KOPRI Repository

A Dynamic Energy Budget (DEB) model to describe Laternula elliptica (King, 1832) seasonal feeding and metabolism

Cited 11 time in wos
Cited 12 time in scopus

Full metadata record

DC Field Value Language
dc.contributor.authorAntonio Aguera-
dc.contributor.authorAhn, In-Young-
dc.contributor.authorBruno Danis-
dc.contributor.authorCharlene Guillaumot-
dc.coverage.spatialMarian Cove-
dc.date.accessioned2018-03-20T13:56:22Z-
dc.date.available2018-03-20T13:56:22Z-
dc.date.issued2017-
dc.identifier.urihttps://repository.kopri.re.kr/handle/201206/6468-
dc.description.abstractAntarctic marine organisms are adapted to an extreme environment, characterized by a very low but stable temperature and a strong seasonality in food availability arousing from variations in day length. Ocean organisms are particularly vulnerable to global climate change with some regions being impacted by temperature increase and changes in primary production. Climate change also affects the biotic components of marine ecosystems and has an impact on the distribution and seasonal physiology of Antarctic marine organisms. Knowledge on the impact of climate change in key species is highly important because their performance affects ecosystem functioning. To predict the effects of climate change on marine ecosystems, a holistic understanding of the life history and physiology of Antarctic key species is urgently needed. DEB (Dynamic Energy Budget) theory captures the metabolic processes of an organism through its entire life cycle as a function of temperature and food availability. The DEB model is a tool that can be used to model lifetime feeding, growth, reproduction, and their responses to changes in biotic and abiotic conditions. In this study, we estimate the DEB model parameters for the bivalve Laternula elliptica using literatureextracted and field data. The DEB model we present here aims at better understanding the biology of L. elliptica and its levels of adaptation to its habitat with a special focus on food seasonality. The model parameters describe a metabolism specifically adapted to low temperatures, with a low maintenance cost and a high capacity to uptake and mobilise energy, providing this organism with a level of energetic performance matching that of related species from temperate regions. It was also found that L. elliptica has a large energy reserve that allows enduring long periods of starvation. Additionally, we applied DEB parameters to time-series data on biological traits (organism condition, gonad growth) to describe the effect of a varying environment in food and temperature on the organism condition and energy use. The DEB model developed here for L. elliptica allowed us to improve benchmark knowledge on the ecophysiology of this key species, providing new insights in the role of food availability and temperature on its life cycle and reproduction strategy.-
dc.languageEnglish-
dc.subjectScience & Technology - Other Topics-
dc.subject.classificationKing Sejong Station-
dc.titleA Dynamic Energy Budget (DEB) model to describe Laternula elliptica (King, 1832) seasonal feeding and metabolism-
dc.title.alternativeDynamic Energy Budget (DEB) 모델 활용한 남극 큰띠조개 섭식과 대사의 계절적 양상 예측-
dc.typeArticle-
dc.identifier.bibliographicCitationAntonio Aguera, et al. 2017. "A Dynamic Energy Budget (DEB) model to describe Laternula elliptica (King, 1832) seasonal feeding and metabolism". <em>PLOS ONE</em>, 12(8): 1-20.-
dc.citation.titlePLOS ONE-
dc.citation.volume12-
dc.citation.number8-
dc.identifier.doi10.1371/journal.pone.0183848-
dc.citation.startPage1-
dc.citation.endPage20-
dc.description.articleClassificationSCIE-
dc.description.jcrRateJCR 2015:17.46-
dc.subject.keywordAntarctic clam-
dc.subject.keywordDEB model-
dc.subject.keywordLaternula elliptica-
dc.subject.keywordMarian Cove-
dc.subject.keywordfeeding-
dc.subject.keywordmetabolism-
dc.identifier.localId2017-0140-
dc.identifier.scopusid2-s2.0-85029158376-
dc.identifier.wosid000408544200032-
Appears in Collections  
2017-2018, Studies on the Changes in Coastal Marine Systems of the Antarctic Peninsula: A 2050 Outlook (17-18) / Ahn, In-Young (PE17070; PE18070)
Files in This Item

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse