LONG-LIVED GREENHOUSE GASES (CO\textsubscript{2}, CH\textsubscript{4}, N\textsubscript{2}O) IN THE PACIFIC SECTOR OF THE SOUTHERN OCEAN AND THE AMUNDSEN SEA BETWEEN 2009 - 2012

Tae Siek Rhee1, Kyung-Ah Park1, Doshik Hahm1, Hyunduck Jeon1, Young-Shin Kwon1, Hyoung-Chul Shin1, SangHoon Lee1, and Kyung Eun Lee2

1. Korea Polar Research Institute, Incheon, Korea
2. Korea Maritime University, Busan, Korea

The ocean plays a considerable role in the budget of long-lived greenhouse gases in the atmosphere: as a sink for CO\textsubscript{2} and a source for CH\textsubscript{4} and N\textsubscript{2}O. The high latitude of the Southern Ocean is particularly important as the change in the sea ice extent and melting glaciers will influence the ecological and physical settings that govern the content and flux of dissolved gases in seawater. In order to investigate the impact of the change in the cryospheric environment to the fluxes of these trace gases, we visited the Pacific sector of the Southern Ocean and the Amundsen Sea during the austral summer between 2009 and 2012. In the open ocean, CO\textsubscript{2} was mostly undersaturated while N\textsubscript{2}O and CH\textsubscript{4} were supersaturated in seawater. These typical features were reversed in the sea-ice region except for N\textsubscript{2}O. In the Amundsen Sea polynya, CO\textsubscript{2} and CH\textsubscript{4} were depleted in seawater while dissolved N\textsubscript{2}O was supersaturated with respect to the atmosphere.