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Environmental Change: Possible Consequences for the Life Histories

of Antarctic Terrestrial Biota
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ABSTRACT. Awareness of environmental change in Antarctica centres on two areas of potentially
great biological significance - the consequences of a clearly demonstrated trend of regional climate
warming, and those related to the recent and large seasonal increase in ultra-violet radiation levels
experienced as a result of stratospheric ozone depletion. As yet, little hard evidence exists as to the
effects of these changes on the depauperate terrestrial biota of the region. This paper considers the
likely effects of environmental change on the major groups of maritime Antarctic terrestrial biota.
Life history strategy studies have demonstrated great flexibility in areas such as growth and repro-
ductive rates, and the use of physiological mechanisms to allow tolerance of (extreme) cold and des-
iccation. Increased plant growth and colonisation rates, combined with evidence of increasing length
of summer seasons, and physiological data indicating longer periods of water availability to terrestri-
al invertebrates, are used to suggest that a general shortening of life cycle duration will be expected.
Parallel studies in the Arctic suggest massive population increases of some species are likely, which
may destabilize simple polar food webs. Conversely, high spring UV loads may act to reduce colo-

nization opportunities, habitat area and growing season for some plants and microbiota.
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Introduction

Antarctica, by virtue of its geographical isolation
and atmospheric circulation patterns, has provided
some of the most significant evidence relevant to
discussions of global environmental change. This
has included the discovery of the stratospheric
ozone "hole" (Farman et al. 1985), the correlation of
climate and chemical composition of the atmosphere
as revealed by deep ice cores (Lorius et al. 1985), and
recent rapid break-up of Antarctic Peninsula ice
shelves (Doake and Vaughan 1991; Vaughan and
Doake 1996).

Antarctica has experienced climate change in the
past. On a geological timescale, the formation of the

present continental ice cap commenced after the
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separation of Antarctica from the rest of Gondwana
during the Miocene. Antarctica supported rich plant
and animal communities during the Palaeocene and
Eocene, now preserved as fossils, which were oblit-
erated by expansion of the continental ice cap.
Separate ice caps also destroyed terrestrial habitats
on maritime and sub-Antarctic island groups
(including South Shetland and South Orkney
Islands, South Georgia, Heard Island) (Sugden and
Clapperton 1977). Only a tiny remnant portion of
the pre-glaciation fauna is now thought to survive
as relict species on inland nunataks of the Antarctic
continent (Marshall and Pugh 1996). The majority of
the current biota must have arrived as post-glacial
colonists, as no appropriate refugia are likely to
have remained, at least on the Antarctic continent
and islands of the maritime Antarctic. Even as ice
retreated following Pleistocene glacial maxima, fluc-
tuations in climate and ice extent were experienced
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on shorter (decades to millennia) timescales
(Clapperton and Sugden 1982, 1988; Smith 1990).
Although large in scale, it is important to note that
these fluctuations occurred more than an order of
magnitude more slowly than rates of temperature
change predicted by current global circulation mod-
els. Both the magnitude and rate of change are sig-
nificant to biological communities (Huntley 1991).

A common feature of global circulation models is
a prediction that any warming effects will be most
pronounced in high latitude regions (Maxwell and
Barrie 1989; Maxwell 1992; Meehl and Washington
1990; Mitchell et al. 1990). Despite this recognition of
the importance of Antarctic regions in providing
geophysical evidence to help understand the
processes of climate change, the terrestrial biological
consequences of global change in Antarctica are
only now beginning to attract serious attention, with
limited data obtained or published as yet (see
Kennedy 1995a). Antarctic terrestrial ecosystems
have not attracted research interest on account of
their low diversity and biomass, intrinsic sparse dis-
tribution and low abundance, and lack of economic
incentives (Kennedy 1995a; Roberts 1989; Smith and
Steenkamp 1990). The potential deleterious effects of
increasing levels of ultra-violet (UV) radiation are
thought to be a threat to all Antarctic ecosystems
(Wynn-Williams 1994), while terrestrial systems
"may be the first to be affected by increased UV-B
radiation caused by ozone depletion" (Voytek 1990).

In this paper I consider the limited evidence cur-
rently available for the effects of environmental
change on Antarctic terrestrial organisms. Applying
knowledge of the life history strategies of Antarctic
terrestrial invertebrates and plants, combined with
parallel studies of Arctic species, I attempt to make
broad predictions of the likely effects of environ-
mental changes on life histories of specific groups,
and consider possible wider-scale implications for
food web interactions and ecosystem processes.

Antarctic Terrestrial Environment

Terrestrial habitats and communities
Antarctica is a continent of extremes. Considerably

larger than Australia (14.4 x 10° km?), over 99% of
the continental area is permanently covered by ice
or snow, with an average depth of about 2 km, and
maximum of over 4 km (Fox and Cooper 1994). It
has the highest average altitude of any continent,
and is the windiest and coldest. Much of the conti-
nental area is classified as a cold desert, with very
low precipitation rates (Walton 1984; Sgmme 1995).
Areas south of the Antarctic Circle experience peri-
ods of up to several months of permanent darkness
during winter, alternating with continuous exposure
to solar radiation during summer.

Terrestrial environments in Antarctica are conven-
tionally considered in three separate biogeographi-
cal zones (continental, maritime, sub-Antarctic;
boundaries indicated by Smith (1984a) and Longton
(1988)). These zones have distinct but overlapping
terrestrial fauna and flora (Smith 1984a; Longton
1988; Greenslade 1995; Marshall and Pugh 1996),
also falling along a temperature gradient (Holdgate
1977; Walton 1984; Convey 1996a, 1997). Antarctic
terrestrial communities are species-poor relative to
those found in similar habitats and latitudes in the
Arctic (Semme 1979; Danks 1990; Convey and Block
1996). This is largely a function of their extreme iso-
lation. Intentional transplant experiments (e.g.
Edwards 1980), an increasing number of natural and
human-mediated introductions (e.g. Block et al.
1984; Chown and Language 1994; Pugh 1994; Smith
1996), and the presence of exotic cryptogamic plants
and microbes on volcanically-warmed ground
(Longton and Holdgate 1979; Smith 1984b; Bargagli
et al. 1996; Broady et al. 1987) have demonstrated
that there is a potentially large pool of species with
appropriate ecological and physiological characteris-
tics to allow survival should colonization opportuni-
ties occur.

Antarctic terrestrial communities, with the excep-
tion of snow algae, and the microbial communities
found in glacial cryoconite holes (Broady 1989;
Broady and Kibblewhite 1991; Vincent 1988;
Wharton et al. 1981), are limited to areas permanent-
ly or seasonally free of ice and snow. Arctic and
alpine cryoconite faunas also include tardigrades
(e.g. Dastych 1993), but no published records exist



from Antarctic cryoconites. The fauna (Block 1984) is
dominated by micro-arthropods (Acari and
Collembola), with higher insects (particularly
Coleoptera, Diptera) only forming a significant com-
ponent in the sub-Antarctic. More extreme habitats
of the maritime and, especially, continental Antarctic
may harbour only microscopic invertebrates such as
nematodes and tardigrades (Dastych 1984; Dastych
and Harris 1994; Freckman and Virginia 1991, 1997;
Powers et al. 1995; Schwarz et al. 1993). The vast
majority of the fauna of continental and maritime
zones is composed of mixed algivores, microbivores
and detritivores, with no obligate herbivores.
Terrestrial predators exist in the form of mesostig-
matid and prostigmatid mites (Gamasellus and
Rhagidia spp.), which take mostly Collembola (Lister
et al. 1987, 1988) and have a minimal impact on their
prey populations, and probably nematophagous
Collembola (Friesia spp.). Despite the increase in
importance of phanerogams on sub-Antarctic
islands, most invertebrates remain in the detritivore
category.

True non-marine vertebrates (dependent on the
terrestrial or freshwater environments for resources
other than breeding or moult sites) comprise a few
species of duck and passerine bird found only in the
sub-Antarctic, where they have very limited impact.
However, the influence of marine birds and seals,
particularly in terms of nutrient input and physical
trampling, may be very important in both the devel-
opment and destruction of certain terrestrial ecosys-
tems (Smith 1988a; Ryan and Watkins 1989).

Likewise, floral diversity and community com-
plexity decrease down the gradient from sub- to
continental Antarctic (Smith 1984a; Longton 1988).
Thus, phanerogams (flowering plants) form a major
component of low altitude ecosystems of the sub-
Antarctic, but contribute only two localized species
in the maritime zone, and are not present in the con-
tinental zone. Algal and cryptogamic (bryophyte
and lichen) communities reach a level of importance
rarely found elsewhere in all three zones. In the
extreme conditions of the McMurdo Dry Valleys of
Victoria Land, microbes and lichens retreat to an
endolithic habitat (Friedmann 1982), existing in the
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interstitial spaces between crystals of porous rocks
such as sandstone. ‘
A range of inter-related environmental stresses
will be experienced by any terrestrial Antarctic
organism. These, and their potential influence on
life history attributes, have been discussed by
Convey (1996b, 1997), and are summarized here, in
order to provide a baseline from which the potential
effects of environmental change may be considered.

Temperature

In contrast to the thermally-stable Antarctic marine
environment, terrestrial habitats experience widely
varying temperature regimes both on short-term
(daily) and longer-term (seasonal/annual) time-
scales. Daily ranges of 25-50°C are not unusual in
vegetation and on rock surfaces, with seasonal vari-
ation in the range 50-100°C (refs. in Convey 1996b).
Absolute values experienced are also of great signif-
icance to physiology and life history. Air tempera-
ture ranges vary between zones, being less extreme
in the sub-Antarctic (c. -15 to +20°C (Holdgate
1977)), intermediate in the maritime Antarctic (c. -40
to +20°C (Walton 1982, 1984)) and most severe in the
continental Antarctic (c. -40 to +5°C at coastal sites,
c. -89 to -10°C inland (Phillpot 1985; Jones and
Limbert 1987; Smith 1993a)). Importantly, microhab-
itat temperatures (at a scale relevant to terrestrial
biota) are often higher than those of the air due to
absorption of solar radiation, and buffered from
extreme lows by seasonal snow cover (e.g. Davey et
al. 1992; Kennedy 1995b). However, certain habitats
such as exposed rock surfaces and ablation zones
will track winter air temperatures very closely.

Freeze-thaw events

Closely related to temperature variation, the forma-
tion of ice crystals poses dangers to living tissue,
and has led to the use of a wide range of physiolog-
ical and behavioural cold tolerance strategies by
Antarctic invertebrates (see reviews by Block 1990;
Cannon and Block 1988; Convey 1996b). In practical
terms, use of these strategies means that, in their
normal habitats, Antarctic terrestrial invertebrates
can survive the range of temperatures experienced,
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either avoiding or controlling the formation of ice
crystals within the body so as to avoid damage. The
potential frequency of and danger from microhabi-
tat freeze-thaw events may be minor in the sub-
Antarctic (Convey 1996a), and limited in moister
habitats of the maritime Antarctic (Davey et al.
1992), but may be of daily occurrence in drier sites:
and in much of the continental Antarctic (Kappen
1985; Longton 1988; Smith 1988b). Freeze-thaw
events also influence the formation and stability of
soils via frost-shattering and cryoturbation

(Chambers 1967; Hall and Walton 1992), processes ‘

which may limit the survival and establishment of
colonizing propagules (Smith 1993; Wynn-Williams
1993).

Water availability

Where free water potentially occurs, its availability
to biota is again closely related to patterns of envi-
ronmental temperature. However, much of the con-
tinental Antarctic is a cold desert, with very low
precipitation levels. Even in the moister summer cli-
mate of the maritime Antarctic, periods of low pre-
cipitation (or snow melt) are experienced which,
combined with the poor water-holding capacity of
many substrates, leads to water stress for both
plants and animals (Block and Harrisson 1995;
Longton 1988). During the maritime Antarctic win-
ter terrestrial organisms are inactive and surround-
ed by ice crystals. In these circumstances desiccation
becomes a purely physical process with no biologi-
cal control, a function of vapour pressure difference
between body fluids and surrounding external ice
(Worland 1996). Water availabiltiy is recognized as
one of the most important limits on the distribution
of terrestrial organisms in Antarctica (Janetschek
1970; Kennedy 1993). Again, physiological responses
to water stress (which are closely related to those
allowing tolerance of cold) are well-developed in
Antarctic terrestrial invertebrates (Block 1996; Ring
and Danks 1994).

Nutrient availability
Levels of soluble nutrients are related to the avail-
ability of water and therefore, at least in part a func-

tion of temperature. Nutrients are generally thought
to be superabundant for Antarctic invertebrate com-
munities (mostly or completely decomposer-based)
(e.g. Block 1985; Convey 1997), although it should
be noted that very few data exist. Conflicting evi-
dence exists from Antarctic plant and microbial
communities - the cyanobacterium Phormidium sp.
shows physiological and behavioural responses to
nitrate and phosphate shortage (Gapp 1995), and
nitrate shortage may limit the growth of terrestrial
algae in some circumstances (Davey and Rothery
1992), but other studies of stream and pond algae
give no evidence of nutrient limitation (Davey
1993a, b). More widely, plant tolerance of nutrient
stress is closely related to tolerance of other environ-
mental stresses (Grime 1988, 1991). The distribution
of many plant species and occasionally communities
(most noticeably calcicole species) is closely-related
to underlying soil/rock chemistry and nutrient sta-
tus (Smith 1972).

Light availability
Levels of incident solar radiation vary on a seasonal
timescale (modulated by meteorological effects,
especially cloud cover). At latitudes south of the
Antarctic Circle the sun remains below the horizon
for a period of weeks to months during the winter
while, conversely, radiation receipt during summer
may be higher than experienced in temperate or
tropical regions (Gates 1972). Levels of visible light
may have little direct effect on Antarctic terrestrial
invertebrates, as they will be protected in their typi-
cal interstitial microhabitat. However, the indirect
effect on microhabitat temperatures may be of great
significance. The dominant cryptogamic plant
(Callaghan et al. 1992) and cyanobacterial communi-
ties are generally adapted to function efficiently at
low light intensities, and some show photoinhibi-
tion at the light intensities experienced during the
Antarctic summer (Adamson et al. 1988a; Kappen et
al. 1989; Post et al. 1990). The potential consequences
of seasonal increase in receipt of ultra-violet radia-
tion, as a consequence of the spring depletion of
stratospheric ozone, are discussed below.

These stresses will often act in combination, and



will be of varying importance to each situation con-
sidered. The level of pressure exerted also varies
widely (and unpredicatably) between years. With
specific relevance to life history strategies, their joint
action will lead to three general consequences
(Convey 1997):

" - short, cold summers will impose limits on
physiology, growth and reproduction

- windows for colonization and establishment will
be rare and short-lived

- the long winter may lead to a requirement to
budget for significant physiological costs".

Life history strategies

Recent studies of the life history strategies of
Antarctic terrestrial invertebrates and plants have
identified little evidence of evolved adaptation to
local environmental pressures (Convey 1996b, 1997).
In general, life histories are described well by the
features of adversity (A-) selection (Convey 1996b;
Kennedy 1995a; strategies after Greenslade 1983;
Southwood 1977), with long life cycles, slow growth
rates, low reproductive output, low dispersal ability
and high investment in survival adaptations.
Although all Antarctic species examined have fea-
tures which allow survival of the likely stresses
experienced, individually their possession is a ple-
siotypic character of the taxonomic group con-
cerned. The ancestral possession of several such fea-
tures is likely to have aided colonizing species pass
selective filters imposed by the Antarctic environ-
ment (Convey 1997), as terrestrial habitats became
available after the recent retreat of ice sheets follow-
ing Pleistocene glacial maxima.

Very few invertebrates of the maritime and conti-
nental Antarctic zones show a phenology dependent
on season. Indeed, although the life cycle of most
involves repeated overwintering in several life
stages (e.g. Burn 1984; Convey 1994a; Marshall and
Convey, in press), there is little evidence of true dia-
pause mediated by environmental cues (Convey
1996a, b). The lack of a true diapause has also been
noted in Arctic and alpine invertebrates (Semme
1995), and is thought to be due to disadvantages
consequential on any incorrect "switching on or off"
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of the diapause state (for a different reason, viz.
reduced seasonality due to limited temperature
variation on isolated oceanic islands, many inverte-
brates of the sub-Antarctic also show little seasonal
structure to their life cycle). Antarctic invertebrates
have essentially free-running life cycles with asyn-
chronous population development and extensive
overlap of generations. This situation is parallelled
by soil-dwelling (detritivorous) arthopods of the
Arctic (Addison 1977, 1981; Semme and Block 1991),
but contrasts with the life cycles of many Arctic
above-ground herbivores, which are closely syn-
chronized with the phenology of their host plants
(Bale et al. 1997). Bryophytes and lichens are usually
very long-lived, reproducing vegetatively through-
out their life. In many cases spores or sexual
propagules are not produced.

The typical free-running life cycle of Antarctic ter-
restrial invertebrates introduces a large element of
flexibility and opportunism. The thermal constraints
of the short, cold summer impose a requirement on
most species to overwinter more than once during
development. Beyond this constraint, individual
organisms can take opportunistic advantage of any
periods suitable for feeding, growth or reproduc-
tion, while retaining the capability to re-enter a tol-
erant quiescent state rapidly when needed. Life
cycle duration and structure can vary widely, with
apparently very little cost to the individual. The
degree of variation in environmental conditions
experienced throughout an organism's life is far
greater (in most cases) than changes predicted by
models of global climate change. This may lead to
difficulties in identifying reponses of organisms to
small but consistent changes, when their physiology
and life history are already well-tuned to survive
and take advantage of much larger and unpre-
dictable variations.

Environmental Change in Antarctica

Climate warming
There can be little doubt that climatic warming is
already tangible in Antarctica (Jones 1990; Kennedy
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1995a), although it is not yet clear whether warming
trends observed are a consequence of global or
regional processes (King 1994). In each of the three
biogeographical zones warming trends have been
identified over the last 30-50 years. An increase in
mean daily temperatures of c¢. 1°C has been
observed on sub-Antarctic Macquarie Island
(Adamson et al. 1988b), and recent monthly air tem-
perature observations made during summer on
South Georgia (Convey 1996¢c) were c. 1.4°C above
the mean values reported between 1905 and 1973
(Smith and Walton 1975). Similar trends have been
reported in the maritime Antarctic from sites on the
Antarctic Peninsula (Fowbert and Smith 1994; King
1994; Smith 1994; Stark 1994) and the South Orkney
Islands (Smith 1990), and at two coastal stations in
the continental Antarctic (Adamson and Adamson
1992). Accepting the level of uncertainty in predic-
tions of the magnitude of climate warming, especial-
ly with reference to Antarctica (Kennedy 1995a), the
observed data are at least consistent with these pre-
dictions (Maxwell and Barrie 1989).

Increased temperature is often associated with
more rapid loss of snow or ice cover. In particular,
recent well-documented break-up of floating ice
shelves along the Antarctic Peninsula (Doake and
Vaughan 1991; Vaughan and Doake 1996) has
focused attention on large-scale changes expected to
be associated with temperature amelioration.
However, large-scale loss of coastal ice shelves may
be limited initially to the relatively small and thin
shelves of the maritime Antarctic. Changes in annu-
al patterns of seawater flux associated with reduced
winter sea ice formation may act to thicken the
much more extensive ice shelves of the continental
Antarctic, and even increase their longevity
(Filchner-Ronne Ice Shelf - Nicholls 1997).

On a smaller scale, rapid reduction in area of
snow and ice fields has been documented on Signy
Island, South Orkney Islands and elsewhere in the
maritime Antarctic (Corner and Smith 1973; Fenton
1982; Fowbert and Smith 1994; Smith 1990), with ice
margins receding over 100 m and glacier thickness
being reduced by 7-8 m over a period of c. 20 y, and
total ice area decreasing by 35% over 40 y. The small

increase in mean temperatures observed at Signy
Island, probably associated with changes in precipi-
tation, insolation and ablation patterns appears to
have been sufficient to alter the mass-balance of the
relatively thin Signy Island glaciers and ice cap in
favour of rapid retreat. Block & Harrisson (1995)
postulate that recent rates of glacial ablation on
Signy Island are primarily due to increased wind
speed and irradiance, and have led to greater avail-
ability of water in terrestrial habitats.

Increasing temperature and life histories

In simple terms, any increase in mean temperature
will result in greater total thermal energy being
available within an ecosystem. Furthermore, theo-
retical models suggest that a given level of increase
in temperature will have proportionally greater
effects on high latitude ecosystems, where growing
seasons are short and annual temperature budgets
low (Strathdee et al. 1995, and refs. therein;
Woodward 1987).

It is likely that any increase in temperature will
have an immediate effect on the growth rates of
poikilothermic organisms, through Q. effects.
Predictably, growth rates of many Antarctic inverte-
brates increase as culture temperature is increased
(e.g. Burn 1982, 1986; Convey 1994b; Nicolai and
Droste 1984; Young 1979), as do those of moss shoot
fragments and developing propagules (R.LL. Smith,
pers. comm.). Invertebrates also show adaptation to
their low-temperature environment, with low opti-
mum temperatures for feeding and growth, and evi-
dence of thermal stress or an inability to complete
the life cycle at temperatures above c. 15°C. Low
enzyme activation energies and enhanced metabolic
rates in response to temperature increase at low pos-
itive temperatures are postulated to allow some
Antarctic micro-arthropods to take maximum
advantage of their current thermal environment
(Block 1977, 1979, 1982; Block and Young 1978;
Crafford and Chown 1993; Semme ef al. 1989; Young
1979). Such features pre-adapt these species rapidly
to take advantage of small thermal increments in
their habitats.

Very few pertinent field data are available from



studies of Antarctic invertebrates. Field manipula-
tion experiments at Signy Island (maritime
Antarctic) utilising plastic cloches (greenhouses) to
mimic temperature increases expected as a result of
global warming demonstrated consistently greater
microarthropod populations, with the greatest effect
(as predicted above) at more extreme sites where
thermal amelioration was greatest (Kennedy 1994).
Similar large increases in micro-algal and bryophyte
populations have also been obtained by the use of
passive greenhouses on Antarctic fellfield soils
(Smith 1993; Wynn-Williams 1990, 1993, 1996a, b).
However, great care must be taken in the interpreta-
tion of such experiments, as the greenhouse
methodology often affects variables other than tem-
perature, and may cause patterns of temperature
variation contradictory to those predicted by climate
change models (Kennedy 1995b, c).

If increasing temperature leads to concomitant
increases in growth rates, then a shortening of life
cycle duration would be predicted for invertebrates
with free-running life cycles (i.e. containing no sea-
sonally defined cues, see above). In the short term
this has the potential to lead to rapid increases in
population. Such a situation has been demonstrated
recently in field experiments on the aphid
Acyrthosiphon svalbardicum on Arctic Svalbard
(Strathdee et al. 1993). Using a different greenhouse
methodology, temperature elevations in the aphid's
natural habitat of 2.8°C were achieved, equivalent to
an increase in thermal budget over the entire sum-
mer period of 215 day degrees (c. 50% of the non-
manipulated control). This led to an eleven-fold
increase in the number of overwintering eggs, by
allowing completion of an extra generation during
the summer. Such rapid population increase has
serious implications for the food web of which the
aphid forms a part. In the short term, increased
impact on the host plant (Dryas octopetala) is
inevitable. However, long term effects are less clear.
Resource limitation may stop population growth of
the aphid or, alternatively, as yet unquantified
responses of natural predators and parasitoids to
either the increase in prey population or directly to
change in climate may come into play. It is clear that
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trophic interactions may be seriously altered, poten-
tially leading to significant changes to the food web.
Parallel studies on closely related Acyrthosiphon
species from lower latitudes in Scandinavia have
also confirmed the prediction of proportionately
greater effects being observed at more thermally-
limited high latitude sites (Strathdee et al. 1995).

A recent study of the predatory diving beetle
Lancetes angusticollis on sub-Antarctic South Georgia
has indicated similar potential (Fig. 1; Arnold and
Convey, in press). Unusually for an Antarctic inver-
tebrate, this species exhibits a temperature-mediated
overwintering state (Nicolai and Droste 1984) and is
unable to complete development at water tempera-
tures below 7.5°C. With a thermal constant for
development of 380 degree days above this thresh-
old temperature, the beetle has a minimum life cycle
duration of two years on South Georgia, as recent
summers have provided only c. 170-290 degree days
above the threshold. The effective length of the
development season (days above the threshold tem-
perature) is currently up to 123 d. An increase in
mean summer temperatures of only 1°C (i.e. of the
level already experienced in many Antarctic sites)
would in some years, therefore, be sufficient to
allow development to be completed within a single
season, by providing at least a further 123 degree
days above the threshold temperature. Again, far-
reaching consequences on food web and ecosystem
function can be predicted. Lancetes angusticollis is
one of only two predators present in sub-Antarctic
lake ecosystems on South Georgia. Currently, preda-
tors are thought to be functionally insignificant in
the trophic interactions within these lakes, which
therefore consist of two trophic levels (primary pro-
ducers and unregulated grazers) (Hansson and
Tranvik 1996; Tranvik and Hansson 1997). With a
potentially large increase in predator population, as
would be expected with a switch from a biennial to
annual life cycle, a third functionally important
trophic link would be introduced to the lake ecosys-
tem (Hansson and Tranvik 1996; Arnold and
Convey, in press), with unknown but likely major
consequences on interspecific interactions and lake
ecology. Lake communities in the maritime and con-
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Fig. 1. The potential influence of increasing water temperatures on larval development of the dytiscid water beetle Lancetes
angusticollis on sub-Antarctic South Georgia. Mean daily water temperature data from the 1995/96 austral summer are pre-
sented, with life cycle developmental threshold temperature and the duration of larval development (oviposition to adult
emergence) at constant culture temperatures of 10 and 15°C indicated (see Arnold and Convey, in press; Nicolai and Droste

1984).

tinental Antarctic zones are even simpler, character-
ized by short food chains and dominance of
microbes (Ellis-Evans 1996; Laybourn-Parry et al.
1996). Any inclusion of higher trophic levels in these
lake ecosystems would alter their trophic dynamics
drastically.

The flexibility inherent in the life history strate-
gies of many Antarctic terrestrial organisms
(Convey 1996b), combined with the "free-running”
nature of high latitude detritivore life cycles (Bale et
al. 1997), means that many species of all major
groups represented (invertebrates, plants, microbes)
are well-placed to show similar reduction in life
cycle duration and increase in population in
response to small changes in temperature, well
within the predictions of global circulation models.
How such immediate life history responses to
warming will translate into medium- and long-term

consequences for food web and ecosystem structure
and function is unknown.

Colonization
Two consequences of warming processes are likely
to have important indirect effects on life histories:
the rapid decrease in permanent ice cover exposes
new areas of uncolonized ground, while patterns of
water availability are likely to change (typically
increasing) either as a direct result of ice and snow
melt (e.g. Block and Harrisson 1995) or as a result of
increased precipitation predicted as a result of glob-
al warming (Schlesinger and Mitchell 1987).
Abundant evidence demonstrates the existence of
plant propagule banks in Antarctic habitats (Smith
and Coupar 1986; Smith 1990, 1991, 1993a; McGraw
and Day 1997). Not surprisingly, due to the extreme
isolation of these habitats from non-Antarctic



sources of propagules, the majority are thought to
be of local origin (e.g. Marshall 1997; Marshall and
Convey 1997). However, immigration of exotic
propagules undoubtedly occurs (Kappen and Straka
1988; Marshall 1997; Marshall and Chalmers 1997;
Smith 1991) encouraged by unusual but recurring
weather patterns (Marshall 1996). Communities of
exotic bryophytes have developed on volcanically-
warmed ground (which is both moist and buffered
from low temperatures) in continental Antarctica
(Bargagli et al. 1996; Broady et al. 1987) and in the
maritime Antarctic South Shetland (Smith 1984b)
and South Sandwich Islands (Longton and Holdgate
1979; Convey and Smith, unpubl.). Records of exotic
species on non-heated ground elsewhere in the

Antarctic are much more limited. However, at least

two bryophytes new to the region and probably of
South American origin have been found on recently-
exposed ground on Signy Island, South Orkney
Islands (Convey and Smith 1993; Smith 1993).

As discussed earlier, many sub-Antarctic and even
temperate invertebrate and plant species already
possess sufficient physiological and ecological plas-
ticity to allow survival in the more extreme habitats
of the maritime and continental Antarctic zones. The
only limit to their establishment is appropriate colo-
nization opportunity (Ellis-Evans and Walton 1990).
Climate amelioration will serve to increase this pool
of potential colonists, while increasing human pres-
ence and ease of access is likely to provide a major
means of transport (Smith 1996). Initial colonization
processes for newly-exposed substrates are stochas-
tically likely to be dominated by species and com-
munities already present locally. However, in the
medium to long-term, invasion (either natural or
with human assistance) by exotic microbes,
bryophytes, lichens and higher plants is inevitable,
increasing both species and structural complexity of
communities. An analogous process is also predict-
ed within invertebrate communities. This may
involve the inclusion of a specifically herbivorous
trophic level, concomitant with the increase in
importance of phanerogams, with life histories
much more closely tied to host phenology than
found in the current detritivore-based community

Convey: Environmental Change and Terrestrial Biota 135

(c.f. Bale et al. 1997).
Although most introductions of exotic species so
far documented have had little obvious effect on the

. ¢
natural ecosystems involved, a number of excep-

tions highlight the potential of immigrants to dis-
turb and even destroy pre-existing food webs.
Vertebrate introductions (in particular of cats and
rodents) have led to extinction of sub-Antarctic
ground-nesting birds, while alien herbivores (e.g.
rabbits, reindeer, moufflon) have largely restruc-
tured ecosystems, favouring the spread and domi-
nance of alien grass species over the native vegeta-
tion (Vogel et al. 1984; Leader-Williams 1988, and
refs. therein). Such introductions of mammals occur
only with human assistance. However, their subse-
quent establishment following introduction is ren-
dered more likely within a scenario of climate ame-
lioration. Furthermore, records of adventitious
migratory birds (including Turkey Vulture, Starling,
Cattle Egret, Black-necked Swan and various wad-
ing birds) are a regular occurrence on sub-Antarctic
islands, and occasional in the maritime Antarctic.
Establishment of any of these is now a real possibili-
ty, and could introduce a new trophic level to exist-
ing terrestrial food chains. The impact of an intro-
duced invertebrate predator (the carabid beetle
Trechisibus antarcticus) on endemic herbivorous bee-
tles has already been demonstrated on sub-Antarctic
South Georgia. In the presence of the carabid, herbi-
vore populations are significantly reduced, with evi-
dence of a shift in larval phenology favouring more
rapid development to enable avoidance of predation
(Ernsting ef al. 1995). Introduced detritivorous
Collembola (Hypogastrura viatica, H. purpurescens)
are also established on several sub-Antarctic islands,
where they have displaced naturally-occurring
species and become numerically dominant in many
habitats (Deharveng 1981; Deharveng and Travé,
1981; Greenslade 1990).

Water availability
Water availability plays a pivotal role in limiting the'

distribution of Antarctic terrestrial biota (Janetschek
1970; Kennedy 1993). Fine-scale distributions are
obviously closely correlated with sources of water
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(e.g. Light and Heywood 1975; Schwarz ef al. 1992).
Changes in water availability will alter the pattern
of microbial and plant community development (see
flow diagrams in Smith 1990). Increases, in particu-
lar, will promote the development of more complex
plant communities. Invertebrates, which depend on
primary producers for food (often via detritus), are
likely to mirror the increase in complexity as the
majority of their microhabitats are associated with
plant and/or microbial communities. Species which
are able to tolerate extreme desiccation are well-rep-
resented in Antarctic ecosystems, including
cyanobacteria (Davey 1991), lichens and xerophytic
mosses (Longton 1988) and microscopic inverte-
brates (Pickup and Rothery 1991; Semme and Meier
1995). The Arctic collembolan Onychiurus arcticus
can survive gradual desiccation and loss of c. 75% of
its initial body water content (Worland 1996), but
the capabilities of Antarctic micro-arthropods are
unknown. Characteristic of all these organisms is a
very rapid recovery of water content and return to
normal activity when exposed to free water. If envi-
ronmental change in Antarctica leads to longer peri-
ods of water availablility in terrestrial habitats than
at present, the consequence could be a further
reduction in life cycle duration, by acting additively
with the increasing thermal budget discussed above.

Recent evidence suggests that some Antarctic
micro-arthropods may exist in a permanent state of
water stress (Block and Harrisson 1995) - in a four-
year study, the body water content of field-collected
springtails (Cryptopygus antarcticus) varied seasonal-
ly within the range 57-66% of fresh weight, consis-
tently below the 74-85% typical of laboratory cul-
tures, and therefore suggested to be suboptimal.
Controlling for seasonal variation, the same study
also found a trend of increasing water content over
the period, which was correlated with environmen-
tal variables resulting in increased rates of glacial
melting / ablation, hypothesised to lead to increased
water input to the terrestrial habitat. Further analy-
sis of a longer (11 year) dataset obtained at the same
site on Signy Island (Convey and Block, unpubl.
data) also gives evidence of changing environmental
water status (Table 1). These results confirm the sea-

Table 1. Direction of trends in monthly mean water content
of the maritime Antarctic springtail, Cryptopygus antarcti-
cus, over the period April 1984 to November 1995
(Convey P. and Block W., unpubl. data). Trends each
month over the 11 y period (+ve, -ve) are presented as
regressions of (1) water content as a proportion of fresh
mass (WC/FW) and (2) water content per gram dry mass
(g g' dry mass) on month of collection. NS = regression
not significant. Springtails, n = 10-50 animals per sample
(usually 25), were collected each month from the same site
on Signy Island, South Orkney Islands; individuals were
weighed separately after November 1997, and in groups
of 5-10 animals before that date

Month WC/FW g g' dry mass
January NS NS
February NS NS
March NS NS
April (+ve, p = 0.081) +ve, p = 0.011
May +ve, p = 0.003 +ve, p = 0.001
June NS NS
July (+ve, p =0.075) NS
August +ve, p = 0.007 +ve, p = 0.003
September NS NS
October NS NS
November -ve, p < 0.001 -ve, p < 0.001
December (-ve, p = 0.098) NS

sonal pattern of changing water content in C.
antarcticus. Although no overall trend was found in
the longer study, analysis of water content data by
collection month showed a striking seasonal pattern.
In most winter and summer months, no trend is
apparent. However, during early spring and late
autumn (August, April, May), significant increasing
trends were found, with a decrease during one
month in summer (November). Although not offer-
ing proof, these observations are consistent with an
increase in effective summer length that is expected
as a consequence of climate amelioration, which will
result in the spring thaw commencing earlier and
autumn freeze completing later.

The midsummer reduction in water content is
indicative that the direct association of warming,
water availability and community complexity is too
simplistic (see Kennedy 1995a). Earlier spring melt,
or complete loss of permanent snow or ice, may
result in water shortage later in the season.



Furthermore, melting of permafrost may increase
drainage, and increased numbers of freeze-thaw
cycles may promote soil disturbance via cryoturba-
tion. The net effect of these processes would be to
limit rather than encourage the development of
bryophyte communities (and associated inverte-
brates) that currently dominate Antarctic vegetation
(Kennedy 1995a).

Separately, increased water flow through particu-
lar soil substrates may result in more leaching of
nutrients. Primary stabilization and colonization of
Antarctic soils occurs via the formation of microbial
crusts or mats (Wynn-Williams 1993). Gapp (1995)
demonstrated that, under conditions of nitrate or
phosphate limitation, the common Antarctic
cyanobacterium Phormidium sp. showed reduced
ability to attach to hydrophobic substrates. This
result implies that increased throughflow of water
and associated leaching of nutrients may actually
reduce the rate of stabilization of some Antarctic
soils, hence retarding community development.

Ultra-violet radiation

The discovery of the Antarctic ozone "hole” in 1985
(Farman et al. 1985) led rapidly to realisation that
increased levels of ultra-violet (UV) radiation would
reach the earth's surface. Ozone depletion (from >
300 Dobson Units (DU) to < 100 DU) occurs early in
the austral spring (September), with the hole persist-
ing until November/December (Frederick and
Lubin 1994; Kerr 1994; Voytek 1990). As the efficien-
cy of UV absorption by ozone varies with wave-
length, increases in irradiance at ground level vary
widely (Frederick and Snell 1988), between factors
of 2 and 14. The biological damage caused by UV
radiation is also a function of wavelength (Dahlback
et al. 1989), while susceptibility to damage varies
between species (Vincent and Quesada 1994).
Finally, the UV dose received at any location is mod-
ulated by meteorological conditions (e.g. cloud
cover), and the pattern of movement of the ozone
hole (Gautier et al. 1994).

The potential biochemical consequences of expo-
sure to UV radiation (especially shorter wavelength
UV-B, 280-315 nm) are well-documented, and the
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general subject is not considered further here.
Enhanced UV radiation is considered as a potential
threat to all Antarctic ecosystems (Wynn-Williams
1994), with terrestrial ecosystems likely to be the
first to be affected (Voytek 1990). As recognized by
Voytek (1990) and Kennedy (1995a), little research
activity has been directed towards evaluating the
biological consequences of global change (including
increasing UV radiation) on Antarctic ecosystems.
Both authors draw general conclusions that commu-
nity composition, life history characteristics and
trophic dynamics are expected to change.

Direct effects of increased UV radiation are pre-
dicted to be limited to primary colonizers of the sur-
face layers of Antarctic soils (algae, bacteria,
cyanobacteria), along with the bryophyte communi-
ties that develop subsequently, and lichens that col-
onize bare rock surfaces directly. Associated detritiv-
orous invertebrate communities are likely to receive
little direct exposure, spending most or all of their
life cycles within the soil or vegetation matrix.
However, a suggestive increase in the proportion of
individuals of the maritime Antarctic mite
Magellozetes antarcticus carrying "faulty” patterns of
setation at sites on Alexander Island (exposed to
ozone depletion for longer periods than more
northerly sites in the zone) has been noted (J. Stary,
pers. comm.).

Micro-organisms can use four lines of defence
against UV exposure (Vincent and Quesada 1994) -
avoidance, screening, quenching and repair. Many
cyanobacteria synthesize pigments capable of
absorbing harmful UV radiation (Ehling-Schulz ef al.
1997; Garcia-Pichel and Castenholz 1991, 1993). In
Nostoc commune, the pigment scytonemin is respon-
sible for UV-A absorption, while exposure to UV-B
induces production of mycosporine-like amino acids
(MAA's), a specific UV-B sunscreen (Ehling-Schulz
et al. 1997). Scytonemin is produced by many
cyanobacteria and is contained within an extracellu-
lar mucilage sheath. This sheath is believed to play
several overlapping roles of ecological relevance,
including attachment to substrate, modulation of
environmental stress, protection against desiccation,
concentration of nutrients and prevention of UV
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damage, and represents a major investment of ener-
gy and biochemical resources (Hill and Potts 1994;
Potts 1994). In the extreme, the level of investment
in sheath production may result in growth cessation.
Scytonemin and other pigments such as flavonoids,
carotenoids and MAA's are known to be present in
cyanobacteria-dominated microbial mats in
Antarctica (Vincent et al. 1993). However, it is not
yet known whether Antarctic species actively pro-
duce additional pigment in response to increased
UV radiation levels. Any such diversion of resources
will reduce that available for other processes such as
growth and reproduction. One possible consequence
of a switch in resource use will, therefore, be to
reduce the rate at which soil stabilisation (and hence
colonisation by macroscopic plants) can occur.

Protective pigments also are found in algae and
bryophytes (Markham et al. 1990; Post 1990; Post
and Larkum 1993; Webby et al. 1996). However, evi-
dence for their role in Antarctic species is fragmen-
tary at best. The foliose alga Prasiola crispa contains
high levels of a single UV-absorbing pigment, vary-
ing in a manner consistent with the level of UV
exposure; however, experimental exposure to
enhanced UV-B resulted in a decrease in chlorophyll
content without changing the ratio of UV-absorbing
pigments to chlorophyll (Post and Larkum 1993),
suggesting that the exposure was stressful and the
alga had little ability to respond. A somewhat spec-
ulative analysis of flavonoid content of preserved
bryophyte herbarium specimens collected in the
Ross Sea area between 1957 and 1989 (Markham et
al. 1990), revealed a trend approximating to mea-
sured changes in ozone levels at the South Pole.

In the absence of data, it can be speculated that
two likely components of the response to increasing
UV levels will be important within the life history
strategies of Antarctic microorganisms and plants.
Any associated increase in production of protective
pigments will divert resources away from other
processes. Repair processes following damage to
photosynthetic or genetic apparatus will similarly
divert resources, in addition to a direct reduction in
primary production (the latter effect has been
demonstrated in marine, but not terrestrial, ecosys-

tems (Holm-Hansen et al. 1993)). As the period of
increased UV exposure is currently limited to the
spring and early summer, it may result in an effec-
tive reduction of growing season length (thereby
acting in a contradictory manner to the effects of cli-
mate amelioration and water availability discussed
above). In an extreme scenario, seasonally-increased
UV radiation may be sufficient to prevent coloniza-
tion or continued existence of certain species at a
given site.

With the exception of exposed lichens and the
near-surface biota of ablation areas such as the Dry
Valleys, many communities may be partially pro-
tected from the effects of increased UV exposure for
some or all of the duration of ozone depletion.
Throughout the maritime and continental Antarctic
zones, many terrestrial and freshwater communities
do not emerge from winter snow or ice cover until
late November or December. Although visible and
ultraviolet radiation can penetrate through snow
(indeed snow cover can effectively form a "green-
house", with significant photosynthetic activity pos-
sible well before completion of snow melt (Longton
1988), no data exist on the magnitude of exposure of
terrestrial biota, and hence the potential of snow
cover to give protection.

Conclusions

Environmental change is a reality in Antarctic ter-
restrial environments. Factors of immediate rele-
vance to life history strategies of the biota include
increasing mean temperatures, with associated
changes in water availability due to ice recession
and altered precipitation patterns, and seasonally-
increased levels of UV radiation caused by spring
ozone hole formation.

The terrestrial environment already provides an
inter-related range of stresses to the resident biota.
The level of variation in most of these stresses is
considerably greater than the predicted change
resulting from global circulation models. These
changes lie comfortably within the physiological
and life history characteristics of the resident biota.



Life history strategies of Antarctic terrestrial biota
are generally "free-running", characterized by a
large degree of flexibility, lack of environmentally-
cued diapause and lack of synchronization (both
within species and with season). These features
allow opportunistic advantage to be taken of ame-
liorated environmental conditions.

Resident species are therefore well-placed to
respond rapidly to climate warming. In the short-
term, parallel changes to those found experimental-
ly in the Arctic are predicted. Rapid population
growth will occur, leading to changes in trophic
interactions, which may involve inclusion of new
(higher) trophic levels and the destabilisation of cur-
rent food webs. Community structure will increase
in complexity where plant communities develop
further than at present. The precise trajectory of
change is unknown, depending on the balance of
interactions between primary producers, detriti-
vores, herbivores and carnivores, and the response
of any/all of these to climate change. Virtually no
data are available in these areas.

Correlated changes in water availability may act
additively with warming effects, allowing further
decrease in life cycle duration and contributing to
population increase and community development.
Conversely, through increased drainage, leaching,
cryoturbation and/or desiccation, the potential of
terrestrial habitats for colonization or community
development may decrease. Again, the precise con-
sequences remain to be quantified at any specific
site.

In the middle- to long-term, climate amelioration
will provide greater opportunity for colonisation by
exotic taxa, by increasing both the area available for
colonization and the duration of field conditions
suitable to permit establishment. Human interven-
tion is likely to increase the rate of arrival of exotic
species, but is not the only available route. The tra-
jectory of community development following
colonisation of exotic species is not predictable in
detail. However, increasing trophic complexity is
again likely, with expansion of phanerogam commu-
nities, the arrival of obligate herbivores with life
cycles synchronized with season and host plant phe-
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nology, and increasing importance of higher trophic
levels in food chain regulation. Populations of some
resident species may be driven extinct by this
process.

Deleterious effects of increased UV-B receipt dur-
ing spring and early summer are likely to have a
greater effect on microbial communities (especially
primary colonizing micro-algal phototrophs), along
with exposed bryophytes and lichens, than on soil-
dwelling invertebrates. Survival of this stress will
necessitate significant additional diversion of
resources to the manufacture of protective pigments,
thereby reducing individual and population growth.
The ability of microbial groups to act as primary col-
onizers and stabilizers of Antarctic soils may be seri-
ously impaired which may, in turn, limit the subse-
quent colonization and development of macroscopic
plant and animal communities, independently of the
direct effects of UV on the latter groups.
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