Crystal structure of unphosphorylated Spo0F from Paenisporosarcina sp. TG-14, a psychrophilic bacterium isolated from an Antarctic glacier

Chang Woo Lee1,2, Sun-Ha Park1, Chang Sook Jeong1,2, Chang Sup Lee3, Jong Wook Hong4,5, Hyun Ho Park6, Hyun Park1,2, HaJeung Park*7 and Jun Hyuck Lee1,2*

1Unit of Polar Genomics, Korea Polar Research Institute, Incheon 21990, Republic of Korea, 2Department of Polar Sciences, Korea University of Science and Technology, Incheon 21990, Republic of Korea, 3College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea, 4Department of Biomaterials, Graduate School, Hanyang University, Seoul 04763, Republic of Korea, 5Department of Bionanoengineering, Hanyang University, Kyunggi-do 15588, Republic of Korea, 6College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea, 7X-Ray Core, TRI, The Scripps Research Institute, Jupiter, FL 33458, USA
*Correspondence: hajpark@scirpps.edu, junhyuckleek@kopri.re.kr

Spo0F is a response regulator that modulates sporulation, undergoes phosphorylation for phosphorelay signal transduction, and interacts with various regulatory proteins; however, the mechanisms through which phosphorylation induces structural changes and regulates interactions with binding partners remain unclear. Here, we determined the unphosphorylated crystal structure of Spo0F from the psychrophilic bacterium Paenisporosarcina sp. TG-14 (PaSpo0F) and established a phosphorylation-state structural model. We found that PaSpo0F underwent structural changes (Lys54 and Lys102) by phosphorylation and generated new interactions (Lys54/Glu84 and Lys102) to stabilize the β4/α4 and β1/α1 loop structures, which are important target-protein binding sites. Analysis of Bacillus subtilis Spo0 variants revealed movement by BsSpo0F Thr82 and Tyr84 residues following interaction with BsSpo0B, providing insight into the movement of corresponding residues in PaSpo0F (Thr80 and Tyr82), with further analysis of BsSpo0F/BsRapH interaction revealing alterations in the β4/α4 loop region. These results suggest that phosphorylation-induced structural rearrangement might be essential for PaSpo0F activation and expand the understanding of Spo0F-specific activation mechanisms during sporulation.

INTRODUCTION

Sporulation is a crucial survival strategy for some microorganisms, such as Bacillus, Clostridium, and Sporosarcina spp. In harsh environments, microorganisms enter a dormant state and generate a coat that comprises several layers. These morphological and physiological changes allow microorganisms to survive in the presence of environmental stressors, such as heat, cold, dryness, ultraviolet radiation, and insufficient nutrients (Al-Hinai et al., 2015; Desnous et al., 2009; Nicholson et al., 2000; Roszak and Colwell, 1987). The psychrophilic bacterium Paenisporosarcina sp. TG-14 was isolated from sediment-laden, stratified basal ice from Taylor Glacier, McMurdo Dry Valley, Antarctica (Koh et al., 2012). Paenisporosarcina sp. TG-14 is thought to have survived in an extremely cold environment for a long time by inducing spor formation.

During the initial stage of sporulation, signal pathways are managed by an expanded two-component system called a phosphorelay (Stephenson and Hoch, 2002), with the signal originating at a sporulation histidine kinase (e.g., KinA, KinB, KinC, KinD, and KinE) via autophosphorylation (Brunising et al., 2005; Jiang et al., 2000; LeDeaux and Grossman, 1995; LeDeaux et al., 1995; Stephenson and Hoch, 2001). Notably, environmental signals can be triggers for these pathways. Next, the phosphohistidine in the kinase domain of the sporulation histidine kinase transfers the phosphoryl group to Spo0F (Jiang et al., 2000; Lee et al., 2008), in which an aspartate residue is phosphorylated, thereby promoting Spo0F interaction with Spo0B. Spo0B is then phosphorylated by Spo0F, after which Spo0B phosphorylates the regulatory domain of Spo0A (Burbulis et al., 1991; Tzeng et al., 1998; Varughese et al., 2006). Phosphorylated Sp0A then forms a dimer that binds to 0A boxes and/or specific DNA sequences to activate the transcription of downstream spore-forming genes (Ireton et al., 1993; Lewis et al., 2002; Muchova et al., 2004).

Spo0F is a single-domain protein homologous to the N-terminal activator domain of response regulators (Feher et al., 1997; Zapf et al., 1996). Spo0F belongs to the CheY-like protein...
superfamily, and CheY is a member of the response-regulator family in bacterial two-component signaling systems (Volz, 1993). Nitrate/Nitrite-response regulator, nitrogen regulatory protein, ethylene receptor, and Spo0A also belong to the CheY-like superfamily (Baikalov et al., 1996; Lee et al., 2003; Lewis et al., 1999; Müller-Dieckmann et al., 1999). The compact globular protein Spo0F has a β5/α5-barrel scaffold architecture with one divalent ion at the active site (Mukhopadhyay et al., 2004). Moreover, an aspartate in the Spo0F active site is phosphorylated by sporulation histidine kinases and acts as a phosphate donor for the histidine receptor on Spo0B (Varughese et al., 2006). Phosphorylated Spo0F can be dephosphorylated by Rap phosphatase (Parashar et al., 2011), with the formation and destruction of the phosphorylated (active) signaling molecule tightly controlled for successful signal transduction.

In this study, we elucidated the molecular basis of Spo0F-mediated phosphorylase by determining the X-ray crystal structure of unphosphorylated Spo0F from the psychrophilic bacterium Paenisporosarcina sp. TG-14 (PaSpo0F) and generating a phosphorylated structural model of PaSpo0F. Our findings provide important insights into the activation mechanism of PaSpo0F.

RESULTS AND DISCUSSION

Protein expression and crystallization of PaSpo0F

Recombinant PaSpo0F was expressed and purified to apparent homogeneity, with purified PaSpo0F displaying a homogenous band with a molecular mass of ~11 kDa according to sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) (Figure 1A). Analytical ultracentrifugation experiments were performed to determine the oligomeric state of PaSpo0F in solution. The sedimentation coefficient distribution confirming that inactive (unphosphorylated) PaSpo0F existed as a monomer with a molecular mass of 11.8 kDa (Figure 1B). The purified PaSpo0F protein was subsequently concentrated to 12.8 mg/mL for crystallization, trials of which were performed at 293 K using the sitting-drop vapor diffusion method. A Mosquito crystallization robot (TPP Labtech, Melbourn, UK) was used to screen ~980 different conditions. The stacked plate-shaped crystals of PaSpo0F appeared within 2 days under the following conditions: 40% v/v polyethylene glycol (PEG) 300, 100 mM sodium cacodylate/HCl (pH 6.5), and 200 mM calcium acetate. Crystals were ~200 × ~50 × ~100 μm in size (Figure 1C). Crystals were harvested and soaked in paratone-N oil for cryoprotection under a stream of liquid nitrogen. An X-ray diffraction dataset with 180 images at 1.8 Å resolution limit was successfully collected.

Overall structure of unphosphorylated PaSpo0F

The crystal structure of PaSpo0F was determined at 1.8 Å resolution in space group P2_12_1, with one molecule in the asymmetric unit. The final structural model was refined to an Rwork value of 18.8% and an Rfree value of 22.6%. The overall structure of PaSpo0F had a single compact (α/β)8-fold domain similar to the receiver-domain structure of CheY-like superfamily proteins (Galperin, 2006). Five β-strands formed a parallel β-sheet, with five α-helices surrounding the β-sheet (Figure 2A). A search for structural homologs using the DALI server revealed that the closest PaSpo0F homolog was Spo0F from Bacillus subtilis (BsSpo0F) (Holm and Sander, 1995; Varughese et al., 2006;
Zapf et al., 2000), with the YycF receiver domain, NtrX receiver domain, and CheY also returning high DALI scores (Table 1) (Fernández et al., 2015; Usher et al., 1998). PaSpo0F shared 65% sequence identity with BsSpo0F, and unphosphorylated PaSpo0F showed high structural similarity to unphosphorylated BsSpo0F (PDB: 1PEY), with a root mean square deviation (r.m.s.d.) of 1.184 Å for 114 Ca atoms (Mukhopadhyay et al., 2004). Minor structural differences were observed in the loop

FIGURE 2 | Crystal structure of PaSpo0F and sequence alignment with other response-regulator proteins. (A) The overall structure of PaSpo0F is drawn as a ribbon diagram with α-helices colored yellow and β-strands colored magenta. (B) A simplified scheme for phosphoryl signal transduction by Spo0F. (C) Multiple sequence alignments of PaSpo0F (NCBI reference sequence number: WP_017382123.1), BsSpo0F (Uniprot code: P06628; PDB: 1NAT), Spo0F from Bacillus thuringiensis (Uniprot code: P52942), Spo0F from Hellobacillus mobilis (Uniprot code: Q0P1J8), the NtrX receiver domain (1–126; Uniprot code: Q2YPW6; PDB: 4D6X), and the YycF receiver domain (1–122; Uniprot code: P37478; PDB: 2ZWM). The phosphorylated residue (Asp52) is indicated with a red triangle, and Lys54 and Lys102 are indicated by a black rhombus and a black circle, respectively. The multiple sequence alignment was performed with ClustalX (http://www.clustal.org/clustal2/) and edited with GeneDoc (http://iubio.bio.indiana.edu/soft/molbio/ibmpc/genedoc-readme.html).

<table>
<thead>
<tr>
<th>Protein</th>
<th>PDB code</th>
<th>DALI Z-score</th>
<th>UniProtKB code</th>
<th>Sequence %ID with PaSpo0F (aligned residue number)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berylloflouride-bound Spo0F in complex with Spo0B</td>
<td>2FTK</td>
<td>24.5</td>
<td>P06628</td>
<td>62% (119)</td>
<td>(Varughese et al., 2006)</td>
</tr>
<tr>
<td>Spo0F in complex with Spo0B</td>
<td>1FS1</td>
<td>23.2</td>
<td>P06628</td>
<td>63% (119)</td>
<td>(Zapf et al., 2000)</td>
</tr>
<tr>
<td>YycF receiver domain</td>
<td>22WM</td>
<td>23.0</td>
<td>P37478</td>
<td>35% (118)</td>
<td>Not yet published</td>
</tr>
<tr>
<td>BsSpo0F</td>
<td>1NAT</td>
<td>22.9</td>
<td>P06628</td>
<td>63% (119)</td>
<td>(Madhusudan et al., 1997)</td>
</tr>
<tr>
<td>RapH in complex with Spo0F</td>
<td>3Q15</td>
<td>22.7</td>
<td>P06628</td>
<td>65% (116)</td>
<td>(Parashar et al., 2011)</td>
</tr>
<tr>
<td>Mn2+-bound Spo0F</td>
<td>1PEY</td>
<td>22.7</td>
<td>P06628</td>
<td>63% (119)</td>
<td>(Mukhopadhyay et al., 2004)</td>
</tr>
<tr>
<td>NtrX receiver domain from Brucella abortus</td>
<td>4D6X</td>
<td>22.5</td>
<td>Q2YPW6</td>
<td>30% (117)</td>
<td>(Fernández et al., 2015)</td>
</tr>
<tr>
<td>Phosphatase-resistant Spo0F mutant</td>
<td>1SRR</td>
<td>22.5</td>
<td>P06628</td>
<td>63% (119)</td>
<td>(Zapf et al., 1996)</td>
</tr>
<tr>
<td>CheY from Thermotoga maritima</td>
<td>4QYW</td>
<td>22.4</td>
<td>Q56312</td>
<td>32% (117)</td>
<td>Not yet published</td>
</tr>
<tr>
<td>Putative response regulator from Chloroflexus aurantiacus</td>
<td>3T6K</td>
<td>22.3</td>
<td>A9WCL5</td>
<td>34% (119)</td>
<td>Not yet published</td>
</tr>
<tr>
<td>CheY from Thermotoga maritima</td>
<td>3TMY</td>
<td>22.3</td>
<td>Q56312</td>
<td>33% (116)</td>
<td>(Usher et al., 1998)</td>
</tr>
</tbody>
</table>
region of the neighboring active site, where one magnesium ion was bound tightly in PaSpo0F via interactions with side chains of Asp8, Asp9, and Asp52 and the main chain carbonyl oxygen of Lys54. The predicted phosphorylation site (Asp52) in PaSpo0F (Asp54 in BsSpo0F) is highly conserved in Spo0F proteins (Figure 2C).

Comparison with other receiver-domain-containing proteins

Structural superposition with the receiver domain of NtrX (PDB: 4D6X) from *Brucella abortus* showed clear differences in the phosphorylation site (Fernández et al., 2015) (Figure 3A). In the NtrX structure, Lys54 and Pro56 of PaSpo0F located on the β3/α3 loop region are substituted by Trp55 and Gln57, respectively. Moreover, NtrX has a slightly longer β3/α3 loop region than PaSpo0F, and PaSpo0F Gln10 and Tyr82 residues are substituted by Glu11 and His85, respectively. Additionally, structural comparison with the receiver domain of YycF (PDB: 2ZWM) from *B. subtilis* revealed striking differences in the phosphorylation site (Figure 3B), where Gin10, Lys54, Tyr82, and Gly83 of PaSpo0F were substituted by Glu10, Met54, Lys80, and Asp82, respectively, and large variations were observed between the β4/α4 loop region. However, we noted that the phosphorylation site at Asp52 was conserved in all structures. The conserved residues Asp8, Asp9, and Lys102 in PaSpo0F play a central role in phosphorylation, and each analyzed structure displayed combinations of various residues near the phosphorylation site, resulting in different charge distributions and physical structures. These findings suggest that these features confer variable specificity in protein-protein interactions.

Structural modeling of phosphorylated PaSpo0F

The active state (phosphorylated) of Spo0F has a short half-life (several hours in the case of BsSpo0F) due to autodephosphorylation, which hampers structure analysis of phosphorylated Spo0F (Perelo, 2001; Thomas et al., 2008). Therefore, a phosphorylated (active state) PaSpo0F model was generated by molecular modeling, followed by energy minimization based on our apo (inactive state) PaSpo0F structure as a template to obtain further insights into the activation mechanism and target-protein recognition. The modeling data

FIGURE 3 | Structural comparison with other receiver-domain-containing proteins. (A) Structural superimposition of PaSpo0F (green) and the NtrX receiver domain (tvorange). (B) Structural superimposition of PaSpo0F (green) and the YycF receiver domain (aquamarine). The residues located in proximity to the phosphorylation site are shown as stick models. The magnesium ion bound by PaSpo0F is presented as a light-green sphere.

FIGURE 4 | Structural comparison of unphosphorylated (X-ray crystal structure; inactive state) and phosphorylated (modelled structure; active state) PaSpo0F. (A) Crystal structure of unphosphorylated PaSpo0F. (B) Modelled structure of phosphorylated PaSpo0F. (C) Structural superposition of unphosphorylated PaSpo0F (green) and phosphorylated PaSpo0F (salmon). The bound magnesium ion is presented as a sphere, and several residues important for target protein binding (Tyr82), metal binding (Asp8, Asp9, and Asp52), phosphate interaction (Lys54 and Lys102), and loop stabilization (Glu84 and Gln10) are shown as stick models. Phosphorylation of PaSpo0F changed the interaction network proximal to the phosphate- and metal-binding sites.
showed that the negatively charged phosphate group was stabilized by the magnesium ion, the NZ atom of the Lys102 side chain, and the nitrogen backbone atom of Lys54.

As shown in Figure 4, structural changes in Lys54 and Lys102 were detected after phosphorylation. Additionally, these results indicated that phosphorylation at Asp52 induced rearrangement of the polypeptide backbone of Lys54 and movement of the Lys102 side chain, which was rotated to an alternative conformation in phosphorylated PaSpo0F and formed a new hydrogen bond (3.4 Å) with the NE2 atom of Gin10 (located in the β1/α1 loop region). Moreover, Lys54 formed a new salt bridge with Glu84 (located in the β4-α4 loop region) in the phosphorylated PaSpo0F model.

The functional importance of the β4/α4 loop and the α1 helix in Spo0F has been discussed previously (Feher and Cavanagh, 1999; Hoch and Varughese, 2001; Jiang et al., 1999). Spo0F is involved in the phosphorelay system, which controls sporulation initiation. Moreover, Spo0F is phosphorylated by sporulation histidine kinases and subsequently phosphorylates Spo0B.

Inversely, Spo0F is dephosphorylated by RapH for its inactivation (Figure 2B). Previous studies revealed the complex structures of beryllium fluoride-bound BsSpo0F and BsSpo0B (PDB: 2FTK). Our structural comparison of apo PaSpo0F with BsSpo0B-bound BsSpo0F revealed a 51.6° rotation of the Thr82 side chain in BsSpo0F, with the corresponding residue in PaSpo0F (Thr80) rotated toward the bound beryllium fluoride (a phosphate analog) to promote interaction. Additionally, we observed rotational movement of the Tyr84 side chain of BsSpo0F (corresponding to Tyr82 in PaSpo0F) to allow a hydrophobic interaction with the side chain CG and CD atoms of Lys63 in BsSpo0B. As a result, these interactions induced a longer β4 strand (residues 76–81) in BsSpo0B-bound BsSpo0F than that (residues 76–80) in the apo structure of PaSpo0F. These conformational changes might promote phosphate transfer from Asp52 of PaSpo0F to the histidine residue of Spo0B (Figure 5A). To analyze mechanisms associated with Spo0F dephosphorylation by RapH, we compared our structure with BsSpo0F–BsRapH complex crystal structure determined by Vijay et al. (PDB: 3Q15). We observed conformational changes in the β4/α4 loop of BsSpo0F, with this loop flipped toward the active site, and the Tyr84 residue located in the β4/α4 loop shifted toward the α3 helix of BsRapH. These conformational changes promoted interaction with BsRapH, thereby allowing the Gin47 of BsRapH to dephosphorylate Asp54 (corresponding to Asp52 in PaSpo0F) of BsSpo0F (Figure 5B).

Although several small conformational changes were detected, phosphorylation did not induce large conformational changes in the PaSpo0F structure. Superposition of Ca atoms from unphosphorylated PaSpo0F with the phosphorylated PaSpo0F model structure yielded r.m.s.d. values of 0.114 over 111 Ca atoms. Previous results showed that the RapH phosphatase is capable of interacting with both phosphorylated and unphosphorylated BsSpo0F, though it exhibits stronger affinity for phosphorylated BsSpo0F (Bongiorni et al., 2006; Gardino et al., 2003; Ishikawa et al., 2002). These findings indicated that while Spo0F phosphorylation did not induce significant conformational changes, structural alterations still occurred.

METHODS

Cloning, protein expression, and purification

The DNA fragments encoding full-length Spo0F (residues 1–119) from *Paenibacillus polymyxa* strain T7 (Noguchi, Madison, WI, USA) were used as expression constructs for expression in *Escherichia coli* (Bioneer Inc., Daejeon, Korea). The DNA fragments were cloned into the expression vector pET-28a using NdeI and XhoI restriction sites. The final constructs contained a hexahistidine tag, a thrombin-cleavage site, and the target gene under the control of the T7 promoter was transformed into *E. coli* strain BL21 (DE3) (Enzymatics, Daejeon, Korea) for expression. The cells were grown in LB medium supplemented with kanamycin (50 μg/ml) at 37°C until reaching an OD₆₀₀ of 0.6. Overexpression of PaSpo0F was induced by the addition of 0.5 mM isopropyl-1-thio-β-D-galactopyranoside at 25°C overnight. The cells were harvested by centrifugation (VS-24SMT; Vision Scientific, Bucheon, Republic of Korea) at 6,000 rpm and 4°C for 20 min. The harvested cell pellets were suspended in buffer [50 mM sodium phosphate, 300 mM NaCl, 5 mM imidazole (pH 8.0), and 0.2 mg/mL lysozyme]. The cells were lysed using an ultrasonicator (VCT 750; Sonics & Materials, Newtown, CT, USA), and the lysates were clarified by
centrifugation at 16,000 rpm for 40 min at 4°C. The supernatants were loaded onto pre-equilibrated Ni-NTA columns (Qiagen, Hilden, Germany), which were washed with wash buffer [50 mM sodium phosphate, 300 mM NaCl, and 20 mM imidazole (pH 8.0)] and eluted with elution buffer [50 mM sodium phosphate, 300 mM NaCl, and 300 mM imidazole (pH 8.0)]. The hexahistidine tag was cleaved using thrombin at 4°C overnight. PaSpoOF was further purified by gel filtration on a Superdex 200 column (GE Healthcare, Piscataway, NJ, USA) equilibrated with 20 mM Tris-HCl (pH 8.0) and 150 mM NaCl. Fractions containing PaSpoOF were collected and concentrated to 12.8 mg/ml using Amicon Ultra-15 centrifugal filters (Ultracel-10 K; Merck Millipore Ltd., Cork, Ireland). Protein concentration and purity were measured using a Nanodrop spectrophotometer (Nanodrop Technologies, Wilmington, DE, USA).

PaSpoOF crystallization

Initial crystallization screening was performed in 96-well crystallization plates (Emerald Bio, Bainbridge Island, WA, USA) at 293 K using the sitting-drop vapor-diffusion method. Several commercially available screening kits (MCSG I-IV (Microlytic, Burlington, MA, USA), SG1 screen (Molecular Dimensions, Maumee, OH, USA), Wizard classic 1-4 (Emerald Bio), SattRx, PEG/Ion and Index (Hampton Research, Aliso Viejo, CA, USA) were used with a Mosquito crystallization robot (TTP Labtech, UK). The crystallization drops comprised equal volumes of protein solution (0.2 μL) and crystallization reservoir solution (0.2 μL). Crystals of PaSpoOF were obtained from conditions of 40% (v/v) PEG 300, 100 mM sodium phosphate (pH 8.0) and 150 mM NaCl. Fractions containing PaSpoOF were collected in 24-well crystallization plates (Molecular Dimensions) at 293 K. The crystallization drop size was increased by mixing 1 μL of protein solution and 1 μL of reservoir solution, and the reservoir volume was increased to 500 μL. Single diffraction-quality crystals of PaSpoOF were obtained after 2 days of incubation at 293 K.

Data collection and structure determination

Single crystals were harvested and quickly soaked in N-paratone oil (Hampton Research) and flash-cooled in a liquid-nitrogen stream at 100 K. X-ray diffraction data were collected on a BL-5C beam line at the Pohang Accelerator Laboratory (Pohang, Korea). The dataset with a maximum 1.8 Å resolution containing 180 images with 1° rotation was indexed, integrated, and scaled using HKL-2000 (Otwinowski and Minor, 1997). The crystals belonged to space group P2_2_2_, with unit-cell parameters a = 29.518 Å, b = 49.361 Å, and c = 67.067 Å. The Matthews coefficient was 1.88 Å³Da⁻¹, and the solvent content was 34.59% (Matthews, 1968).

The PaSpoOF structure was determined by the molecular replacement method using MOLREP from the CCP4i suite (Vagin and Teplyakov, 1997; Winn et al., 2011). BsSpoOF (PDB: 1PUX) was used as the initial search model (Gardino et al., 2003). Successive refinement and model building were performed manually using REFMACS, COOT, and PHENIX (Adams et al., 2010; Emsley and Cowtan, 2004; Murshudov et al., 2011), and the final model was checked with Molprobity (Chen et al., 2010). Detailed data collection and refinement statistics are summarized in Table 2. The coordinates and structure factors of PaSpoOF were deposited in the RCSB Protein Data Bank under accession code 6IFH. All structural representations were rendered using PyMOL (DeLano, 2002).

Structural modeling of the PaSpoOF phosphorylated-state

The structural model of phosphorylated PaSpoOF was prepared using Maestro version 9.5 software (Schrödinger, Portland, OR, USA) by adding a phospho-aspartate residue at Asp52. Conformational scanning was conducted using the MacroModel program (Schrödinger) in order to identify the lowest energy conformation. The final model was energy minimized using Prime version 3.1 (Schrödinger).

CONFLICT OF INTEREST

The authors declare no potential conflicts of interest.

ACKNOWLEDGEMENTS

We would like to thank the staff at the X-ray core facility of Korea Basic Science Institute (KBSI; Ochang, Korea) and BL-5C of the Pohang Accelerator Laboratory (Pohang, Korea) for their kind help in data collection. This work was supported by the Korea Polar Research Institute (KOPRI; grant No. PE18210 and PE19210 to JHL) and by the Basic Science Research Program 2018R1A2B6005354 through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning of Korea.

REFERENCES

Crystal structure of PaSpo0F

Roszak, D., and Colwell, R. (1987). Survival strategies of bacteria in the...