KOPRI Repository

Crystal structures of aldehyde deformylating oxygenase from Limnothrix sp. KNUA012 and Oscillatoria sp. KNUA011

Cited 1 time in scopus
Metadata Downloads
Crystal structures of aldehyde deformylating oxygenase from Limnothrix sp. KNUA012 and Oscillatoria sp. KNUA011
Other Titles
세균 Limnothrix sp.KNUA012 와 Oscillatoria sp. KNUA011유래의 알데히드탈포르밀산화효소의 구조
Park, Ae Kyung
Kim, Han-Woo
Yoon, Ho-Sung
Lee, Jun Hyuck
Park, Hyun
Kim, Young-Saeng
Jo, Seoung-Woo
Baek, Hae-Ri
Ryu, Min- Young
Roh, Soo Jung
Jeon, Byung Wook
Kim, Il-Sup
Aldehyde deformylating oxygenase; Ferritin-like di-iron protein; Limnothrix sp. KNUA012; Oscillatoria sp. KNUA011
Issue Date
Park, Ae Kyung, et al. 2016. "Crystal structures of aldehyde deformylating oxygenase from Limnothrix sp. KNUA012 and Oscillatoria sp. KNUA011". BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 477(3): 395-400.
The cyanobacterial aldehyde deformylating oxygenase (cADO) is a key enzyme that catalyzes the unusual deformylation of aliphatic aldehydes for alkane biosynthesis and can be applied to the production of biofuel in vitro and in vivo. In this study, we determined crystal structures of two ADOs from Limnothrix sp. KNUA012 (LiADO) and Oscillatoria sp. KNUA011 (OsADO). The structures of LiADO and OsADO resembled those of typical cADOs, consisting of eight α-helices found in ferritin-like di-iron proteins. However, structural comparisons revealed that while the LiADO active site was vacant of iron and substrates, the OsADO active site was fully occupied, containing both a coordinated metal ion and substrate. Previous reports indicated that helix 5 is capable of adopting two distinct conformations depending upon the existence of bound iron. We observed that helix 5 of OsADO with an iron bound in the active site presented as a long helix, whereas helix 5 of LiADO, which lacked iron in the active site, presented two conformations (one long and two short helices), indicating that an equilibrium exists between the two states in solution. Furthermore, acquisition of a structure having a fully occupied active site is unique in the absence of higher iron concentrations as compared with other cADO structures, wherein low affinity for iron complicates the acquisition of crystal structures with bound iron. An in-depth analysis of the ADO apo-enzyme, the enzyme with substrate bound, and the enzyme with both iron and substrate bound provided novel insight into substrate-binding modes in the absence of a coordinated metal ion and suggested a separate two-step binding mechanism for substrate and iron co-factors. Moreover, our results provided a comprehensive structural basis for conformational changes induced by binding of the substrate and co-factor.
Files in This Item
General Conditions
      ROMEO Green
    Can archive pre-print and post-print or publisher's version/PDF
      ROMEO Blue
    Can archive post-print (ie final draft post-refereeing) or publisher's version/PDF
      ROMEO Yellow
    Can archive pre-print (ie pre-refereeing)
      ROMEO White
    Archiving not formally supported


    Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.