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1. Title

Microbial ecology and biogeochemistry associated with sea-ice melting in the

Amundsen Sea, Antarctica

II. Purpose and Necessity of R&D

Long-term shifts in bacterial parameters have a potential to provide the best
warning system for global environmental changes. Therefore, it is particularly
important to measure bacterial abundance and metabolic rates and its
physico-chemical and biological controls in polar ocean to better understand
any shifts in biogeochemical carbon cycles. This study is to elucidate the role
of bacteria in controlling the function of Southern Ocean as a CO, sink

related to climatic changes.

III. Contents and Extent of R&D



We investigated distributional difference of bacterial abundance, production,
and respiration of polynya zone between two Amundsen Sea Polynya
expedition, ANAO4 cruise (from December 2013 to January 2014) and
ANAO06 cruise (January to February 2016), and then identified interactions
among the bacteria, phytoplankton and distribution of DOC concentration to
elucidate the role of heterotrophic bacteria in microbial loop and
biogeochemical carbon cycles. and during the Amundsen Sea polynya
expedition from January 31 to March 20, 2012, we investigated the vertical
and spatial distribution and shift of microbial communities in the sediments
of the polynya, ice-shelf zone and sea-ice zone, and then elucidated
ecologically importance of the microbial communities controlling for the

biogeochemical cycles.

IV. R&D Results

PART 1 : Microbial ecology and biogeochemistry associated with sea-ice

melting in the Amundsen Sea, Antarctica

Comparing ANAO4 (early phytoplankton bloom) and ANAO6 (mid bloom),
surface seawater temperature of ANAO6 increased by 0.16°C compared to
ANAO4, and Chl-a concentration and primary production decreased as
decreasing of euphotic depth. Bacterial abundance, production rates, and
respiration rates in the Amundsen Sea Polynya were reduced in ANAO6
compared to ANAO4. These results were consistent with decreasing of Chl-a
concentration and primary production. We performed linear regression
between bacterial parameters and chemical properties to identify the factors
controlling bacterial production and respiration. The results showed a
positive relationship between bacterial production and Chl-a, whereas no

significant relationship was observed with bacterial respiration. Cell-specific

bacterial production and respiration were significantly correlated with Chl-a
and ratio of DOC and DON, respectively. Bacterial growth efficiency was
generally very low and was found to be more reduced in ANAO6 compared
to ANAO4, which indicates that most of organic carbon consumed by
bacteria respired back to CO, via respiration, and the reduced bacterial
growth efficiency implied that the amount of organic carbon transported to
higher trophic level through microbial loop was lessened. In addition,
bacterial production to primary production ratio was decreased in ANAO06
compared to ANAO4, and this decrease might be attributed to the change in
species composition of phytoplankton. Considering that the sinking rate of
diatom is relatively faster than that of P. antarctica, indicating that decrease
in bacterial production to primary production ratio could lead to increase
the portion of organic carbon exported to the deep sea, and lessen the

portion of organic carbon processed by bacteria.

PART II: A unique Planctomycetes-dominated microbial community in
sediments underlying the Phaeocystis antarctica-dominated

Amundsen Sea polynya, Antarctica

Characterization of benthic microbial communities is underrepresented in the
Southern Ocean where environmental changes due to global warming are
occurring rapidly. We performed high-throughput sequencing of 16S rRNA
gene, quantitative PCR and CARD-FISH, in combination with
biogeochemical analyses and metabolic rate measurements, to determine the
composition, diversity and controls of major microbial communities in
sediments of the Amundsen Sea polynya (ASP). A large fraction of the
sequenced benthic microbial community (40% on average) in the polynya
was uniquely affiliated with the phylum Planctomycetes, whereas
Thaumarchaeota (51%) predominated in non-polynya areas. The existence of

Planctomycetes was further demonstrated by CARD-FISH analysis using



newly designed probes targeting MSBL-9. Relative abundance of
Planctomycetes correlated significantly with organic carbon (C.g) content in
the sediment, suggesting that Planctomycetes constitute a major bacterial
group utilizing relatively recalcitrant C,, produced primarily by Phaeocystis
blooms. Our results suggest that any modifications in
Planctomycetes-dominated microbial communities provide valuable insight
into changes in organic matter transport to the seafloor that may result
from the variations in ecological and biogeochemical processes including the
shift in planktonic communities from Phaeocystis to diatoms associated with

climate changes in the future.

V. Application Plans of R&D Results

Spatial distribution on the bacterial abundance and production obtained
along the sea-ice zone, polynya and ice shelf area will provide an
information on the role of the Southern Ocean in controlling the carbon
cycle and climatic change associated with the global warming in the
Antarctic Ocean. The analysis of the abundance and composition of the
prokaryotes in the sediment of the Amundsen provides new insights into

the roles of prokaryotes in biogeochemical cycles in the Antarctic Ocean.
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H 3 & digsd e & 21

PART I ob2Al o) ZZuelA sy FFol mE 2o thAt

FTEHGE e ot AFAHA W BASA Baed 2 nAE el
HAGANA Fo JTS Sl (Azam 1998; Kirchman 2000; Williams and del Giorgio
2005). wreEllolrt 'hAEde] Tlojate W AA F AR Uire]l B 5 Qe
4, &= dheglo} A AK(bacterial production, BP)S.Z 8  f-7] ¥4 (dissolved
organic carbon, DOC)®} 791 dtAIzre] Fagh o= (trophic link)374 o] 1
(Azam et al. 1983), TF2 3}t}= vhe]g]o} & & (bacterial respiration)©.2 DOCE &+
57 €k 2 (dissolved inorganic carbon, DIC)Z A 3A]7]= 24 o] th(Ducklow et al
1986). &, 5 A ohE A AEAe vlE $4 B R EFEH FHEE
DOC?] %o] 7] wie] DOC ¥=7F vtom, o]z 23 utgaels FIH O

HEZTFIAEoRNE FHHE DOCH oEsHA "t wheba d=ae A st

il

> =3
al. 2008, Takahashi et al. 2009). 53], o}&A3] %2t} (Amundsen Sea Polynya,
ASP)E ©@9WA F AabEe] ~220 ¢ C m? y'o R FHeA M A dEidE
Adoz Hu¥ A TH(Lee et al. 2012; Kim et al. 2014). H=&, ASPo] U} A4k=] 1}
A& 2ol A7 Sl (interannual variability)7} 7]l A ® 2243 ZT]vk(Ross Sea

Polynya, RSP)R.t} 1] A3k 3o =2 <12 ¥ Uh(http:/antarcticaspire. org/ research). ©]#]

@ et 43 U we ARE Y] F CoE A AYE ARWIZE FEA
e Ae] B % @k AW AR o 4B ¥ folwisE 944

_’|8_

TERAES T FERY] A AEPEE T VIR FHY w94 A
(carbon sequestration)S ¢F8A| 7= 93-S ghth. wpEhA] At o] &2 ASPel A 9]
BAaEs oladty] AdAe w2 ALl MAE AR dAseA, 28
H B E o] ASPE] export fluxell ol® @aE mA=Ao] sl Tetdd Jart Ut
ASPO] AAAAFL T F-E IF FZF(diatom)Z} Phaeocystis antarctica®l 23] o]
um, ol59 tFA A7l 2 Aae 44 vE2A vEhdth Pooanarcticas W59
F(1E~129)e EEv T4 diTAE 4o, diatome H=9] ool A%
sl F 2 ice edgeTAHolA WTA S do I TH(Smith et al. 2010). P. antarcticat™
diatomo] ®]3] ke FFol X FIhA o] THsdte] diatomol Ml Ui ow &3t
59 Zol7t 7L oA A3t YElFdTH(Arrigo et al. 1999). T3, P. antarctica
7} diatomel H]3] °F 2ve] COE 5T & UAA, &F TEEFIAEA 9T 72
Eo] 7] wEol(Yager et al. 2012) F A Z2ZHIE HhF 7ot ZEke
AAgtel @ A A= FFs vk AEEFAE Foith AAs= DOM s
B Azt Ao dg@A =, &5l P antarctica®l 75 WEEolrt A &
A = AR AR @FER ojFoW f718% A FrHOsinga et

B wolsE FHAE v

al. 1997; Jense et al. 1999). ZIth7}, Phaeocystis &2 ol <]
dlolzk o] &3l7] freldt AAgFo] ¥ F7]ES AT 3 H(Solomon et al. 2003).

(e}
T
WelA obi Al solN $HeE AEETaE Fo| Andl we viHole] g4

Fl

Q&S 7 i (Delmont et al. 2014).
H M5 P S(western Antarctic Peninsula, WAP) #| 92 F243% 7|5 2
@elE A3 lon, oAl dlAE v WAk &) A = AWzE A&

% tH(Montes-Hugo et al. 2009; Jenkins et al. 2018). A EZHIAE tF2] Al7] &

Farts BAHORE ice coveragedt HIH S AE T3 22 7|FEAY A@Eo 7]
3ol (Saba et al. 2014), o]2 3k 7| FWERE g AP WT S FHAYG A
=9 &4 9 AAgEA dhedtd e ks v Aotk weka FFe] ALY
Wato] we mAEe 718 #al B FrIeAo] A g A= obEdl @l
WA 2dste g 39 Baeds oldstal, BaAgdirAe] SA3] %
dags Frtetr] g8 AEH o FaygHojor & A Roko|r}t
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A7l 9 SAES Aolel wek £ ] vEldel 48 Y % BFE AR

of\

2
1>

B ATAE dF ohrA s Fek Aol AeEgare
3

A2 ATAS W A7y

Lo A7A9 2 AR

obEAl Sl Werakeal sjst =2 ) Atolol 98 Qlow], olEA 3 HEW 116°W 114°W 112°W 110°W
ZZvk(Amundsen Sea Polynya, ASP)= =3 3771 &k FolA% AitkE o] 72.5°S
=e Zai} % ahibo]th(Armigo and van Dijken 2003). 1714 Z&]Uk(polynya) |
= sea-ice coverage’} WA 10%°]3t & outn, ko] FA A7) 73°S!
oF A &AIzke] obitAl s A Wbl F&FS v X Th Arrigo et al.(2012) I
o Aol o3, ASPE HE 108 (2 ®)ol FAH7] Al 29 (= E)dl 73.5°S
HAo] Az FFHATHE A A8 FAste] 39ell= ASPHA 7L THA] sea-ice L
2 HgolA €k o] wel ASP] AAANH S 129~19 Zo HA R vE 74°S
1 AEE2FaE QS0 FasuAs 38T =3 3
B}y th(Arrigo et al. 2012). 74.5°S
2 Aol A= e AT Bt otgtR & FAATFE Bl of
Z 2 (polynya)oll 4 271 a4 A17](2014d 19 %, ANA04 ZF=)9 o

-

118°W 116°W 114°W 112°W 110°W

Fig. I-1 Sampling stations in the Amundsen Sea Polynya in ANAO4 and ANAO06.

Al

il

:?1:4"

r-h:i

ofN

2l Fuo016d 1€ F4-19 T, ANA06 ZF2)o ZALE Sttt 27)
=24 A 7119 %)ol 571 polynya® % (Stns 10, 13, 14, 19, 27)3} th54] 7]
(1€ T&-129 ol 8719 polynya™d A (Stns 8, 10, 12, 14, 16, 32, 33, 36)°l 4]
ZAHE S ThFig ). A Z716d sldetE ANAO4d = U Ao
%31, P. antarctica’t A3 A2 e O™ (Lee et al. 2016), IF 2] FrF
A 71el slFats ANAO6o = ZEvr7k S &3E i, diatomo] §-

o2 vehgth wEkA, 2 AFME dF2 AVl wE AEEFFAES 9
gEjote] A Aol diet 2ol & ottt gkl
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2. AFAE

ME,
o
iR

7F E9-3tadl 4

Qov, F#F AEL A&, g4 #45 Hs 1, 10, 30, 40 - 50, 60, 75,
100m zolol A Yzl atES o] &3te] AMER] stk EFF Zole 10m 2
o] 7lFEA el wlal HWEW3ZE 005 kg m*ES Z3stE olE A st
(Venables and Moore 2010).

TF HExav AFAEE GFFR o#g F 90% ofAES ¥ il

Z4E FE319] fluorometer (Turner Designs model, 10-AU)E

O

4

o]-g-3lo] H213}9 th(Parsons et al. 1984). W3+ 353334 7](Sea Tech)S A}
gate] AN AExal] F4 AFSREE FAH, AF AS4-a(Chla)s
%+ 10-AU fluoro- meter® =33 P=Z4-ast FTIAFLSAHVIZ =AHIT 9=
Z-a(flu)tte] Ad BAZYE vy 2ol AitE At ANA04: Chl-a = 0.160
x flu + 0.824 (ﬁ = 0.81, n = 156), ANA06: Chl-a = 0.134 x flu + 0.175 (> =
0.82, n = 140). AEZFAE AT ©ATFS w4 o] Chl-ad] $(C:Chl-a)S 50
o2 AbgEte] AFBE AT} (Ducklow et al. 2000).

it

2 &= 7] & (chromophoric dissolved organic matter, CDOM)< 3l A &

FAZIZEHE ofBe $ 10 em A9 AS AFEEFS] 350-900 nm ~H EF

oE
]

QL

ol A spectrophotometer (Shimadzu UV-1800)2 Z73}%1 1L, 375 nmolA =73t

o] ) wed
TRE

it

=

o] &3ko] A3 ZHCDOMgursy m')S CDOM = woslyl
(Kowalczuk et al. 2005).
CDOM(375) = 2303A/l

A: FFE375 nm), 1 4G4 2 o](m)
. dhEElel 29l

segol AEF 4TS Ad AL A58E 2TE dejsel:=

I
(glutaraldehyde)2 LA (AT FE 1%)3 T A@HoA e £ w 712 20T

_22_

A W% B389 S W(Hyun and Yang, 2003), DAPI ¢4 WH S o] &3to] w4
B AZE 993 3 YPBAnH(Zeiss Axiophot)S ©o]&3t] AF stglon

(Porter and Feig, 1980), A% 2] &A@ AE I 10 fg C& A&t A4S
UH(Fukuda et al. 1998). BHe|g]o} XA & thymidine®] BHe|2]o} AXYZ &

= ¥ FH359 Atel o™ (Fuhrman and Azam, 1980, 1982), thymidine
Aol et AEZ7IFS thymidine 1 mol I 8.69x10"7 AFE ALk 3Gl
A8 (Ducklow et al. 1999)5 A3}t 3 ZFES A7t e &5
Abnol AAER ALLEH, 8544 Labasque et al. (2004)°0 whel #4138}
o} 3l AES 300 ml BOD ®ell overflow AlA A5dt § dl4¢38ko] o] F

ot aold AFeEE WS 7 WEES A A 1ol wel

o(y
32

il

WS W33 A 2F(Man- ganese chloride solution, 2ml; alkaline iodide
solution, 2ml)S H7}3+ & ZA] vl/]lS @3 BODHS EE50] Frf. 2449
sulphuric acid 2ml& 713+ % spectrophotometer (Shimadze, UV-

o 466nmelA 5% o2 FFEE FAHIG v FES ¥ SFE
o] 45%=  A4FeS tH(Robinson, 2008). HrEl@]o} A&} d E(bacterial growth
efficiency, BGE) HrH| 2o} Ait#E 3} SFEFS AFEste] ALl BGE =
BP/(BP+BR).

A3 A7As 2 Ee

i
Ac)

shsteel

EZ 100m ool A F2, dF 2L A= ANA04 72+ - 1.77 ~ -0.08°C,
33.62 ~ 34.11 psu, 27.01 ~ 27.46 kg m™>, ANAO6°l Z}7Z} -1.58 ~ 0.46°C, 33.32
~ 34.14 psu, 26.76 ~ 2747 kg m 9 W E YEPY(Fig. 12). F33 Zol
(euphotic depth, EUP):= ANAO4°] 11 ~ 14 m, ANAO6°] 15 ~ 20 me H9 =
Uelyton, ¥5 &35 Z 9l(mixed layer depth, MDL)= ANAO4°] 24 ~ 63 m,
ANAO6°] 12 ~ 64 mo W2 UEFRTH(Table I-1). T MLDE ANA049|

358 m, ANAO6°] 31.9 mz & A}o]Z Holx ¢gtort MLD WolAel HF

i
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&, G, dEt dvrE oz ANA04C vlE ANA06O T7hee ez yE
W UH(Fig. 12, Table I-1).

®Z 100 molW] Chl-a®] ¥+ ANAO4°l 0.85 ~ 10.15 pg L7, ANAO6°l
0.18 ~ 3.90 pg L9 W= ek om, ANAO4(average 4.10 + 3.12 ng L7}
ANAO6(average 0.95 = 0.84 ng Lol HI&l ¢k 49 %A YebstohFig 1-3).
CDOMS] 5% #¥+= ANA04°] 0.05 ~ 0.23 m”', ANAO6°] 0.02 ~ 0.28 m'9|
W2 vebsken], ANAO4(average 0.15 + 0.06 m")7} ANAO6(average 0.10 =+
0.06 m™Myell vl 158 ¥ JEFSETH(Fig. 1-3). DOCO FX X ANA04o]
40.67 ~ 7272 uM, ANAO6°] 41.64 ~ 5327 uMe HHE el ow,
ANAO4(average 50.24 + 8.09 uM)7} ANAO6(average 45.84 + 2.85 pM)oll vl 3] <

L1 = A JERS Th(Fig. 1-3).

(a) ANAO4
Temperature [ C] Safim‘l‘y [psu] Density [kg/ m’]
13 1419 i oo 1314 19

20 20
....
Ea 40
]
a 60 60
&
Q

=3
<

3
il3ss 80
]

]

0 50 100 150 0 50 100 150 0 50 100 150

Section Distance [km] Section Distance [km] Section Distance [km]
(b) ANAOG . ”
Temperature [ €] Salinity [psu] Density [kg/ 7]

12 36

4 1436 16 8 10 33 32 14 16

344 20

242 40

34 sa

33.8 80 i

33.6 100 “"4““

0 50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250
Section Distance [km] Section Distance [km] Section Distance [km]

Fig. I-2. Physical parameters(temperature, salinity, and density) in the ASP in ANA04
(a) and ANAO06 (b).
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Chl-a (ugL™)

Fig.

12 0.4 80
P<0.001 P=0.109 P=0021
10 ol
03 .
¢ , : -
g : Z 60
6 So2{ 1 T 5t .
< I S 50
o] BES 5 Dy | R
01 3
2 L i 40
- L
0 = 0.0 30

ANAO04 ANAO06 ANA04 ANA06 ANA04 ANA06

I-3 Chemical parameters (Chl-a, CDOM, DOC) in ASP (DOC data provided by
KOPRI).
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Table I-1. Oceanographic parameters in the surface water column in the Amundsen Sea Polynya

ke S Saglpling Latitude  Longitude \(’gg E‘égg?;lc z’le”g‘:g Temp. Sal. Den. ~ Chka  CDOM  DOC DON
ate ©S) W) m m m °C) (psu) (kg m™)  (xg L™ (m™) (uM) (uM)
ANAO4 10 5-Jan.  72.800 115298 590 1 30 008 3378  27.13 9.54 0.207 519 4.06
13 6-Jan. 73170 113500 711 - 25 039 3362 27.02 8.29 0.230 - -
14 6-Jan. 73281 114950 821 1 37 -028 3381  27.16 9.17 0.138 518 5.24
19 7-Jan. 73500 114001 704 14 63 033 3394  27.27 7.86 0.069 444 2.80
27 10-Jan.  73.821  113.067 769 1 2 -0.13 3390  27.23 7.10 0.184 50.9 8.75
ANAO6 8  17-Jan. 72800 116501 625 - 12 007 3366  27.03 2.29 0.115 45.1 -
10 17-Jan. 73040 115725 706 20 29 0.25 3400  27.28 2.09 0.230 45.0 -
12 18Jan. 73279 114951 831 15 64 -0.02 3399  27.29 1.95 0.069 470 2.39
33 24-Jan. 73500 116500 369 - 22 0.22 3367 27.02 1.06 - -
32 24-Jan. 73328 115421 916 - 23 0.44 3397 27.%5 1.26 - 46.9 6.40
14 18-Jan. 73500 114000 709 - 45 0.08 3399 27.29 1.23 0.092 493 4.27
36 24-Jan. 73711 114216 565 15 30 -045 3390  27.4 3.35 - -
16 19-Jan. 73820  113.045 789 20 33 0.20 3400 27.29 3.0 0.115 498 1.62
"Datas of DOC and DON provided by KOPRI
- 26 -

2. vbel gl <l

ule] 2] o} A ¥ 45%(bacterial abundance, BA)E ANAO4°l] 0.25 ~ 7.50 x 10° cells
L', ANA06° 0.34 ~ 5.80 x 10° cells L'9] W12 LJEFE O™, ANAO4 (average
1.95 + 1.66 x 10° cells L")2t ANAO6 (average 1.49 + 0.96 x 10° cells L")7} &
apolE HolA gFokth(Fig 1-4). HrelE]el AY4F2(bacterial production, BP)&
ANA04°] 0.12 ~ 6.13 ng C L' d', ANAO6°l 0.08 ~ 1.24 pg C L' d'e] ®¢
2 vElgor], ANA04 (average 1.41 + 1.50 pg C L' d')7} ANAO06 (average
039 = 0.25 pg C L' dhell s < 4m) %7 YebukthFig 1-4). 2Egol 5
% & (bacterial respiration, BR)<> ANA04°] 15.83 ~ 3204 pg C L' d', ANAO6®]
12.85 ~82.07 ug C L" d'¢] W& lEE O™, ANAO4 (average 1312 + 96.90
ug C L' d")7} ANAO6 (average 43.15 + 20.63 ng C L' del wla) <k 3u) 3
A veEbhFig 14). utelelol A4 E &(bacterial growth efficiency, BGE)2
ANAO4° 0.002 ~ 0.086, ANAO6 0.003 ~ 0.013¢] W& LFEFRE O, ANAO4
(average 0.016 + 0.023)9} ANAO6 (average 0.007 + 0.003)7} 2% 2fo] & o]

7 ek ATH(Fig. 1-4).

3. vtElElob kY B 3HE 2]

BP % BR¥} Chl-a, CDOM, DOC ‘59| #37E Fig. I-59] ek
WAtk BPE Chl-ast & ahdAlE Eglo, CDOM, DOCsh= ol ek 4

i)

‘,
FHA 7Y e ek kTh(Fig. 1-5). A EESFAE diFA A7 e ZolE

el Ak, B34 %719 ANAMSIE CDOM3} DOCZE whelefob 4Jabeis
GBRAAT WolA @kort, tFH Fu ANAGOIE Fo FBUAT M

1THCDOM, r’=0.418; DOC, r* = 0.20). °]& tZF4 7|9 ANAO4d = 4 &

32

[}

FAECRNE FHEE labile 710 vhHE]ope] Aol oA nt, UlF

A F QL ANAOGON = labile FES] fr7le] ol whEAl frashi, Ve
2a e FEHE AR semilabile FEO] F7]Eo] vrElEloe] Aol 2
Awz Absech
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. P=0316 P<0.001 y=0255x +0.098 y=5235x+0253 y=0.024x - 0.269
—~ . . . _ 1 =0.467, p <0.001 £=0.071,p=0.096 £ =0.018,p=0353
2 ° . o 6] 0 . 5 6 y 61 ° 6 .
= - . —;_] . . ®  ANAO4
Q .
S . S . : 5 4 . 4 . . o ANAOG
2 L] ? g . »
N : E 2 i . 2 Se o,
< 2 % m 2 . ) R o,
m . o ) °
; P 0 5gBoBo  © 0 LY
0 0 0 2 4 6 8 1012 00 01 02 03 04 30 40 50 60 70 80
ANA04 ANA06 ANAO4  ANAO06 Chl-a (ugL™) CDOM (m™) DOC (M)
350 0.12
. P =0.025 P =0.497 400
300 y,~ 10.998x + 51.894 400 y=-318.63x + 113.76 00 1 Fisx s 17821
~ _ r=0.172,p=0.055 *=0.054, p = 0388 =ooz3 p=0522
o 250 0.08 . 5 300 300{ ° 300
~ 200 m "-_, . .
T g © 200 200 200
%‘f 150 L A on e o ® $
= 0.04 £ . .
~ 100 ;
& . 1001, e . 100 100 w\.
% 1 é o ¢ \Og'\o @ ®
0 0.00 o 525 ’ o8 e 0l e
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Chl-a (ugL™) CDOM (m’) DOC (uM)

Fig. 1-4. Bacterial parameters (BA, BP, BR, BGE) in ASP (solid line indicate median

value and dotted line indicate average value).
Fig. 1-5. Relationship between Chl-a, CDOM, DOC and bacterial production (BP),

respiration (BR)

W o, BR Chl-a, CDOM, DOCS} E5F 93t A7k vEhA]

qeEgars wece] A coupling e Jetst] slal, e

olsl AEEFAES] AEFS YA HF EFF volA FAske] et

i

Sk ktl. Williams et al (2016)2] 4ol A= ASPolA BRo] 2 9053} A
HAAE HolA] gown, vt ol g o] oF 91%7F Tl o3 ALE
He o2 e T

Al kel elol A4kE (cell-specific BP, BPy,)¥ AlXS whe o} TF

2 thH(Table 1-2). Phytoplankton carbon  biomass(Chl-C), bacterial carbon
biomass(BCB), BP, & }A)AH(primary production, PP) R5 th52 X 7](ANA04)
of HlEl] A Fukl ANAO6Y HAT RO Ul o]F ntgoeR 4

FaEd de et HaPyS W BCB/Chl-C Hl&2 F Al7] BF w4

E(cell-specific BR, BRy)9] ZH2<2& 3213 A, BP,= Chl-agl %3 43

il
il \\4

#AAE HAom™, BRy,2 DOC/DON H| ¢} 7gk J#AdS R ATHFig. 1-6). o] 2]
A< 0.02) YEy o, o]& A wre BCB/ChI-C H|&S YAFE <3 A

Ao g utgglol dEFo] 2HH7| wio|r}.

& A3= BPE o8 7k w7l=e] ol AHHo R v&aARl, BRE

& b5 7189 gurks f71%e 4o 9P vt A2 e,
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BP,, (fg C cell d”)

Fig.

0.20 40
y=10.006x + 0.029 y=0.618x - 1.922
£ =0.293, p < 0.001 - £ =0.504, p = 0.005
0.15 T30
~': @out/ier
8
0.10 O 20 U
&
0.05 & 10
M e ANAO4
o ANA06
0.00 : : 0
0 4 8 12 0 10 20 30 40
Chl-a (ug L") DOC/DON

I-6. Relationship between cell-specific BP(BPy,), BR(BRy,) and Chl-a, DOC/DON

ratio.
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Table 1-2. Depth integrated (0~MLD)

parameters (phytoplankton carbon biomass,

inventories

of phytoplankton and bacterial

Chl-C; bacterial carbon biomass, BCB;

primary production, PP; bacterial production, BP), and BCB/ChI-C ratio and BP/PP ratio.

Cruise St (mghcl_g—a (mngBm,Z) BCB/Chl-C (mgPCPm’z) (mgBCpm’Z) BP/PP
ANAOA 10 11240 56 0.005 892 38 0.04
13 9199 82 0.009 - 62 -
14 15438 120 0.008 1213 3 0.05
19 19375 170 0.009 655 131 0.20
27 7105 68 0.010 921 72 0.08
AVE. 12471 99 0.008 920 73 0.09
SD. 4937 46 0.002 229 3% 0.07
ANAGG 8 1862 12 0.006 - 5 -
0 2622 26 0.010 887 10 0.01
12 433% 79 0.018 426 2 0.05
3 1353 50 0.037 - 14 .
32 1447 37 0.026 - 15 -
U 23 1 0.017 - 10 .
3% 5057 56 0.011 677 14 0.02
16 4288 57 0.013 994 31 0.03
AVE. 2913 15 0.017 746 2 0.05
SD. 1445 21 0.010 251 10 0.02

", BP/PP H| &2 ANAO4°] B3] ANAO6C] °F 3w 7HAete
v EFTH(Fig. 1-7, Table 1-2). Ywta o2 Zx W] A= BP/PP H]&©] oF
A e, o] AR

F3) QREo

=

R

1 el otol o3& g

o
lo

=
04

0.
S

AbEE S oudith. B g = ANA04Y] St.198HS Al2stH BP/PP ratio

7} EE 0.04~0.089] W& vtebykth 1E|uh, ANAO6o] BP/PP H|&o] T2

AeE = v E T biological pumpel o8] AAE = vl &o] o

oo e Wate AREYAE $7

A AL Aol nAE H o] W (microbial loop)<

%3l

o] P. antarctica®~] diatom o2

_3"_

4919

w o

G =



3} dddo] 9 Aoz oA, AAZ Delong et al. (2017)¢] Aol |3}
W, 228X P. antarctica’t -3 Aol v diatomo] $-FH3 HH A
9] export efficiency’} T %7 el om, ojejd Apoli= HAA JROoZ o

FoH P antarctica’t T% W oA F22UE FAste] IAAEE7 =9 wd,

diatom T+d AEl7IZ o]FolA i, TEIFIAES Aol o fecal

rht
i
1o,
FH
2
2
b
of
ot
o
=
R:)
o
rr
ogt
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Fig. I-7. Bacterial carbon biomass : phytoplankton carbon biomass ratio (BCB/Chl-C)

and bacterial production : primary production ratio (BP/PP).
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PART II. o}=4 Z2u AF vAyE &+ dF

Title: A wunique Planctomycetes-dominated microbial community in sediments
underlying the Phaeocystis antarctica-dominated Amundsen Sea polynya,

Antarctica

A1AEAME

In marine surface sediments, microorganisms occur in enormous number (approximately
1.7x10% cells worldwide) (Whitman et al. 1998) and extremely high diversity (Huber et
al. 2007). They are notably involved in carbon, nitrogen and sulfur cycling on Earth
(Canfield et al., 2005; Orcutt et al., 2011). Since microbial community composition,
diversity, and metabolic activities are significantly influenced by environmental changes
(Bertics and Ziebis 2009; Jorgensen et al. 2012; Nguyen and Landfald 2015), a
characterization of microbial distribution can provide relevant information on the
variations of environmental conditions in time and space (Schauer et al., 2010; Robador
et al.,, 2016; Fuhrman et al. 2009). For the Southern Ocean (SO) where environmental
changes due to global warming proceed rapidly, however, little is known about benthic
microbial communities (Baldi et al. 2010; Ruff et al. 2014; Learman et al. 2016).

The SO plays a profound role in regulating the global carbon cycles, accounting
for approximately 20-30% of CO, uptake in global ocean (Gruber et al. 2009,
Takahashi et al. 2002, 2009). As the pCO, in the atmosphere increases (Petit et al.
1999), the role of the SO as an atmospheric C sink has received more attention. The
coastal zone of the SO is typically characterized by the occurrence of polynyas, areas
of seasonally recurring open water surrounded by sea-ice (Williams et al. 2007; Nihashi
and Oshima 2015). Because of the combined effects of the enhanced light conditions
and iron supply resulting from melting sea-ice, the polynyas are among the most
productive marine ecosystems (Sedwick and DiTuillo 1997; Smith and Gordon, 1997;

Arrigo and van Dijken 2003; Montes-Hugo and Yuan 2012), and thus are regarded as
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significant sink for atmospheric CO, (Miller and DiTuillo 2007; Arrigo et al. 2008).
Among the 37 known coastal polynyas around Antarctica, the Amundsen Sea polynya
(ASP) is reported to be most productive (Arrigo and van Dijken, 2003; Arrigo et al.
2012) with a primary productivity (PP) per unit area (~ 220 g C m™” y', Lee et al.,
2012; Kim et al.,, 2014a). The prymnesiophyte Phaeocystis antarctica is predominant and
responsible for the high primary productivity in the central polynya (Fig. II- 1B; Yager
et al. 2012; Ducklow et al. 2015; Lee et al. 2016; Williams et al. 2016; Yang et al.
2016).

Due to the inflow of warm Circumpolar Deep Water (CDW), the glaciers near
the Amundsen Sea are undergoing the highest rates of melting and thinning on the
Antarctic continent (Rignot 2008; Jenkins et al. 2010; Jacobs et al. 2011). Consequently,
as global warming progress, the heat flux intensity of the CDW may stimulate the
ice-melting, which ultimately results in the changes in phytoplankton productivity and
community composition (Deppeler and Davidson 2017), thereby regulating the function
of the ASP in carbon sequestration (Thoma et al. 2008; Lee et al. 2017). The
composition and metabolic activities of benthic microbial communities are ultimately
determined by the quality and quantity of the organic matter supplied from the
overlying water column (Franco et al. 2007). Therefore, given that the microbial
communities quickly respond to environmental changes (Danovaro et al. 2000; Luria et
al. 2016), quantitative and/or qualitative information on benthic microbial communities
and their metabolic activities is pivotal for assessing the response of these ecosystems to
the variations of water column productivity associated with climate change in the SO. In
the Antarctic Ocean, the benthic microbial community have studied in several regions,
including Mertz Glacier Polynyas, Ross Sea, Bellingshausen Sea, and Australian-Antarctic
ridge (Bowman and McCuaig 2003; Baldi et al. 2010; Carr et al. 2013; Learman et al.
2016). In these studies, Proteobacteria were reported as a predominant bacterial group
in the sediments of Antarctic Ocean and have been considered as a major Co, oxidizer.
However, there is no information on the composition and diversity of the entire
microbial communities in the sediments of the ASP, except for the microbial community

associated with the N cycles (Choi et al. 2016).
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The objectives of this study were: (1) to identify microbial communities in the
sediments of the Amundsen Sea Polynya underlying the Phaeocystis-dominated water
column, and (2) to elucidate major factors controlling the microbial communities with
special emphasis on the organic carbon (C,,) content in sediments across the marginal
ice zone (MIZ) — polynya - ice shelf of the Amundsen Sea polynya (ASP). We here
report that the members of Planctomycetes represent the major bacterial group in the
surface sediments of the ASP comprising 40% of the sequenced communities. Base on
the significant positive correlation between the distribution of Planctomycetes and Cerg
content in the sediment, we further suggest that Planctomycetes are responsible for the
mineralization of recalcitrant C, originating mostly from P. antarctica bloom in the

water column.

A2 A AT @ APy

1. Study area

The Amundsen Sea is located in western Antarctica between the Ross Sea and
Bellingshausen Sea (69°S-74°S; 100°W-135°W, Fig. II-1), and is characterized by a
large polynya from November to February (Arrigo and van Dijken 2003). The Korean
Amundsen Sea Expedition was conducted during the austral summer, from February 18
to March 7, 2012, aboard the Korean icebreaker research vessel RV Araon. Water depth
ranged from 530 to 1,064 m, and temperature ranged from —1.8 to —1.1°C (Table II-
1).

Sediment samples were collected using a box corer at four stations at three
contrasting sites along the marginal ice zone (Stn 83) — polynya (Stn 10 and 17) — ice
shelf site (Stn 19) (Table II- 1). P. antarctica was the major planktonic algae in this
highly productive polynya area, whereas diatoms were more abundant in the relatively
less-productive marginal ice zone (Stn 83) (Fig. II- 1B) (Yang et al. 2018). Subsamples

for DNA extraction were taken from the center portion of the box corer using acryl
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sub-core liners (6 cm i.d.). Cores were sliced at 1-cm intervals to a depth of 16 or 18

cm, and immediately frozen at —80°C.

£
a5
2
3

Table II-1. Oceanographic parameters and sediment properties in the Amundsen Sea,

February 10 — March 09, 2012.

Polynya lee shelf Sea-ice zone
Station zone
Stn 10 Stn 17 Stn 19 Stn 83
Latitude 73.250°S 73.496°S 74.202°S 71.699°S
Longitude 114.997°W 114.008°W 112.51°W 114.037°W
Water depth (m) 825 730 1064 530
Temp. (°C)* -1.1 -1.2 -1.5 -1.8
Salinity (psu)’ 335 33.4 33.6 33.6 T
120°W Hsw
Sediment accm;}l)lation rate (cm 0.180 0.201 0.122 0.134
TOC (%, dry wt) (0-1 cm) 1.03 0.71 0.62 0.41
TN (%, dry wt) (0-1 cm) 0.15 0.1 0.08 0.07 1
OPD (cm) 18 + 0.1 20 + 02 36+ 0.1 35+ 03 Fig. 1I-1. A map showing the sampling sites (panel A), and carbon biomass (ug L) of
the major phytoplankton groups (panel B) in the Amundsen Sea polynya during
Total oxygen uptake
(mglol‘ O%_ m"2 dh 244 3.1 1.58 1.57 austral summer 2012. ASP and MIZ denote Amundsen Sea polynya and marginal
enitrification
(nmol N em™ sed. d™)° 144 - 4.32 096 - 7.2 nd nd ice zone, respectively.
Sulfate reduction 0.07 0.06 0.05 0.04 ’
(mmol S m? d') : . . :
Anammox 302 - 384 384 - 6.24 nd nd

(nmol N em™ sed. d™)°

OPD: oxygen penetration depth

nd: not detected

* Bottom water

® Depth-integrated inventories of sulfate reduction down to 6 cm

¢ Depth-integrated inventories of sulfate reduction down to 10 cm

- 36 - -37 -



2. DNA extraction, quantitative PCR, and pyrosequencing of 16S rRNA genes

Total genomic DNA was extracted from the different sediment layers using a PowerMax
DNA Isolation kit (Mo Bio Laboratories, Carlsbad, CA, USA), following the
manufacturer’s instructions. Quantitative real-time polymerase chain reaction (qQPCR) was
used to determine the copy number of archaeal and bacterial 16S rRNA genes and
archaeal amoAd genes using a TagMan assay and a SYBR Green I assay, respectively
(Table II- 2). qPCR was used to determine the copy number of archaeal and bacterial
16S rRNA genes and archaeal amoA genes by a TaqMan assay and SYBR Green I
assay, respectively. The PCR products from the 16S rRNA gene of Escherichia coli
DHSa and an environmental thaumarchaeotal 16S rRNA gene sequence amplified from
natural sediment of the ASP were used as the standards for bacterial and archaeal
quantification, respectively. TagMan assay was performed using Premix Ex Taq™
(TaKaRa Co. Japan) with 20 uM of the primers and 2.5 pM of the probe. The
TaqMan probes were modified at the 5° and 3’ end with FAM reporter and Black Hole
Quencher dye (Integrated DNA Technologies, Illinois, USA). Quantitative PCR was
performed on an ABI 7500 Real-Time PCR System (Applied Biosystems, Foster City,
CA, USA). The temperature profile for the TagMan assay was composed of an initial
incubation step for 2 min at 50°C (polymerase activation) followed by a 10 min
pre-denaturation step at 95°C, 40 cycles of denaturation for 30 s at 95°C, and annealing
and elongation for 1 min at 60°C. The calculated 16S rRNA gene copy numbers were
converted to cell numbers using conversion factors of 1.5 for Archaea and 4.1 for
Bacteria, following recommendations by Schippers et al. (2006). Q-PCR was also used
to determine the abundance of archaeal amod genes with SYBR Green I assays.
Standards were purified plasmid DNAs from clones generated from archaeal amoA genes
recovered from sediment sample of ASP. PCR conditions for amod gene amplification
are as described in the previous study (Moin et al 2005). SYBR Green assay was
performed using TB Green™ Premix Ex Taq™ (TaKaRa Co., Japan) with 20 uM of
the primers. Quantitative PCR was performed on an ABI 7500 Real-Time PCR System

(Applied Biosystems, Foster City, CA, USA). Samples were run in triplicate. SYBR
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Green [ Assays included a melting curve analysis to verify PCR specificity.
Melting-curve peaks for the standards and samples amplified using the amoAd
gene-specific primers occurred at temperatures between 83.0 and 85.5°C. Every qPCR
included a set of standards with concentrations ranging between 10° and 107 fragment
copies per pL and a blank (where the sample was replaced with sterilized distilled
water), both run in triplicate. All qPCRs had an R* above 0.99. The efficiencies of the
archaeal amoAd gene 98% (Standard curve: slope= —3.38) and that of 16S rRNA gene
qPCRs were 97% (standard curve: slope = —3.4). We used automatic settings for
determination of the threshold cycle line. Gene targets as well as probe and primer

sequences used in this study are summarized in Table II- 2.

Table II-2. Primer and probe sequences used in quantitative PCR

Primer Target gene Sequence (5’-3%)
349F Archaea 16S rRNA GYG CAS CAG KCG MGA AW
806R Archaea 16S TRNA GGA CTA CVS GGG TAT CTA AT

TGY CAG CCG CCG CGG TAA HAC
S16F (probe) Archaea 16S tRNA

CVG C
331F Bacteria 16S rRNA TCC TAC GGG AGG CAG CAG T

GGA CTA CCA GGG TAT CTA ATC CTG
797R Bacteria 16S rRNA -

518R (probe) Bacteria 16S tRNA  CGT ATT ACC GCG GCT GGC AC
amoAF Archaeal amoA STA ATG GTC TGG CTT AGA CG

amoAR Archaeal amoA GCG GCC ATC CAT CTG TAT GT

For each DNA sample, PCR amplification of the 16S rRNA genes was performed
in triplicate using a primer set of Uni787F (Roesch et al., 2007) and Unil391R (Lane
et al., 1985) according to Jorgensen et al. (2012) (thermal cycler conditions: 95 °C for
15 min, then 25-30 cycles of 94 °C for 45 s, 53 °C for 45 s, 72 °C for 1 min
followed by 72 °C for 7 min). Each reaction mixture contained 1X PCR buffer, 2 mM
MgCl,, 0.2 mM dNTPs, 5% dimethyl sulfoxide, 0.1% bovine serum albumin, 1.2 uM
primers, 2.5 units/ul DNA polymerase (Takara Bio, Shiga, Japan). After confirming PCR

products by gel electrophoresis and UV illumination, PCR products from the triplicate
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PCR reaction were pooled and purified using the QIAquick PCR Purification Kit
(Qiagen). The purified products were quantified using the Quant-iT™ PicoGreen®
dsDNA Assay Kit (Invitrogen). An equal DNA amount of the purified PCR products
from each sample was pooled for pyrosequencing. Resulting amplicons were sequenced
by Macrogen Corporation (Korea) using the 454 GS FLX+ system (Roche). Raw data
were deposited in the National Center for Biotechnology Information Sequence Read
Archive database under accession number SRX3405376. Raw flowgrams of
pyrosequencing reads were filtered and de-noised by a PyroNoise algorithm (Quince et
al. 2011) implemented in a MOTHUR pipeline (ver. 1.36.1) (Quince et al. 2009).
Chimeric sequences were identified and removed by ChimeraSlayer. For each of the 48
sampled sediment layers at the polynya and non-polynya sites, we generated a 16S
rRNA gene amplicon library, with one primer set covering the V5-V8 region of both
bacterial and archaeal taxa (Jorgensen et al. 2012). A total of 132,914 pyrosequencing
reads from 48 samples were qualified for further processing. The sequences were then
clustered into operational taxonomic units (OTUs) that met the criteria of a 97%
similarity threshold and a minimum cluster size of 2 using a QIIME pipeline (ver.
1.9.1) (Caporaso et al. 2010). Taxonomy for each OTUyy; was assigned using the RDP
classifier method (Wang et al 2007) with the Greengenes database (ver. 13_8)
(McDonald et al. 2012). To avoid the effects of different sample sizes for estimating
diversity, comparison sequences were randomly subsampled to the smallest library size
(Kirchman et al 2010), which was 1,628 sequences in the present study. Chaol

estimates were created using QIIME software to assess diversity (Chao et al. 1984).

3. CARD-FISH analysis and probe design

Samples for catalyzed reporter deposition fluorescence in situ  hybridization
(CARD-FISH) were obtained from frozen sediment cores. Subsamples from depth layers
0-1 cm and 1-2 cm were fixed in 50% ethanol (final concentration) while thawing,
diluted, ultrasonicated at 20% intensity, 20 cycles, 20s (Bandelin, Sonopuls HD 200,

Germany) and filtered on a 0.22 pum pore size polycarbonate filter. CARD-FISH was
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performed as previously described (Ishii et al., 2004) with the following modifications:
cell walls were permeabilized with lysozyme (10 mg ml") for 60 min at 37°C followed
by achromopeptidase treatment (60 U ml” in 0.01 M NaCl, 0.01 M Tris-HCI pH 8) for
30 min at 37°C. Endogenous peroxidases were inactivated with 30% H,O, in methanol
for 30 min at room temperature. Filters were finally embedded in
4,6_-diamidino-2-phenylindole (DAPI)-containing mounting medium and cells were
counted in 20-100 independent microscopic fields of view using an epifluorescence
microscope (Nikon Eclipse 50i).

As none of the two general probes for Planctomycetes, PLA46 (Neef et al.
1998) and EUB338-II (Daims et al., 1999), covers clade MSBL-9 (> 3 mismatches)
probes for MSBL-9 were developed using the software package ARB and the
implemented function ‘probe design’ (Ludwig et al. 2004) using SILVA database
SSURefNR 132 (Quast et al. 2013). Probe MSBL-9-46 (GACTTGCATGTCTTAGCC)
was used at 30%  formamide  together  with  competitor = cMSBL-9-46
(GACTTGCATGTCTTAACC) to avoid unspecific binding of Verrucomicrobia having
one mismatch to the probe. Probe MSBL-9-338 (GCAGCCCTCCGTGGAGGT) was used

at 35% formamide concentration.

4. Geochemical characterization

Geochemical constituents (NH,", NOx [NO; + NO,], PO, and Fe*) in the pore
water, sediment accumulation rates, oxygen penetration depth (OPD), total oxygen uptake
(TOU), sulfate reduction rates, and N, removal rates by denitrification and anaerobic
ammonia oxidation (anammox) were adopted from the results reported by Kim et al.
(2016) and Choi et al. (2016). Total organic carbon (TOC) and total nitrogen (TN)
were analyzed with Elemental Analyzer (Carlo Erba, NA-1500) (Verardo et al., 1990).
To measure total organic carbon (TOC) in the sediments, 5-10 mg of dried sediment in
a silver capsule was treated with 6% H,SO, for dissolution of carbonates.
Treated-sediments were analyzed with Elemental Analyzer (Carlo Erba, NA-1500). To

determine total nitrogen (TN), 10-15 mg of dried-sediment was placed in a tin capsule
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and analyzed with Elemental Analyzer (Carlo Erba, NA-1500).

5. Statistical analyses

The significance of spatial differences of geochemical constituents was assessed using a
Mann-Whitney U, and a significance level of 0.05 was used to determine a significant
statistical difference. Relative abundance of microbial populations were tested using
Kruskal-Wallis test.

The OTU table from QIIME and geochemical measurements were analyzed in R
(v. 3.3.2) (R Core Team, 2016) with custom scripts and several packages including
vegan (v. 2.4-2) and Imtest (v. 0.9-35). Exploratory data analysis was carried out for
both microbial community and geochemical measurements data using non-metric
multidimensional scaling (NMDS), diversity measures and hierarchical clustering analysis.
Microbial community was analyzed at the OTUgo; level as well as at phylum and order
level. The compositional difference of microbial communities among stations was tested
by MANOVA-like non-parametric tests (ANOSIM and PERMANOVA). The ordination
of microbial communities was fitted with geochemical measurements by vector fitting.
Constrained ordination models were constructed by redundancy analysis (RDA) in
iterative fashion considering collinearity among constraining geochemical variables. The
community structures were compared among stations, and between Bacteria and Archaea

using Procrustes test on RDA ordination configuration and Mantel test.

A3 d A2 A B2

1. Spatial variations of benthic microbial communities in the Amundsen Sea

The distribution of geochemical constituents and community structures showed distinct

spatial variation between the polynya sites and non-polynya sites of the Amundsen Sea
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(AS). Sediment accumulation rates in the polynya sites (Stns 10 and 17) were 1.5 times
higher (0.180-0.201 c¢m y™') than in the ice self (0.134 cm y') and marginal ice zone
(0.122 cm y™). Contents of TOC, and TN were approximately 1.25 to 2.1 times higher
at the polynya than at the ice shelf zone (Stn 19) and sea-ice zone (Stn 83) (Table II-
1 and Fig. II-2) (p < 0.001). Accordingly, oxygen penetration depth (OPD) at the
polynya sites (1.8-2.0 cm) was shallower than at the non-polynya sites (3.5-3.6 cm).
Pore-water analysis revealed that the concentration of NOx at the polynya sites
decreased with depth from approximately 30 uM at the top to 8 uM at 3-5 cm depth
interval, and then remained constant down to 10-20 cm depth (Fig. II-2). In contrast,
NOx concentration at the non-polynya sites (ice shelf and sea ice zone) was high (> 20
uM) at all depth range. NH," concentration was higher at the polynya sites than at the
non-polynya sites (Fig. II- 2) (p < 0.001). Concentration of Fe*' in the pore-water was
low at all sites (< 10 pM), but the average concentration of dissolved Fe*" was higher
at the polynya sites (4.9 pM) than at the non-polynya sites (1.98 puM) (p = 0.003).
Consequently, metabolic activities such as total oxygen uptake (TOU) rate and anaerobic
respiration by sulfate reduction were consistently higher in the polynya sites with
relatively higher Coy content compared to those measured at non-polynya site (Table II-
1 and Fig. 1I-2) (p = 0.002).

The NMDS ordination configuration fitted with geochemical parameters showed
that the microbial communities were segregated according to the polynyas and
non-polynyas, driven by differences in geochemical constituents (NH,", Fe*', and PO,*),
TOC, TN, and sulfate reduction rate (Fig. II-5). Both archaecal and bacterial communities
were quite distinctive between polynya sites and non-polynya sites (P < 0.001 from both
PERMANOVA and ANOSIM) (Fig. II-3). Likewise, selected-orders covering 70% of total
reads abundance nicely showed the distinctive microbial communities between polynyas
and non-polynyas (Fig. II-3D). From the RDA analysis (Fig. II- 4), the NOx
concentrations correlated with surface microbial communities at all stations. The Cor
contents correlated with the microbial communities in surface sediments of Stn 10 and in
intermediate depth of Stns 17 and 19, respectively. Microbial communities in Stn 83

were clearly unique compared to those in other sites. Archaeal communities were more
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distinctive among stations,

Compositional similarity at phyla level better reflects the ecological or geographic

settings.

while bacterial communities were more

similar overall.
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Distribution of geochemical constituents (NH,", NO,, PO43',
pore-water and TOC, TN, sulfate reduction rate (SRR), prokaryotic cell
abundance based on Q-PCR, and relative abundance of major phyla in
the sediment of the polynya sites (Stns 10 and 17) and non-polynya sites
(Stns 19 and 83) of the Amundsen Sea.
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In total, 9,852 reads were unique, with an average length of 601 bp. Chaol indices
are as high as average 1,909 in the 7-8 cm depth of Stn 17, and were lowest as 704 in 14—
16 cm depth of Stn 83 (Table II- 3). Chaol and observed OTUgg7 count of the polynya sites
and ice-shelf site were higher than those of the sea-ice zone. These two indices were
estimated to be highest within the sub-oxic layers (3-8 cm depth) of all sites. The
community compositions at the phylum level were dramatically different between sites (Figs
II-2 and II-6). At the polynya site (Stn 10), the most dominant phyla were Planctomycetes
(35-71%), Proteobacteria (4.8-22%), Thaumarchaeota (1.2-12.1%), and Chloroflexi (1.9—
10.8%). Candidate Division GNO02 (0.5-4.4%), Candidate Division SBR1093 (0.2-8.3%),
Acidobacteria (1.2-5.0%), and Bacteroidetes (0.4-3.2%) were of minor abundance. At Stnl7,
the proportion of Planctomycetes slightly decreased (14.8-43%), whereas the percentage of
Thaumarchaeota (13-51%) appeared to be more abundant than those at Stn 10. Other phyla
included Proteobacteria (10.6-31%), Chloroflexi (2.1-8.7%), Candidate Division SBR1093 (0.5
—8.3%), and Acidobacteria (2.6-4.1%). The proportion of archaeal sequences prominently
increased at Stns 19 and 83, which is consistent with the results of archaeal cell number
estimated from 16S rRNA gene quantification by Q-PCR (Fig. II-2 and Table II-3). Relative
abundance of Thaumarchaeota accounted for 41-59% and 41-67% at Stn 19 and Stn 83,
respectively. Proteobacteria (4.1-27.8%), Planctomycetes (5.8-24%), Chloroflexi (1.6-8.1%),
Acidobacteria (2-8%), and Candidate Division SBR1093 (0.3-8.1%) appeared in similar
proportions at the both non-polynyas (Fig. II-2).

Total prokaryotic cell numbers determined by 16S rRNA gene Q-PCR ranged from
0.1 x 107 to 9.9 x 10" cells cm™ per each sample, which showed no difference between the
sites (Table 1I-3). Total prokaryotic abundances were higher in the surface sediments and
decreased with depth at all sites (Fig. 1I-2). The proportion of bacterial cells to total
prokaryotic cells was highest at Stn 10 (92%), and then decreased to 67% (Stn 17), 57%
(Stn 19) and 48% on average (Stn 83). In contrast, archaeal proportion comprised 8% at Stn
10, and then gradually increased with distance further from Stn 10 to 33% (Stn 17), 43%

(Stn 19) and 52% on average (Stn 83) (Table II-3).
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Table II-3. Abundance of prokaryotes estimated by q-PCR based on 16S rRNA gene copy

H
numbers and estimates of phylotype richness and coverage for the prokaryotic assemblages £ O e
£ X
Station Depth  Prokaryotic abundance Nt(())'ta?f No. of Good's Chaol é .
(cm) (cells em™) ° roads OTUs* coverage Mo ain .
Polynya Sm 10 (-1 1.89x107 (88.5/11.5) 2397 805 664 1239 3 1 Tt et e
12 1.30x107 (92.6/7.4) 3205 958 70.1 1317 g ] LV
34 2.25x107 (91.8/8.2) 2580 876 66 1359 3 Ve .inieie
4.5 9.90x10° (92.2/7.8) 2894 1014 65 1640 g . Station 10
5.6 1.69x107 (94.6/5.4) 2316 735 68.3 1200 c . Steion: 1
6-7 1.16 x10° (91.9/8.1) 3041 1189 60.9 1816 e 0 Simion 19
7-8 1.17x107 (91.7/8.3 3049 1159 62 1801 s 1 Station 33
3 g
8-9 1.70x107 (94.1/5.9 2973 1076 63.8 1561 2
o
10-12 1.64x107 (91.7/8.3 1857 809 56.4 1557 g Ty
g ® w0
12-14 5.33x10° (89.5/10.5) 1713 709 58.6 1392 3 =
14-16 2.05x10° (89.9/10.1) 2414 959 60.3 1622 g D pisn
16-18 6.58x10° (90.6/9.4 3154 959 69.6 1348 £ .,
] . 0
St 17 0-1 4.67<107 (68.5/31.5) 3156 861 727 1322 3
12 4.89x107 (63.2/36.8) 2589 767 70.4 1314 £
23 5.93x107 (59.3/40.7) 2743 716 73.9 1341 i
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Ice-shelf Stn 19 0-1 9.90x107 (68.5/31.5) 2530 849 66.4 1361 . . . . .
12 6.03x107 (66.5/33.5) 3002 831 723 1424 Fig. 1I-6. Relative abundance of major microbial 16S rRNA gene OTUs based on order level
23 5.92x107 (62.9/37.1) 5309 1153 783 1457 . . .
34 4573107 (63.1/36.9) 3260 773 76.4 1326 and uncultivated clades in the sediments of the ASP.
4-5 3.82x107 (64.2/35.8) 3154 977 69 1617
5-6 3.68x107 (56.5/43.5) 4887 1142 76.6 1560
6-7 4.97x10° (60.7/39.3) 3050 974 68.1 1609
7-8 1.29x107 (63.0/37.0) 2387 608 74.5 991
8-9 6.31x10° (54.3/45.7) 2306 818 64.5 1462
9-10 2.03x10° (47.0/53.0) 2516 717 715 1239
10-12 1.25x10° (40.7/59.3) 2961 743 74.9 1126
12-14 1.19x10° (46.4/53.6) 2089 560 732 931
14-16 1.32x10° (42.2/57.8) 3346 577 82.8 793
Sea-ice  Stn 83 0-1 3.09x107 (66.1/33.9) 3402 803 76.4 1182
12 3.06x107 (45.6/54.4) 3480 683 80.4 1125
3-4 2.24x107 (69.7/30.3) 2553 750 70.6 1243
4.5 4.00x107 (58.2/41.8) 2397 731 69.5 1229
56 1.27x107 (47.3/52.7) 2181 602 2.4 1194
6-7 8.12x10° (50.2/49.8) 2333 734 68.5 1179
7-8 1.33x10° (43.2/56.8) 1859 620 66.6 1277
8-9 1.21x10° (29.3/70.7) 2195 503 77.1 779
9-10 8.51x10* (47.6/52.4) 2121 505 76.2 735
10-12 3.25x10° (36.8/63.2) 2587 643 75.1 963
12-14 2.06x10° (42.3/57.7) 2618 508 80.6 781
14-16 3.55x10° (35.1/64.9) 3074 467 84.8 704

§ Numbers in parenthesis indicates the percentage of bacteria or archaea of total prokaryotic cells based on 16S
rRNA gene copy quantification using Q-PCR
* Based on 97% similarity clustering

Good’s coverage (%) = [1-(n/N)] x 100 (n, the number of OTUs; N, the total number of reads)

- 50 - - 51 -



2. Sequence-abundant Planctomycetes and its visualization by CARD-FISH

One of the most prominent features revealed from the 16S rRNA gene pyrosequencing was
that the members of Planctomycetes appeared to be the most abundant microbial members
detected in the highly productive polynya sites, especially at Stn 10 (Fig. II-2). Many
Planctomycetes have been found attached to sinking marine aggregates in water column
(DeLong et al., 1993; Fuchsman et al, 2011, 2012). At ASP, however, they were not
detected in the water column (Delmont et al., 2014; Kim et al., 2014b). Thus, the highly
abundant Planctomycetes sequences in the ASP sediment are not supposed to be originated
from water column, confirming the results by Probandt and coworkers who showed that
Planctomycetes in subtidal, sandy sediments differed from those in the overlaying water
column (Probandt et al., 2017).

From the NGS result of 16S rRNA amplicons, the most abundant Planctomycetes in
the total microbial communities were belonged to three clades, i.e. Pirellula-like group,
candidate order MSBL-9 (Mediterranean Sea Braine Lake-9) (Pachiadaki et al., 2014), and
Candidatus Brocadiae (Fig. II-7). The Pirellula-like group and the candidate order MSBL-9
were the two most dominant bacterial groups at Stn 10, comprising 34% and 32% of total
16S rRNA gene sequences, respectively (Figs. 1I-6 and II-7). In contrast, relative abundance
of Pirellula-like group decreased to < 17%, and the candidate order MSBL-9 group was not
discernible at Stn 83. Candidatus Brocadia that is known to be capable of anaerobic
ammonium oxidation (anammox) using nitrite as the electron acceptor (Schmid et al., 2003)
was most abundantly detected at Stn 17 among the four sites, and appeared a maximum
9.2% of the total prokaryotic sequences at 9-10 cm depth (Figs. II-6 and II-7).

The in situ existence of Planctomycetes was demonstrated in the surface sediment
layers of the polynya stations (Stns 10 and 17) as well as in sediments of the ice-shelf (Stn
19) and below sea-ice (Stn 83) by CARD-FISH using the general probe for Planctomycetes
PLA46. Most sequences retrieved from the polynya sites, however, were affiliated with clade
MSBL-9 of the class Phycisphaera (Figs. 1I-7 and II-8) which is neither covered by probe
PLA46 nor by any of the general bacterial probes EUB338 I-III. Thus, we designed and
tested two new probes for these target sites with a coverage of nearly 100% of clade
MSBL-9 and named them MSBL-9-46 and MSBL-9-338. Both probes showed bright

CARD-FISH signals in the AS sediments. Cells had the typical ovoid to elliptic morphology
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(Fig. 1I-8, panels A to F). The applied formamide concentration of 30% for MSBL-9-46 and
35% for MSBL-9-338 will allow a combined use of these probes with PLA46 and EUB338
I-III in future experiments. In this study, we cannot provide in situ quantification of cell
abundance because the sediments used for CARD-FISH were not pre-fixed immediately after
sampling (Moter and Gobel 2000). However, the CARD-FISH images for the -class
Planctomycetia and the candidate order MSBL-9 (Fig. I1I-8) strongly support the extensive

distribution of Planctomycetes in the AS sediments.
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Fig. II-7. Relative abundance of major groups in the phylum Planctomycetes (based on order

level) of the total 16S rRNA gene sequences at each sample
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Fig. 1I-8. CARD-FISH images (panels A to F) and phylogenetic tree showing the distribution
of the 16S rRNA genes sequences retrieved from the ASP sediments within the
phylum Planctomycetes. The tree was constructed using the maximum-likelihood
algorithm in MEGA 7.0. The color of the square bar represents the relative
abundance of the sequences for each site (Stn 10, Stnl7, Stnl19, and Stn 83). Node
support estimated using 1,000 bootstrap replicates. Bootstrap value above 50% is
shown.
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3. Planctomycetes are likely responsible for the C,, mineralization in the ASP
sediments

Pirellula members in Planctomycetes have been often reported as heterotrophic bacteria
degrading organic matter produced by macro- or micro algae (Glockner et al. 2003; Morris et
al. 2006; Bizi¢-lonescu et al. 2015) while little information is available to speculate about the
ecological role of the uncultured Planctomycetes (Fig. 1I-8). Most of the cultivated
Planctomycetes have been known as aerobes or facultative aerobes (Schlesner et al. 2004).
However, environmental sequences from Planctomycetes were often retrieved from anoxic
zones, such as in methane hydrate-bearing sediment (Inagaki et al. 2006) and subsurface sea
floor sediment (Jorgensen et al. 2012). Therefore, detection of these sequences in
oxygen-depleted layers is not surprising (Fig. 11-9).

In fine-grained marine sediments receiving high organic material input, Delta- and
Gammaproteobacteria have been reported as the predominant bacterial group (Rooney-Varga
et al. 1997; Bowman and McCuaig 2003; Bissett et al. 2006). Therefore, our results
exhibiting high Planctomycetes abundance, comprising average 40% of total sequence (Fig.
II-2), in the ASP sediments is intriguing. Major controls regulating the distribution of the
Planctomycetes in the sediments remain unknown, largely because any culture-based studies
are not available (Bauld and Staley 1976; Schlesner et al. 2004; Lee et al. 2013). However,
our statistical analysis (Fig. 1I-6) revealed that relative abundance of Planctomycetes in the
ASP showed a significant positive correlation with TOC contents and inorganic constituents
(NH,', PO, and Feﬁ) presumably resulting from the C,, mineralization. It is well known
that the Phaeocystis colony excretes mucous matrix containing both carboxylated and
sulfated-heteropolysaccharides as main constituent (van Boekel 1992; Alderkamp et al. 2007).
Based on metagenomic information from the Namibian and Oregon coastal upwelling system,
Woebken et al. (2007) revealed that all marine planctomycetes genomes, except for
Candidatus Kuenenia stuttgartiensis, possess a high number of sulfatase genes, which suggest
marine  Planctomycetes might be able to breakdown the recalcitrant sulfated
heteropolysaccharides (Wegner et al. 2013; Probandt et al. 2017). In addition, since the
Phaeocystis settles slowly (Collier et al. 2000, DeJong et al. 2017), most labile Ce produced
by P. antarctica bloom are rapidly decomposed by heterotrophic bacteria in the water column

before reaching the sediment of the ASP (Kirchman et al. 2001), and the organic materials
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accumulated in the surface sediments of the deep ASP (> 700 m) would be intrinsically
recalcitrant. Consequently, the high relative abundance of Planctomycetes in the center of the
polynya (Stns 10 and 17) suggests that the members of Planctomycetes are a significant
heterotrophic bacterial group utilizing recalcitrant organic materials originated from Phaeocystis
bloom in the water column of the ASP. Recently, Probandt et al. (2017) also suggested that
Planctomycetes play a key role for degradation of high molecular weight compounds and

recalcitrant materials entering surface sediments from the water column of the Wadden Sea.
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Fig. 1I-9. Correlations between the relative abundance of the planctomycetal 16S rRNA gene

in total sequences and geochemical properties.
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4. Spatial variability of Proteobacteria, Chloroflexi, and Bacteroidetes
Gammaproteobacteria and Deltaproteobacteria were the two most abundant groups within
Proteobacteria, comprising 1-26% and 3-17% of total bacterial sequences, respectively (Fig.
I1-6). Relative abundance of Proteobacteria did not show significant spatial variations with
sites (Kruskal-Wallis, ¥*(3) = 1.375, p = 0.711). However, based on the class level, delta-
and alphaproteobacterial compositions showed spatial variations (Fig. II-10). Desulfobacterales
and Desulfuromonadales that have been well known as a typical sulfate- and sulfur
(S%)-reducing bacterial group in marine sediments appeared the most abundant in Stn 10 but
were rarely detected in Stn 83. These results correspond with the previous biogeochemical
study that sulfate reduction rates were higher in the polynya site (Stn 10) than those in the
non-polynya site (Stn 83) (Kim et al. 2016). In contrast, the deltaproteobacterial sequences in
the candidate order NBI1-j appeared higher at Stn 19 and Stn 83, but showed low relative
abundance at Stn 10 (Figs. II-6 and II-10). However, their ecological or physiological
information in marine environment has not been known because they have only been
observed as 16S rRNA gene in marine environments (Schauer et al. 2010; Zeng et al. 2011).
The subgroups in Chloroflexi appeared to be different between polynya and
non-polynya. Major Chloroflexi in Stn 10 were affiliated with the class Anaerolineae (Fig.
II-11). Although most members in class Anaerolineae consist of a huge number of
environmental 16S rRNA gene sequences (Blazejak and Schippers 2010), their physiological
insights are not known well because only a few cultivated bacteria in this class have been
isolated (Yamada et al. 2006). In contrast, the sequences clustered in the class SAR202 and
TK17 were more abundant at Stns 17, 19 and 83. Genomic studies suggested that the
bacteria in SAR 202 clade oxidize relatively recalcitrant organic compounds in the deep-sea
water column (Landry et al. 2017; Mehrshad et al. 2018). The sequences in the TK17 clade
were affiliated with uncultured Chloroflexi sequences that were retrieved from various habitats,
such as hydrocarbon-contaminated soil (Militon et al. 2010) and sponge tissue (Montalvo and
Hill 2011). The members in Bacteroidetes that have been reported as a major organic matter
decomposer in the sediments of the SO (Carr et al. 2013; Ruff et al. 2014; Learman et al.
2016) were substantially low with relative abundance less than 5% of total 16S rRNA gene

sequences (Fig. 11-2).
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5. High archaeal abundance in the marginal sea ice zone

One interesting finding revealed from Q-PCR analysis was that archaeal abundance occupied
more than half (30-71%) of total prokaryotic abundances at the marginal ice zone (Stn 83)
in which most archaeal 16S rRNA gene sequences were assigned to Thaumarchaeota (Table
II-3 and Fig. 1I-2). The Thaumarchaeota (formerly known as MG-I) were a predominant
microbial group in the sediments of AS except at Stn 10 (Fig. 1I-2). Most Thaumarchaeota
sequences could be classified into three subgroups termed Alpha, Theta, and Upsilon (Durbin
and Teske, 2010) (Fig. I1I-12). The Thaumarchaeota subgroup Alpha was dominant at top
layers (0-5 cm) at all sites. The community composition of Thaumarchaeota subgroup
changed gradually from top to bottom at the non-polynya sites (Fig. II-12). Relative
abundance of archaeal sequences associated with Theta and Upsilon subgroup in
Thaumarchaeota increased with increasing depth, especially at marginal sea ice zone (Stn 83).
Except for the Thaumarchaeota, Marine Benthic Group B (MBGB) and Miscellaneous
Crenarchaeotic Group (MCG), proposed as Thorarchaeota (Meng et al. 2014) and
Bathyarchaeota (Rinke et al. 2013), respectively, that have been reported as putative
heterotrophic microorganisms (Biddle et al. 2006; Jorgensen et al. 2012; He et al. 2016) were
only detected at Stn 10 (~9.5% and ~5% of total sequences, respectively). Similarly, archaeal
sequences related to the methane cycle were only detected in low abundance at Stn 10 (<
2% of the total sequences).

The members in Thaumarchaeota are known as major contributors for aerobic
ammonia and nitrite oxidation in aquatic environments (Konneke et al. 2005). To examine the
potential of sedimentary Thaumarchaeota to oxidize ammonia, we quantified the archaeal
amoA gene that is known for a genetic marker for the ammonia oxidation. The depth profiles
of archaeal amoA and 16S rRNA gene copy numbers were very similar to each other in the
samples except for some layers (Fig. I1I-13), which imply that most archacal members in all
depth have a gene encoding ammonia monooxidase. Both proportion of archaeal cell
abundance in total prokaryotic abundance (Fig. I1I-14A) and the relative abundance of
Thaumarchaeota in total 16S rRNA gene sequences (Fig. II-15B) showed a negative
correlation with TOC contents. Previously, the environmental members in Thaumarchaeota

have been reported in oligotrophic marine sediments as an important chemolithotrophic
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microbial assemblage (Inagaki et al. 2006; Durbin and Tesk, 2011). Similarly, cultivated
thaumarchaeal ammonia oxidizers have been shown to be adapted to oligotrophic conditions
(Martens-Habbena et al. 2009; Prosser and Nicol 2012). Likewise, the metaproteomic data
indicate that MGI are abundant and metabolically active at the surface water of west
Antarctic ocean during the winter (Williams et al. 2012), and chemoautotrophic carbon
fixation by Thaumarchaeota significantly contributed to bacterioplankton production during the
Antarctic winter, accounting for up to 9% (Tolar et al. 2016). Therefore, we suggest that the
predominant  Thaumarchaeota in the sediments of non-polynya are a significant

chemolithoautotrophic group, sustaining the oligotrophic benthic ecosystem.
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7. Implication of Planctomycetes-dominated communities in assessing ecosystem

response to climate change

This study presents a unique distribution of the benthic microbial communities dominated by
Planctomycetes in the ASP sediment underlying Phaeocystis antarctica-dominated water
column. Since the structure and function of benthic microbial communities are largely
controlled by the quantity and quality of the organic matter from water column (Danovaro et
al. 2000; Bissett et al. 2006; Jamieson et al. 2013; Learman et al. 2017; Probandt et al.
2017), predominance of the Planctomycetes in the ASP sediment has a significant implication
for the response of benthic ecosystems associated with the proposed shift in phytoplankton
communities resulting from the climate changes in the water column (Arrigo et al. 1999;
Tortell et al. 2008). The export flux of Cu; formed by Phaeocystis bloom is twice slower
than that formed by diatom bloom (DeJong et al. 2017), and thus the contribution of P.
antarctica cells to total export below the photic zone dramatically declined (Reigstad and
Wassmann 2007). In contrast, the organic materials that are produced by diatom possess
relatively faster sinking rate and lower C:N ratio (i.e., relative more labile) compared to that
of the Phaeocystis (Alderkamp et al. 2007; DeJong et al. 2017). Therefore, any transition in
phytoplankton community, i.e., from Phaeocystis to diatom, would accumulate more labile
organic matter in the benthic system of the SO, which ultimately affects the benthic microbial
community composition. In the SO, like most coastal ecosystems, proteobacterial groups such
as Delta- and Gammaproteobacteria have been known to occupy ecological niche as a
primary mineralizers of the organic materials in the sediments (Bowman and McCuaig 2003;
Baldi et al. 2010; Learman et al. 2016; Ruff et al. 2014). Therefore, microbial community
structures dominated by Planctomycetes rather than Proteobacteria in the present study
provides relevant baseline information in assessing and/or predicting the environmental changes
associated with the climate changes in the Amundsen Sea where Phaeocystis consists of

dominant phytoplankton composition.
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