KOPRI Repository

Shipboard measurements of trace gases, noble gases and dimethyl sulfide, in the Antarctic seawater made by membrane inlet mass spectrometry

Metadata Downloads
Shipboard measurements of trace gases, noble gases and dimethyl sulfide, in the Antarctic seawater made by membrane inlet mass spectrometry
Other Titles
박막 질량분석기를 이용한 남극 해수중 미량기체의 측정법 개발연구
Kim, Intae
mims; 미량기체; 불활성기체
Issue Date
Kim, Intae. 2016. Shipboard measurements of trace gases, noble gases and dimethyl sulfide, in the Antarctic seawater made by membrane inlet mass spectrometry. 한국질량분석학회 여름 정기학술대회. 경주 화백컨벤션센터. 2016.08.17~2016.08.19.
Research background and objectives The light noble gases, helium (He) and neon (Ne), dissolved in seawater, can be useful tracers of freshwater input from glacial melting because the dissolution of air bubbles trapped in glacial ice results in an approximately ten-fold supersaturation. However, the conventional method to determine noble gases is dependent on shore-based mass spectrometric system and very time-consuming processes. The other volatile trace gas, Dimethyl sulfide (DMS), as important precursor of cloud condensation nuclei (CCN), directly affects the radioactive budget and resultant climate change. The oceanic emission is a main natural source of atmospheric DMS. Antarctic polynya, especially, can be a key source region of DMS due to high productivity. However, its observations are evidently lacked due to the limited accessibility of polar ocean. Membrane inlet mass spectrometry (MIMS) technique directly samples analyte gases from the aqueous phase gases in seawater through a semi-permeable membrane. Since this method does not require headspace equilibration, MIMS enables us to make a near-real time, high frequency continuous observation of dissolved gases. During the Southern Ocean cruise (Jan. ~ Feb. 2016), we applied the MIMS for onboard measurements of various dissolved gases in Antarctic seawater on the Korean icebreaker R/V Araon. We have attempted i) to make onboard analysis of 5 noble gases (4He, 22Ne, 38Ar, 84Kr, and 132,136Xe) in seawater, for the first time, to get a broader understandings of glacial meltwater distribution in the Southern Ocean. With discrete measurements of noble gases, we have also made ii) continuous DMS observations. Here, we will present the detailed methods and preliminary results of noble gases and DMS measurments as a beginning of our effort to understand the climate-related glacial melting and environment changes in polar oceans. Method in brief The details of noble gas analysis method are as follows: we made the quicker and more efficient noble gas extraction system. This, so-called noble gas MIMS (NG-MIMS) system has a simplified version of traditional gas extraction lines. This system consists of a membrane inlet (0.2 mm silicon wall), water vapor trap immersed into cooled MeOH (~ -65 oC), CO2 trap (Carbosorb), 400 oC of hot getter (Zr-alloy), and 250 oC of Sorb AC. Two syringe pumps were used to deliver samples and standards. The high vacuum of the whole line (~10-7 torr) allows the dissolved gases to pass through the membrane from the water. To test the linearity of this method, we prepared a range of binary mixtures of air-equilibrated seawater (AEW) and degassed (boiled) water by changing the each flow rates. The AEW was prepared by gently bubbling of ambient air through seawater kept in a water bath at 2 oC. The 2 end-members (degassed water and AEW) and their mixtures showed good linearity (n=7 trials) with R2 value of 0.97 ? 0.99 for 4He, 38Ar, and 132Kr.
Conference Name
한국질량분석학회 여름 정기학술대회
Conference Place
경주 화백컨벤션센터
Conference Date
Files in This Item
There are no files associated with this item.
General Conditions
      ROMEO Green
    Can archive pre-print and post-print or publisher's version/PDF
      ROMEO Blue
    Can archive post-print (ie final draft post-refereeing) or publisher's version/PDF
      ROMEO Yellow
    Can archive pre-print (ie pre-refereeing)
      ROMEO White
    Archiving not formally supported


    Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.