band SAR is more sensitive to wetness/roughness of surface than C/L-band SAR
 - Strong wind over open water -> sea ice??
 - Difficult to correct wind-induced backscattering over open water

Objectives

• To develop sea ice mapping model for KOMPSAT-5 wide swath SAR images with various look angles using a rule-based machine learning approach

- To evaluate the availability of KOMPSAT-5 SAR images for mapping sea ice
- To evaluate passive microwave sea ice concentrations in ice melting season

Study area

- Chukchi Sea, Arctic Ocean
 - Araon expedition in 2015
 - Ice edge/marginal ice/compact
 ice zone
 - Sea ice with numerous ponds and leads

Data – KOMPSAT-5

- KOMPSAT-5 SAR data
 - 6 Aug. 9 Sep. 2015
 - 84 Enhanced Wide Swath (EW)
 images (100 × 100 km)
 - HH-pol, 6.25 m-grid spacing
 - 1-look, GEC products
 - Ascending/descending orbits
 - Various radar look angles
 - 17~49°

Data – PM SICs

- SSMIS sea ice concentration
 - 6 Aug.~9 Sep. 2015
 - NASA Team (NT) algorithm
 - Using 19 GHz H&V, 37 GHz V
 - 25 km grid
- AMSR2 sea ice concentration
 - 6 Aug.~9 Sep. 2015
 - Arctic Radiation and Turbulence
 Interaction STudy (ARTIST) Sea Ice (ASI)
 algorithm
 - Using 89 GHz H&V
 - 6.25 km grid

Near-Real-Time DMSP SSM/I-SSMIS Daily Polar Gridded Sea Ice Concentrations

Data – AARI ice charts

- AARI (Russian Arctic and Antarctic Research Institute) ice charts
 - Ice types/ice concentrations analyzed w170⁻
 from satellite dataset by ice experts
 - Weekly products

Ice concentration of AARI ice chart

Sea ice mapping by KOMPSAT-5 SAR

6.25 m resolution

12.5 m resolution

Gray level co-occurrence matrix (GLCM)

- Second order statistics
- Depends on window size, number of level, directions, and offset
 - Contrast, correlation, homogeneity, dissimilarity, entropy, etc.
- Widely used for classification of SAR images

Sea ice mapping by KOMPSAT-5 SAR

Sea ice mapping by KOMPSAT-5 SAR

- Random forest
 - A rule-based machine learning approach
 - constructing a multitude of decision trees
 - outputting the class that is the mode of the classes of the individual trees
 - correct for decision trees' habit of overfitting
 - Samples used for sea ice/open water classification
 - 70% for training model (58,800 samples)
 - 30% for validation (25,200 samples)

Average prediction

(0.23 + 0.19 + 0.34 + 0.22 + 0.26 + ... + 0.31) / # Trees = 24

Performance of Sea ice detection models

Performance of the best model

• *High performance* for sea ice/open water mapping (125 m resolution) based on KOMPSAT-5 EW SAR and machine learning approach

Reference Classified as	Open Water	Sea Ice	Sum	User's Accuracy
Open Water	12453	44	12497	99.64%
Sea Ice	147	12556	12703	98.84%
Sum	12600	12600	25200	
Producer's Accuracy	98.83%	99.65%		
Overall Accuracy	99.24%			
Kappa Coefficient	98.48%			

Examples of KOMPSAT-5 EW SAR sea ice map

15

Examples of KOMPSAT-5 EW SAR sea ice map

• Strong wind blowing (~15 m/s)

KOMPSAT-5 sea ice map vs. AARI ice chart

Comparison of sea ice concentration derived from AARI ice charts and K5 sea ice maps

Ice concentration of AARI ice chart

KOMPSAT-5 sea ice map vs. AARI ice chart

Distribution of sea ice concentration differences (absolute value)

Comparison of KOMPSAT-5 SIC and PM SICs

Conclusion

- A sea ice mapping model for KOMPSAT-5 EW SAR data was developed using RFbased binary classification of GLCM texture features.
- The sea ice mapping model exhibited excellent performance in detection of sea ice.
- The SSMIS NT SIC was underestimated in the MIZ and CIZ, while it was overestimated in the IEZ.
- The AMSR2 ASI SIC was underestimated only in the CIZ and was overestimated in other regions.

Thank you for your attention

