Interannual variation of cyclonic eddy in Amundsen Sea Polynya, Antarctica

Tae-Wan Kim

Korea Polar Research Institute

CTD Observation in Amundsen Sea

CTD observation stations from N. B. Palmer, J. C. Ross, Oden, and Araon after 2000

KOPRI Amundsen Project (Field Expeditions)

2010/2011

•Dec 21, 2010 – Jan. 23, 2011 •Stations: 30 (CTD+LADCP) •Moorings Deploy: 2

2011/2012

•Jan 31, 2012 – March 20, 2012 •Stations: 52 (CTD+LADCP) •Moorings Deploy: 15 Recovery: 6

2013/2014

•Jan 1, 2014 – Jan 16, 2014 •Stations: 35 (CTD+LADCP) •Moorings Deploy: 8 (ARAON) Deploy: 5 (JCR) Recovery: 6 (ARAON) Recovery: 7 (JCR)

Moorings currently in the water

KOPRI : 6 moorings (Dotson trough, In front of Dotson Ice Shelf)

- **SWEDEN: 2 moorings** (Dotson trough, Getz Ice Shelf)
- **BAS : 6 moorings** (In front of Pine Island Glacier & trough)

Motivation: Why Amundsen?

Rignot, et al. (2008), **Recent Antarctic ice mass loss from radar interferometry and regional climate modelling**, *Nature Geoscience*, 1, 106–110.

- Mass loss/gain of ice sheet is strongly regional.
- The amount of glacier loss : In west Antarctica > In east Antarctica
- Amundsen/Bellingshausen Seas are the most rapidly melting region in the Southern Ocean.
- Ice melting is might depended on the intrusions of warm **circumpolar deep water (CDW)** onto the continental shelf.

Circumpolar Deep Water (CDW)

Hot issue in Amundsen Sea

- Temporal and spatial variation of ocean circulation in Amundsen Sea
- ✓ Mass/Meltwater and heat budget in front of ice shelf
- ✓ Effect of glacial meltwater on ocean circulation

Cyclonic eddy in Amundsen Sea Polynya (ASP)

- ✓ The existence of cyclonic eddy in ASP was confirmed from observed TS and Current data.
- \checkmark Core of cyclonic eddy is located at 112°W and 73.5°S.
- ✓ Eddy is bounded on the south by the DIS.
- The boundary of eddy at the north is \checkmark uncertain.

Horizontal distribution of vertical averaged velocity (50-250 m) and depth of 34.1 isohaline in 2011, 2012 and 2014.

Vertical distribution of Current & TS

Monthly mean sea surface circulation & sea ice concentration

OSCAR (Ocean Surface Current Analysis - Real time): calculated from quasi-linear and steady flow momentum equations using SSH, SST and Wind obtained from satellites.

- ✓ The cyclonic eddy in ASP shows the interannual variation.
- ✓ The east and southward flows are dominant at northern and eastern boundary of ASP, respectively.
- ✓ The strong westward flows in front of DIS lead to formation of cyclonic eddy.

Summary of results

- \checkmark The existence of cyclonic eddy in ASP was confirmed from observed TS and Current data.
- \checkmark Eddy is bounded on the south by the Dotson Ice Shelf (westward velocity: 40 cm/s in 2012).
- $\checkmark\,$ From OSCAR data, the cyclonic eddy in ASP shows the interannual variation.
- \checkmark The strong westward flows in front of DIS lead to formation of cyclonic eddy in ASP.

What forcing drive the cyclonic eddy in ASP

- $\checkmark\,$ Horizontal gradient of sea surface elevation.
- ✓ Horizontal variation of isopycnal by melting of sea ice and glacier.
- $\checkmark\,$ Ocean surface stress by wind and sea ice motion.

- TS diagram and end-member of CDW & WW at Amundsen continental shelf
- Horizontal distribution of vertical averaged meltwater fraction (0-300m)
- Horizontal distribution of density (10m)

Potential Temperat

✓ In 2000, 2007, 2009 and 2011, the meltwater fraction was higher than 1.5 % in front of DIS.

✓ The meltwater fraction at center of ASP was relatively low.

 \checkmark The density at sea surface is relatively high in front of DIS and decreasing to the north due to sea ice melting.

Horizontal distribution of wind and SSHA

Momentum Balance

Interannual variation of current velocity and effect of wind and SSH gradient in front of DIS

- Northwestward wind is dominant
- ***** Westward flow in front of DIS depended on the SSH gradient in February.

2012 AMUNDSEN SEA EXPEDITION KOPRN

Thank you!

UNIVERSITY OF GOTHENBURG

