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ABSTRACT: 
 
Sea ice concentration (SIC) data acquired by passive microwave sensors at daily temporal frequencies over extended areas provide 
seasonal characteristics of sea ice dynamics and play a key role as an indicator of global climate trends; however, it is typically 
challenging to study long-term time series. Of the various advanced remote sensing techniques that address this issue, temporal mixture 
analysis (TMA) methods are often used to investigate the temporal characteristics of environmental factors, including SICs in the case 
of the present study. This study aims to forecast daily SICs for one year using a combination of TMA and time series modeling in two 
stages. First, we identify temporally meaningful sea ice signatures, referred to as temporal endmembers, using machine learning 
algorithms, and then we decompose each pixel into a linear combination of temporal endmembers. Using these corresponding fractional 
abundances of endmembers, we apply a autoregressive model that generally fits all Antarctic SIC data for 1979 to 2013 to forecast 
SIC values for 2014. We compare our results using the proposed approach based on daily SIC data reconstructed from real fractional 
abundances derived from a pixel unmixing method and temporal endmember signatures. The proposed method successfully forecasts 
new fractional abundance values, and the resulting images are qualitatively and quantitatively similar to the reference data. 
 
 

1. INTRODUCTION 

Sea ice dynamics play an important role in climate change and 
global warming studies by revealing high latitude temperature 
trends. Sea ice in the Arctic has exhibited a long-term negative 
trend while sea ice in the Antarctic has been expanding for 
decades (Parkinson et al., 2012). Sea ice concentration (SIC) is 
typically estimated using passive microwave data because of the 
daily revisit cycle, the relatively low sensitivity to atmospheric 
water content and clouds, and the large contrast in emissivity 
between open water and sea ice (Comiso et al., 1997, Ivanova et 
al., 2014). 
 
Among the various analysis techniques designed to utilize time 
series remotely sensed data, temporal mixture analysis (TMA), 
which is an extension of the spectral mixture analysis (SMA) of 
multispectral or hyperspectral remote sensing images, is 
receiving increased attention for use in summarizing and 
analyzing long-term time series data. TMA provides seasonal 
characteristics of univariate information such as SIC as well as a 
unique summary of long-term time series (Piwowar et al., 1998, 
Chi et al., 2016). In addition to sea ice studies, TMA has been 
applied to various applications in agriculture and urban studies 
 
A recent study conducted by Chi et al. (2016) analyzed long-term 
Antarctic daily SICs using machine learning-based TMA 
techniques. The authors examined hypertemporal SIC data 
without incorporating prior knowledge of seasonal sea ice 
signatures. Representative temporal endmembers were extracted 
from 36 years of daily SIC data and were then used to compute 
corresponding fractional abundances of each temporal 
endmember component. In this study, we propose a novel 
approach of forecasting daily SIC for the present year (2014) 
using TMA results derived from previous years (1979-2013) 
reported in Chi et al. (2016) and using time series analysis  
models. 
 

2. METHODOLOGY 

TMA can be applied to any univariate data stacked in the time 
domain. In this study, we examine 36 years of daily Antarctic SIC 
data acquired from 1979 to 2014, provided by the NSIDC 
(National Snow and Ice Data Center), based on the assumption 
that the data quality is guaranteed at a global scale. The data were 
generated from a passive microwave sensor SMMR (Scanning 
Multi-channel Microwave Radiometer) and SSMIS (Special 
Sensor Microwave Imager/Sounder) at a 25 km spatial resolution 
in the polar stereographic projection. To extract consistent SICs 
from different sensors, the NASA Team algorithm was used 
(Cavalieri et al. 1996). 
 
2.1 Temporal mixture analysis 

SMA has been extensively investigated and successfully applied 
in the development of new algorithms and multispectral and 
hyperspectral remote sensing applications, but few studies have 
been carried out on TMA algorithms and applications, as TMA 
research is still in its infancy and it is difficult to acquire high-
frequency temporal images. Because TMA is algebraically 
identical to SMA and shares its main concepts, assuming that the 
linear model is a good approximation, two general stages similar 
to those of SMA are used to address the temporal mixing 
problems. The first stage involves identifying temporally 
meaningful and unique signatures of pure substances, which are 
referred to as temporal endmembers, using machine-learning 
techniques for quantitative and automatic selection. The second 
step involves decomposing each pixel in the time series images 
into a collection of temporal endmembers using a linear 
combination (Keshava and Mustard 2002). 
 
Similar to hyperspectral data but for a different domain, most 
pixels in time series data are often decomposited by several 
representative temporal substances. Over the last decade, various 
algorithms have been developed and used for the automatic 
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identification of spectral endmembers in SMA. Because Winter’s 
N-FINDR (Winter 1999), which uses the concept of convexity of 
geometry, has been one of the most successfully and widely 
applied techniques for automatically determining endmembers, 
we used this approach to automatically extract temporal 
endmembers. This algorithm searches through a set of pixels with 
the largest possible volume by inflating a simplex. 
 
Assuming that the value of a mixed pixel is a linear combination 
of the values for endmember components, linear unmixing is the 
simplest and most widely used method for mixed pixel 
decomposition (Keshava and Mustard 2002). Each temporal 
pixel vector in the original image can be modeled using the 
following expression: 
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where 𝐫 = daily SIC trajectory of SIC time series 
 𝐞 = temporal endmember vector 
 𝑞 =	number of temporal endmembers 
 𝛼 = fractional abundance of endmember vector 
 𝜔 = noise vector 
 
The least squares solution to computing fractional abundances by 
minimizing the pixel reconstruction error is as follows: 
 

𝛼",& = (𝐄1𝐄)3*𝐄1𝐫" (2) 
 
where 𝐄 = set of temporal endmembers 
 
2.2 Time series analysis 

The time series model (TSM) is a dynamic research area that has 
received attention over the last few decades and is a powerful tool 
for conducting temporal analyses. The primary goal of the TSM 
is to examine past observations of time series and to develop an 
appropriate model that describes the inherent structures of data. 
The model is then used to predict future values of time series 
based on the past (Hipel et al., 1994). 
 
Various types of TSMs are used in a variety of practical 
applications. In this study on Antarctic SIC forecasting using 
TMA results, AR (AutoRegressive) models that relate current 
series values to past values and prediction errors are considered. 
AR models specify that the output variable depends linearly on 
its previous values and on a stochastic (i.e., imperfectly 
predictable) term (Box et al., 1994). Thus, the model is a special 
case of the more general ARMA (AutoRegressive Moving 
Average) models, which have promised reasonable outcomes in 
forecasting environmental time series relative to competing 
models (Hipel et al., 1994, Piwowar et al., 2010). 
 
If we wish to predict the present value using p previous 
measurements, then the AR model can be mathematically written 
as follows: 
 

𝑥5 = 𝜙*𝑥53* + 𝜙7𝑥537 + ⋯+ 𝜙9𝑥539 + 𝑎5 (3) 
 
where 𝜙 = parameters of AR model 
 𝑥5 = observation at time t 
 𝑎 = white noise 
 

The TSM of fractional abundances of corresponding temporal 
endmembers is produced by AR models and is inherently 
multivariate. One of the temporal endmembers used to predict 
employs past and present values of every other temporal 
endmember. The general multivariate form of the AR(p) model 
when the fractional abundances (𝑥5, 𝑦5, 𝑧5)  of three temporal 
endmembers are employed is as follows: 
 

𝑥5 = 𝜙**,"𝑥53"

9

")*

+ 𝜙*7,"𝑦53"

9

")*

+ 𝜙*=,"𝑧53"

9

")*

+ 𝑎*,5 

 

 

𝑦5 = 𝜙7*,"𝑥53"

9

")*

+ 𝜙77,"𝑦53"

9

")*

+ 𝜙7=,"𝑧53"

9

")*

+ 𝑎7,5 (4) 

𝑧5 = 𝜙=*,"𝑥53"

9

")*

+ 𝜙=7,"𝑦53"

9

")*

+ 𝜙==,"𝑧53"

9

")*

+ 𝑎=,5  

 
 

3. EXPERIMENTAL RESULTS 

The experiments in this study were conducted in two phases: 1) 
temporal mixture analysis and 2) time series analysis. The first 
phase involved computing time series fractional abundances of 
the representative temporal endmembers for 36 years. The results 
of the first stage were used to train time series models and to 
evaluate the model’s accuracy for the second stage. Each stage 
involved several steps, and more details are listed in the 
following subsections. 
  
3.1 Temporal mixture analysis 

The TMA stage is identical to the experimental part of the 
previous study (Chi et al., 2016) and is composed of three steps. 
To determine the number of temporal endmembers without prior 
knowledge, we first used the Harsanyi-Farrand-Chang (HFC) 
virtual dimensionality algorithm, which computes the sample 
correlation and covariance matrices and then determines the 
difference between the corresponding eigenvalues (Harsanyi et 
al., 1993). As there are numerous anomalous SIC pixels in daily 
SIC data acquired from 1979 to 2014 due to sensor and 
processing errors, the daily time series were smoothed by 
removing outliers using neighboring pixels and the moving 
average of the previous and following days. Additionally, 
because data from 1979 to 1987 were acquired every other day, 
linear interpolation was applied to generate consistent daily time 
series throughout the time period. Therefore, the number of 
potential and representative temporal endmembers was 
determined to be 9. Then, the N-FINDR algorithm was used to 
identify the 9 representative temporal endmembers showing the 
maximum variation in SIC throughout the year, as shown in 
Figure 1. Subsequently, the spatial distributions of the 
corresponding fractional abundances in 2014 associated with the 
temporal endmembers were generated, as shown in Figure 2. For 
detailed information on the temporal mixture analysis stage and 
experimental results, see Chi et al. (2016). 
 
3.2 Time series analysis 

To adequately apply AR models to image data, the order of the 
models should be determined for each time series. Our temporal 
image data acquired at a single time instance include 82,907 valid 
pixels (i.e., 25 km Antarctic SIC data include 332 x 316 pixels, 
but pixels for the Antarctic continent are excluded). Thus, 82,907 
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individual AR models are needed to properly fit all of the 
Antarctic SIC data. As the objective of this study is to 
automatically forecast future SIC using time series analysis 
approaches, individually and manually fitting models to the 
82,907 pixels is very inefficient. In this study, we assume that 
most of the Antarctic SIC for 36 years could be fitted with AR 
models of the same degree and that the AR(1) model is 
appropriate for overall use. 
 
3.3 Experimental results 

Based on the assumption presented above, fractional abundances 
for 2014 were estimated using single AR(1) models trained by 
the entire time series of 35-year fractional abundances for 1979 
to 2013 using the TMA method. Using forecasted abundances 
and temporal endmember signals derived from the endmember 
identification step, daily 365 SIC images for 2014 can be 
reconstructed via the inverse process of pixel unmixing. As 
discussed in Chi et al. (2016), TMA results can typically be tested 
using pixel reconstruction errors when reference data for 
temporal sea ice endmembers are not available. Thus, the root 
mean square error (RMSE) was used to provide an overall ‘pixel-
by-pixel’ difference between the original and reconstructed 
images. 
 
Figure 3 compares the original 2014 NSIDC SIC data SICABCDE  
for the selected days (day of year (DOY): 30, 120, 210, 300) with 
1) reconstruction images using fractional abundances computed 

via the pixel unmixing approach SICFGHIJKL  proposed in Chi et 
al. (2016) and 2) reconstruction images based on forecasted 
fractional abundances of the single AR(1) model SICMGNLFOPK  
proposed in the present study. Red borders in each image denote 
sea ice extents (SIEs) where the regions of interest present SIC 
values of at least 15%. As discussed in Chi et al. (2016), the 
reconstructed SIC images ( SICFGHIJKL , SICMGNLFOPK ) did not 
typically capture detailed levels of variability in local areas and 
produced smoother SIC estimates. However, both concentrations 
and extents generally showed good visual agreement with the 
original images, as shown in Figure 3. Overall, the RMSE values 
of SICFGHIJKL (8.5%) are statistically more accurate than those of 
SICMGNLFOPK  (12.9%). Although SICMGNLFOPK  visually appears to 
capture higher levels of local variability than SICFGHIJKL  in 
certain regions, SICMGNLFOPK  presents relatively low levels of 
statistical fidelity with SICABCDE  for some regions that may be 
associated with the AR(1) model for rejected areas. In the SIE 
comparisons shown in Figure 3, extents based on forecasted 
fractional abundances (SIEMGNLFOPK) typically show higher levels 
of visual agreement with the original extents (SIEABCDE ) than 
SIEs that use real fractions (SIEFGHIJKL ). Daily averages of 
summed areas for all grid cells in SIEMGNLFOPK were statistically 
very close to SIEABCDE  (2.5% overestimated), whereas 
SIEFGHIJKL was overestimated by approximately 15%. Therefore, 
the proposed forecasting method captured higher levels of visual 
agreement with the original images and defined more accurate 
sea ice boundaries than the images reconstructed via pixel 
unmixing. 
 

Figure 3. Extracted temporal endmembers 

Figure 2. Fractional abundance maps for 2014 

Figure 1. Daily SIC comparisons between the original and 
reconstructed images 
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4. CONCLUSIONS 

In this study, fractional abundances for the past 35 years 
computed using the TMA approach were incorporated with AR(1) 
models in an effort to forecast new fractional abundances for the 
present year. The forecasted fractional abundances were used to 
compute reconstructed images using representative temporal 
endmembers identified using TMA method. The proposed results 
delivered results comparable with real values in terms of overall 
RMSE accuracy levels and visual agreement. SIEs derived from 
reconstructed SIC images showed better accuracy outcomes than 
the reconstruction SICs based on fractional values of pixel 
unmixing. 
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