Arctic Sea Ice Mapping Using KOMPSAT-5 Enhanced Wide Swath SAR Images

Hyangsun Han, Sanghoon Hong, Hyun-cheol Kim

Department of Polar Remote Sensing Korea Polar Research Institute

Outline

- I. Introduction
- II. Study area and data
- III. Sea ice mapping technique
- IV. Results
- V. Conclusion

Introduction

- Importance of Arctic sea ice
 - Strong indicator of global climate change
 - Important for biological habitats
 - arctic mammals (seals, polar bears) hunt, breed, and feed on the ice
 - Important for human activities
 - Shipping, exploration of resources, development of North Pole Route

High-resolution & Accurate mapping of Arctic sea ice

Introduction

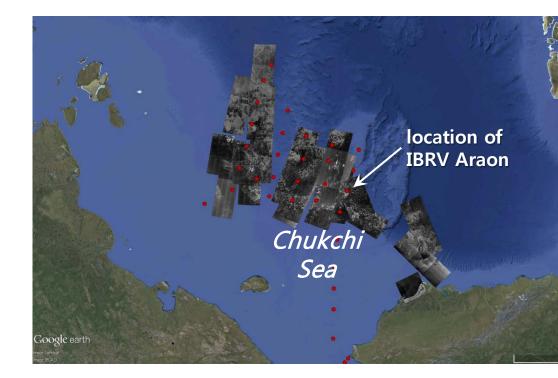
- Remote sensing for sea ice mapping
 - Aerial photography
 - accurate detection by very high resolution images
 - limited by local weather conditions
 - Satellite optic sensors
 - reasonable detection over very wide area
 - limited by weather conditions and sun altitudes
 - not enough to observe small scale ice, especially in melting peak season

Introduction

- Remote sensing for sea ice mapping
 - Synthetic Aperture Radar (SAR)
 - all weather, day and night imaging
 - melt onset/freeze onset, sea ice characteristics
 - can detect small scale ice by present-day X-band SAR systems

Objectives

• To develop sea ice mapping model based on KOMPSAT-5 Enhanced Wide Swath (EW) SAR images and machine learning approach


To evaluate passive microwave sea ice concentration in melting peak season

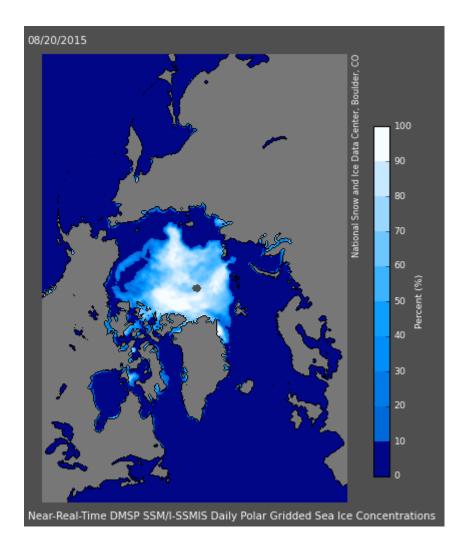
Study area

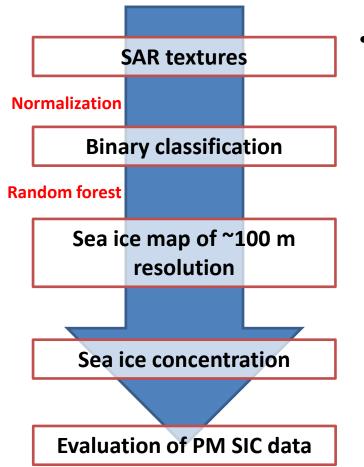
• Chukchi Sea

- Araon expedition in 2015
- Marginal ice zone
- Some section of MYI
- Sea ice with numerous ponds and leads

Data

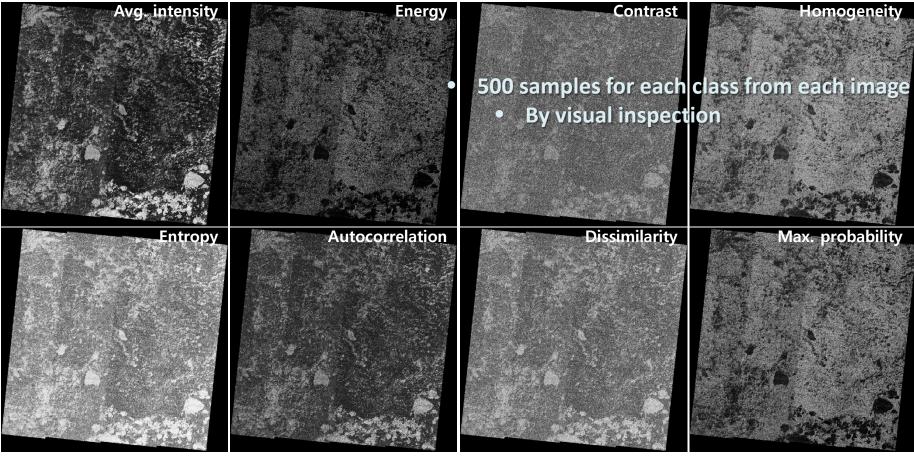
• KOMPSAT-5 SAR data


- 6 Aug.~9 Sep. 2015
- 84 Enhanced wide swath images
 (100 × 100 km)
- HH-polarization, 6.25 m-grid spacing
 - 1-look, GEC products
- Ascending/descending orbits
- Various radar look angle
 - 17~49° by tilting radar look


Data

- SSMIS sea ice concentration
 - 6 Aug.~9 Sep. 2015
 - NASA Team algorithm
 - Using 19V, 19H, 37V
 - 25 km grid

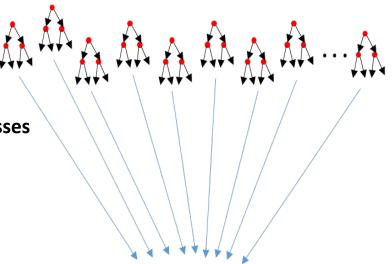
Sea Ice/Open Water Mapping process



- Intensity statistics and GLCM textures within a pixel window
 - Normalizing in each image

Example of textures from KOMPSAT-5 EW SAR

- 2×2 block averaging (12.5 m)
- texture calculation on 8×8 window (100 m)



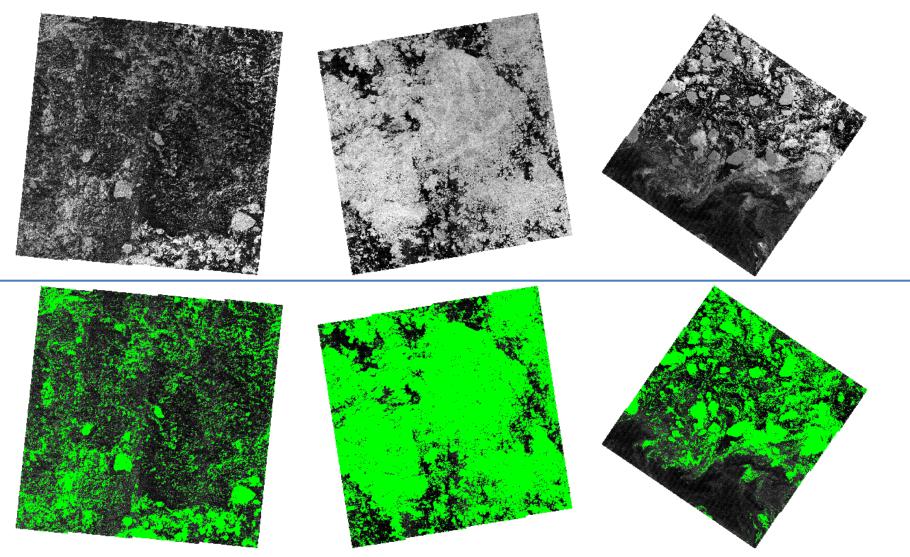
Binary classification

Random forest

- A rule-based machine learning approach
- constructing a multitude of decision trees
- outputting the class that is the mode of the classes of the individual trees
- correct for decision trees' habit of overfitting
- Samples used for sea ice/open water classification
 - 70% for training model (58798 samples)
 - 30% for validation (25202 samples)

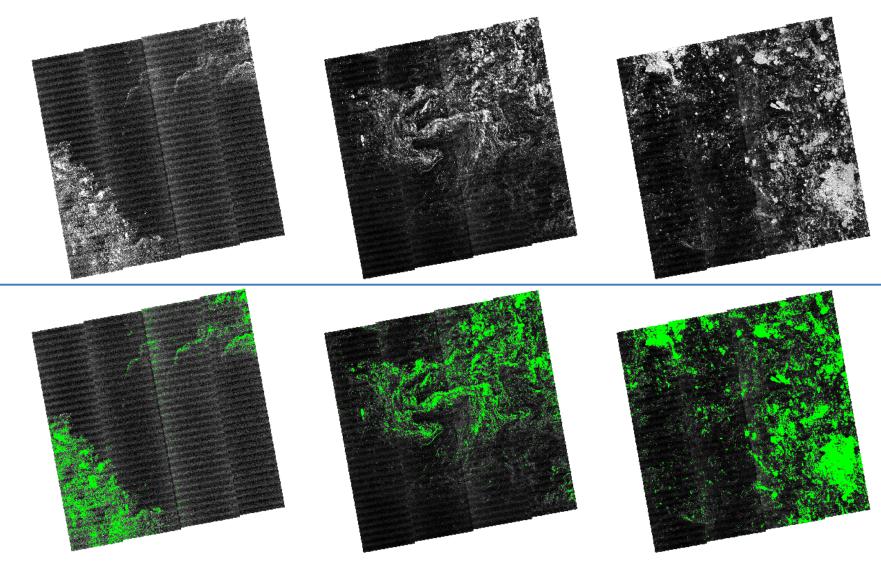
Average prediction

(0.23 + 0.19 + 0.34 + 0.22 + 0.26 + ... + 0.31) / # Trees = 24


Model performance

• *High performance* for sea ice/open water mapping based on KOMPSAT-5 EW SAR and machine learning approach

Reference Classified as	Open Water	Sea Ice	Sum	User's Accuracy
Open Water	12568	152	12720	98.81%
Sea Ice	33	12449	12482	99.74%
Sum	12601	12601	25202	
Producer's Accuracy	99.74%	98.79%		
Overall Accuracy	99.27%			
Kappa Coefficient	98.53%			

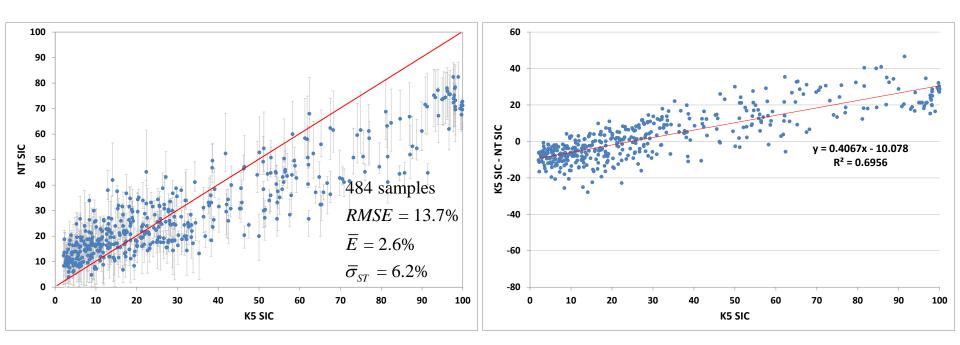


Examples of KOMPSAT-5 EW SAR sea ice map

Examples of KOMPSAT-5 EW SAR sea ice map

Comparison of SICs

- Time difference between KOMPSAT-5 and SSMIS data
 - SSMIS NT SIC 24-hour composite
 - Sea ice can move fast in summer season (MIZ)
 - Cannot compare KOMPSAT-5 SIC with SSMIS NT SIC
- Spatiotemporal mean and standard deviation of PM SICs


(Lee and Han, 2008)

$$\overline{S}_{ST} = \frac{1}{27} \sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} SIC_{ijk}$$
$$\sigma_{ST}^2 = \frac{1}{27} \sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} (SIC_{ijk} - \overline{S}_{ST})^2$$

Korea Polar Research Institute

KOMPSAT-5 SIC vs. SSMIS NT SIC

- SSMIS NT SICs are overestimated in MIZ, but underestimated in MYI
- Inaccuracy in SSMIS NT SIC increases as real SIC increases (due to melt pond?)

Conclusion

- Sea ice and open water in Arctic summer season were successfully classified from KOMPSAT-5 EW SAR images using SAR textures and RF approach.
 - High-resolution (100 m) sea ice maps
- SSMIS sea ice concentration in summer was evaluated using KOMSAT-5 sea ice maps.
 - Positive bias for MIZ, negative bias for MYI
- All the operational sea ice concentration algorithm will be evaluated using the KOMPSAT-5 sea ice maps.
 - Find out error sources

Thank you for your listening

