KOPRI Repository

Mesospheric Temperature Estimation from Meteor Decay Times of Weak and Strong Meteor Trails

Cited 11 time in scopus
Metadata Downloads
Title
Mesospheric Temperature Estimation from Meteor Decay Times of Weak and Strong Meteor Trails
Other Titles
약한/강한 유성흔의 확산시간으로부터 중간권 온도 추정 연구
Authors
Kim, Jeong-Han
Kim, Yong Ha
Jee, Geonhwa
Lee, Changsup
Subject
Geochemistry & Geophysics; Meteorology & Atmospheric Sciences
Keywords
Mesospheric temperature; Meteor decay time; Meteor radar
Issue Date
2012
Publisher
Elsevier
Citation
Kim, Jeong-Han, et al. 2012. "Mesospheric Temperature Estimation from Meteor Decay Times of Weak and Strong Meteor Trails". Journal of Atmospheric and Solar-Terrestrial Physics, 89(1): 18-26.
Abstract
Neutral temperatures near the mesopause region were estimated from the decay times of the meteor echoes observed by a VHF meteor radar during a period covering 2007 to 2009 at King Sejong Station (62.22°S, 58.78°W), Antarctica. While previous studies have used all meteor echoes to determine the slope from a height profile of log inverse decay times for temperature estimation, we divided meteor echoes into weak and strong groups depending on the strength of estimated relative electron line densities within meteor echoes. We found that the slopes from the strong group are inappropriate for temperature estimation because the decay times of strong meteors are considerably scattered, whereas the slopes from the weak group clearly define the variation of decay times with height. We thus utilize the slopes only from the weak group in the altitude region between 86 and 96 km to estimate mesospheric temperatures. The meteor estimated temperatures show a typical seasonal variation near the mesopause region and the monthly mean temperatures are in good agreement with SABER temperatures within a mean difference of 4.8 K throughout the year. The meteor temperatures, representing typically the region around the altitude of 91 km, are lower on average by 2.1 K than simultaneously measured SATI OH(6-2) rotational temperatures during winter (March ~ October).previous studies have used all meteor echoes to determine the slope from a height profile of log inverse decay times for temperature estimation, we divided meteor echoes into weak and strong groups depending on the strength of estimated relative electron line densities within meteor echoes. We found that the slopes from the strong group are inappropriate for temperature estimation because the decay times of strong meteors are considerably scattered, whereas the slopes from the weak group clearly define the variation of decay times with height. We thus utilize the slopes only from the wea
URI
http://repository.kopri.re.kr/handle/201206/6277
DOI
http://dx.doi.org/10.1016/j.jastp.2012.07.003
Files in This Item
General Conditions
      ROMEO Green
    Can archive pre-print and post-print or publisher's version/PDF
      ROMEO Blue
    Can archive post-print (ie final draft post-refereeing) or publisher's version/PDF
      ROMEO Yellow
    Can archive pre-print (ie pre-refereeing)
      ROMEO White
    Archiving not formally supported

    qrcode

    Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

    Browse