KOPRI Repository

Anti-Inflammatory Effect of Neoechinulin A from the Marine Fungus Eurotium sp. SF-5989 through the Suppression of NF-кB and p38 MAPK Pathways in Lipopolysaccharide-Stimulated RAW264.7 Macrophages

Cited 29 time in scopus
Metadata Downloads
Title
Anti-Inflammatory Effect of Neoechinulin A from the Marine Fungus Eurotium sp. SF-5989 through the Suppression of NF-кB and p38 MAPK Pathways in Lipopolysaccharide-Stimulated RAW264.7 Macrophages
Authors
Kim, Kyung Soo
Oh, Hyuncheol
김윤철
Yim, Joung Han
Sohn, Jae Hak
이동성
Xiang Cui
Keywords
Eurotium rubrum; NF-κB; RAW264.7 macrophages; inflammation; neoechinulin A
Issue Date
2013
Publisher
Molecules
Citation
Kim, Kyung Soo, et al. 2013. "Anti-Inflammatory Effect of Neoechinulin A from the Marine Fungus Eurotium sp. SF-5989 through the Suppression of NF-кB and p38 MAPK Pathways in Lipopolysaccharide-Stimulated RAW264.7 Macrophages". MOLECULES, 18(11): 13245-13259.
Abstract
In the course of a bioassay-guided study of metabolites from the marine fungus Eurotium sp. SF-5989, two diketopiperazine type indole alkaloids, neoechinulins A and B, were isolated. In this study, we investigated the anti-inflammatory effects of neoechinulins A (1) and B (2) on lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Neoechinulin A (1) markedly suppressed the production of nitric oxide (NO) and prostaglandin E2 (PGE2) and the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in a dose dependent manner ranging from 12.5 μM to 100 μM without affecting the cell viability. On the other hand, neoechinulin B (2) affected the cell viability at 25 μM although the compound displayed similar inhibitory effect of NO production to neoechinulin A (1) at lower doses. Furthermore, neoechinulin A (1) decreased the secretion of pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). We also confirmed that neoechinulin A (1) blocked the activation of nuclear factor-kappaB (NF-κB) in LPS-stimulated RAW264.7 macrophages by inhibiting the phosphorylation and degradation of inhibitor kappa B (IκB)-α. Moreover, neoechinulin A (1) decreased p38 mitogen-activated protein kinase (MAPK) phosphorylation. Therefore, these data showed that the anti-inflammatory effects of neoechinulin A (1) in LPS-stimulated RAW264.7 macrophages werfects of neoechinulins A (1) and B (2) on lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Neoechinulin A (1) markedly suppressed the production of nitric oxide (NO) and prostaglandin E2 (PGE2) and the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in a dose dependent manner ranging from 12.5 μM to 100 μM without affecting the cell viability. On the other hand, neoechinulin B (2) affected the cell viability at 25 μM although the compound displayed similar inhibitory effect of NO production to neoechinulin A (1) at lower doses. Furthermore, neoechinulin A (1) decreased the secretion of pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). We also confirmed that neoechinulin A (1) blocked the activation of nuclear factor-kappaB (NF-κB) in LPS-stimulated RAW264.7 macrophages by inhibiting the phosphorylation and degradation of inhibitor kappa B (IκB)-α. Moreover, neoechinulin A (1) decreased p38 mitogen-activated protein kinase (MAPK) phosphorylation. Therefore, these data showed that the anti-inflammatory effects of neoechinulin A (1) in LPS-stimulated RAW264.7 macrophages wer
URI
http://repository.kopri.re.kr/handle/201206/7249
DOI
http://dx.doi.org/10.3390/molecules181113245
Files in This Item
General Conditions
      ROMEO Green
    Can archive pre-print and post-print or publisher's version/PDF
      ROMEO Blue
    Can archive post-print (ie final draft post-refereeing) or publisher's version/PDF
      ROMEO Yellow
    Can archive pre-print (ie pre-refereeing)
      ROMEO White
    Archiving not formally supported

    qrcode

    Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

    Browse