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A B S T R A C T

Seeping of methane-rich fluids at submarine cold seeps drives intense microbial activity and precipitation of
authigenic carbonates. Some trace elements play an important role in the biogeochemical processes operating at
cold seeps, especially as specific enzymatic co-factors related to methanogenesis and the anaerobic oxidation of
methane (AOM). However, it is unclear whether microbial trace metal utilization can be traced by the geo-
chemical composition of seep carbonates. In this study, we analyzed a series of authigenic carbonate samples
recovered from various seep settings worldwide and report for the first time trace element concentrations for
total lipid fractions, combined with biomarker analyses and determination of elemental abundances in asso-
ciated inorganic mineral phases (carbonate phases, sulfides, organic compounds and detrital fractions). Our
results indicate marked enrichments of Co, Ni, Cu, Mo and W in the archaeal and bacterial lipids associated with
authigenic carbonates, which can all be ascribed to previously identified enzymatic pathways. In addition to the
microbial communities involved in AOM, which most likely control specific lipid-bound enrichments of Co, Ni,
Mo and W in seep carbonates, Cu was found to display higher concentrations in the lipid fractions extracted from
a few authigenic carbonate samples formed closer to the sediment-water interface, hence possibly related to the
presence of aerobic methane-oxidizing bacterial assemblages in the near seafloor environment. While the above
mentioned trace metals are relatively enriched in all studied inorganic and organic fractions, the very low W
concentrations measured in carbonate phases, combined with their pronounced enrichment in associated lipid
fractions and inferred microbial requirement, suggest that tungsten depletion in pore waters could possibly act as
a limiting factor on AOM at cold seeps. Finally, two other trace elements (Li and Ti) also displayed particular
enrichments in studied lipid fractions, which, despite no reported evidence, could possibly indicate that they are
also involved as metalloenzymes in microbial methane oxidation processes at cold seeps.

1. Introduction

The seepage of methane-rich fluids at ocean margins sustains
abundant chemosynthetic seafloor ecosystems, which rely on the use of
reduced chemical compounds (Levin, 2005). Fluid seepage is accom-
panied by intense microbial activity at cold seeps, leading to

precipitation of authigenic minerals, such as carbonates and sulfides,
and development of microbial mats close to the seafloor (Sibuet and
Olu, 1998; Peckmann et al., 2001; Joye et al., 2004). Microbial com-
munities prospering in cold seep environments support the highest
biomass in deep-sea ecosystems, with up to 1012 cells per cm3

(Michaelis et al., 2002). The dominant microbial processes at cold seeps
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are the anaerobic oxidation of methane (AOM) coupled to sulfate re-
duction. Until recently, it was generally thought that AOM was mainly
coupled with sulfate reduction in anoxic sediments, both processes
being driven by a consortium of archaea and bacteria assemblages,
respectively (e.g. Boetius et al., 2000). However, over the past few
years, several studies have demonstrated that microorganisms could
also use nitrate or metal oxides to promote methane oxidation at cold
seeps (Raghoebarsing et al., 2006; Beal et al., 2009; Scheller et al.,
2010; Glass et al., 2014). Manganese (Mn) and iron (Fe)-rich oxy-
hydroxides have been identified as electron acceptors for AOM (Beal
et al., 2009), but other trace metals, such as nickel (Ni), cobalt, (Co),
molybdenum (Mo) and tungsten (W) are also involved in methane
oxidation processes as enzymatic co-factors (Krüger et al., 2003; Glass
et al., 2014). Trace metals are also suspected to have played key roles in
the long-term evolution of microbial activity through geologic time
(Anbar, 2008; Konhauser et al., 2009; Reinhard et al., 2013). For ex-
ample, an important drop in dissolved Ni concentrations in Pre-
cambrian oceans after about 2.5 Ga, as a consequence of the progressive
decrease in the production of Ni-rich volcanic rocks (komatiites) on
Earth, would have led to reduced activity of methanogenic microbes,
with possibly global impact on the composition of the atmosphere
(Konhauser et al., 2009). To date, however, and despite their potential
importance in AOM, very little is known about the utility of trace ele-
ments for microbial activity and metabolism at cold seeps.

Trace metals are essential in biological systems, playing key roles in
microbially-driven biogeochemical processes. In addition to iron, other
transition metals (Zn, Mn, Co, Ni, Cu, V, Mo and W) have been iden-
tified in proteins and enzymes involved in the metabolism of sulfate-
reducing bacteria or methanogenic and methanotrophic archaea (e.g.
Scherer et al., 1983; Krüger et al., 2003; Barton et al., 2007; Scheller
et al., 2010; Glass and Orphan, 2012; Glass et al., 2014, 2018). Among
trace metals, Ni appears to play a particularly important role in anae-
robic methanotrophy and methanogenesis (Krüger et al., 2003; Scheller
et al., 2010; Thauer et al., 2010). The microbial communities involved
in AOM also utilize other essential trace metals, such as Co, W and Mo
(e.g. Glass et al., 2014, 2018). Many of these findings have been ob-
tained from culture experiments, but little is known about how mi-
crobial activity at cold seeps may be affected by changes in trace metal
bioavailability from one site to another. Transition metals can be in-
tensively scavenged during precipitation of authigenic minerals, such as
sulfides and carbonates in methane seepage areas (Bayon et al., 2011a;
Lemaitre et al., 2014), which can severely reduce their availability to
microbial communities (Glass and Orphan, 2012). Recent investigations
have also suggested that light rare earth elements (REE) could be es-
sential for methanotrophs as co-factors in the methanol dehydrogenase
enzyme (Pol et al., 2014; Jahn et al., 2018; Picone and Op den Camp,
2019). This previously unsuspected biological role of REE for metha-
notrophic and methylotrophic bacteria was also demonstrated in a re-
cent study that investigated the methane plumes emitted in the Gulf of
Mexico following the Deepwater Horizon blowout, which revealed
significant depletion of light REE (La, Ce, Pr, and Nd) relative to the
surrounding seawater (Shiller et al., 2017).

At submarine methane seeps, authigenic carbonates are a by-pro-
duct of microbially-mediated AOM (Aloisi et al., 2000, 2002), which
can hence provide unique information on past seepage activity and
associated environmental parameters (Feng and Chen, 2015). Extensive
work has been conducted on the geochemistry of authigenic carbonates
and associated sediments, in both modern and ancient seep settings.
Previous studies have focused on both conventional and non-conven-
tional stable isotopes and radiogenic isotopes (including U-Th dating
methods) to provide constraints on both fluid sources and the timing of
fluid seepage events at ocean margins (Peckmann et al., 2001; Pierre
and Fouquet, 2007; Ge and Jiang, 2013; Bayon et al., 2015; Hu et al.,
2015a; Sun et al., 2015; Lu et al., 2017).

Trace elements in seep carbonates have been mostly used as proxies
for the source of fluids, but also to provide information on redox

conditions. Both carbonates and associated sediments at methane seeps
display relatively high elemental concentrations, suggesting that they
act as a sink for many trace elements, such as Mo and rare earth ele-
ments (Sato et al., 2012; Lemaitre et al., 2014; Hu et al., 2015b). It is
generally assumed that trace element distribution patterns in authi-
genic carbonates reflect the composition of ambient pore waters.
However, fractionation of REE can occur upon carbonate precipitation,
in response to changing carbonate alkalinity levels in pore waters,
which affect REE complexation by organic and carbonate ligands
(Himmler et al., 2010; Rongemaille et al., 2011). The degree of Ce
enrichment or depletion in modern and ancient seep carbonates, re-
lative to its trivalent REE neighbors (the so-called Ce-anomaly), has
been also used as a paleo-redox tracer (Feng et al., 2009).

Comparatively, there have been very few studies dedicated to trace
elements in organic compounds at cold seeps. Freslon et al. (2014)
reported REE concentrations for organic compounds chemically lea-
ched from a series of marine sediment samples, including sediments
recovered from active seep sites worldwide, showing strong REE en-
richments in cold seep sediments. This study suggested that a sig-
nificant fraction of sedimentary organic matter at these sites was de-
rived from chemosynthetic processes recycling REE-enriched pore
waters. Over the past decades, lipid biomarker analysis of seep carbo-
nates has provided a wealth of information on the nature of microbial
communities involved in carbonate precipitation (e.g. Aloisi et al.,
2002; Himmler et al., 2015; Guan et al., 2016). However, to the best of
our knowledge, the trace element geochemistry of lipids preserved in
authigenic carbonates has never been investigated so far.

In this study, we aimed at characterizing the trace element geo-
chemistry of lipids preserved in authigenic carbonates, in order to
provide independent information on the utility of trace metals to mi-
crobial activity at methane seeps. In contrast to the trace element sig-
natures preserved by inorganic phases in cold seep carbonates, which
mostly reflect the composition of ambient pore waters and local redox
conditions (Hu et al., 2015b), our working hypothesis is that any par-
ticular elemental enrichments/anomalies in the lipid fractions reflect
trace metal requirements for microbial metabolism. To this purpose, we
have analyzed a series of authigenic carbonate samples from various
active seeps worldwide, reporting trace element data for both carbonate
and lipid fractions. Our approach combines biomarker and inorganic
element analyses of total lipid fractions extracted from a series of car-
bonate crusts, together with determination of trace element contents in
associated mineral phases (carbonates, sulfides and organic com-
pounds, detrital fractions), separated by sequential chemical leaching.
The aim of this study was to detect specific enrichments that would be
indicative of preferential metal utilization by microorganisms.

2. Materials and methods

2.1. Sample preparation

A total of 19 seep carbonate samples from five different active
seepage areas worldwide (Congo fan, Nile deep-sea fan, Niger fan,
Eastern Mediterranean Sea, Gulf of Mexico) were analyzed (Fig. 1).
Most of these samples have been previously characterized for carbonate
mineralogy and/or stable isotopes (Table 1; see references therein). For
clarity, note that we re-labelled the name of the samples in this study
(Fig. 1; Table 1).

2.2. Pretreatment procedures

Carbonate chips were first cleaned with ultrapure Milli-Q (MQ)
water and dried, prior to being crushed into powder using an agate and
mortar. Samples were split into two aliquots of about 5 g each for lipid
biomarker extraction and analyses at the Korea Polar Research Institute
(KOPRI) and sequential chemical leaching at IFREMER, respectively.

Upon formation at cold seeps, authigenic carbonates can
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incorporate substantial amounts of sulfide and detrital minerals from
the surrounding sediment, in addition to the various organic com-
pounds related to AOM. Previous studies have shown that even a small
proportion of detrital contamination can significantly modify trace
element abundances in carbonates (Nance and Taylor, 1976; Nothdurft
et al., 2004; Frimmel, 2009). Therefore, selective chemical leaching
methods are required for investigating the geochemistry of relatively
pure carbonate and organic phases, without contamination from det-
rital and sulfide minerals (Bayon et al., 2002; Rongemaille et al., 2011;
Freslon et al., 2014). In this study, we used a sequential leaching pro-
cedure adapted from Chao and Sanzolone (1977), Freslon et al. (2014)
and Tachikawa et al. (2014), resulting in the following sequence of
leaching steps: 1) stepwise addition of 1M acetic acid (AA), to extract a
pure fraction of the most labile carbonate phases, such as aragonite and
calcite; 2) 0.25M HCl, to remove most carbonate minerals; 3) 5% hy-
drogen peroxide (H2O2), to extract organic compounds (and possibly
some sulfide minerals); 4) 3M HNO3 to leach out pyrite minerals (and
presumably any residual carbonate and organic phases); 5) digestion of
detrital silicate minerals using concentrated HF+HCl.

For the first leaching step, about 50mg of powdered carbonate
samples were placed into an acid-cleaned 15ml polyethylene centrifuge
tube, together with 500 μl ultrapure MQ water. After addition of a Tm
spike (see details below), carbonates were slowly dissolved with step-
wise (100 μl) addition of ultraclean 1M AA solution. The next 100 μl
aliquot was added once the bubbling has ceased; this step being re-
peated until addition of a total of 1ml 1M AA, hence corresponding to a
resulting leaching solution of about 3.8 wt%. This gentle leaching step
was initially developed for measuring neodymium (Nd) isotopic ratios
in foraminifera (Tachikawa et al., 2014). It ensures partial dissolution
of the most soluble carbonate phases (aragonite, calcite) with limited
contamination from silicate and sulfide minerals. The tube was then
centrifuged at 3800 rpm for 4min, and the supernatant was transferred
into a cleaned polytetrafluoroethylene (PTFE) vial, prior to evaporation
and preparation for ICP-MS analyses.

Next, a four-stage sequential leaching procedure was conducted on
our series of carbonate samples, starting from about 500mg of bulk
powdered samples. Following a protocol adapted from Freslon et al.
(2014), the most soluble carbonate phases were first dissolved using

Fig. 1. Global map showing the five study areas: 1) Congo fan; 2) Nile deep-sea fan; 3) Niger fan; 4) Eastern Mediterranean Sea; 5) Gulf of Mexico.

Table 1
Site information - mineralogical and stable isotopic composition of studied authigenic carbonate samples.

Sites Location Old ID New ID Water depth (m) C and O isotopes Mineral composition (wt%) Reference

δ13C (‰) δ18O (‰) Aragonite Calcite Dolomite

1 Congo Fan ZR2-PL13-P04 1-1 2830 −58.5 5.3 > 50 Pierre and Fouquet (2007)
ZR2-PL14-P05 1-2 3150 −53.6 5.6 > 50

BZ1-GBT3-PL7-83 1-3 3150 −49.5 2.9 > 50
2 Nile Deep-Sea Fan NL4-CC1 2-1 3032 −38.9 2.8 72 4 1 Gontharet et al. (2007)

NL7-CC1 2-2 1691 −41.8 4.2 0 51 27
NL14-CC5 2-3 2129 −29.2 3.2 70 20
NL20-CC1 2-4 3018 −38.4 3.1 82 5

3 Niger Fan N1-KS-07 3-1 1633 −45.9 4.0 87 12 Rongemaille et al. (2011)
N1-KS-22 3-2 1150 −27.8 4.9 90 10
N1-KSF-45 3-3 1546 −47.1 6.1 6 87
N1-KI-47 3-4 1540 −48.0 5.7 8 86

4 Eastern Mediterranean Sea MN13BT6-1 4-1 ~2000 −31.0 3.9 87 4 Aloisi et al. (2000)
5 Gulf of Mexico #2 4173-2 (AT340) 5-1 2216 −54.2 4.0 63 Feng et al. (2010)

#7 4174-2 (GC600) 5-2 1250 −21.4 4.8 52 Roberts et al. (2010)
#65 271-1 (MC462) 5-3 973 −40.5 4.6 80 D. Feng (unpub. data)
#67 272-1 (GC415) 5-4 1110 −38.2 3.4 68 1 Feng and Roberts (2011)
#68 273-1 (GC852) 5-5 1633 −40.2 3.7 70 1 Roberts et al. (2010)
#69 273-2 (GC852) 5-6 −40.1 3.7 62 2
#70 273-3 (GC852) 5-7 −48.1 4.5 54 2
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0.25M HCl in a PTFE vial left at room temperature for 3 h. After cen-
trifugation of the supernatant, this leaching step was repeated once, and
the remaining residue was rinsed twice with ultrapure MQ water, and
dried overnight in the oven.

The remaining dried residues were weighed, crushed, and placed
into corresponding PTFE vials. The next leaching step corresponded to
the addition of a mixed solution of 5% H2O2+0.01M HNO3, together
with Tm spike, in order to oxidize organic matter (and possibly the
easily dissolvable sulfide phases; Dold, 2003). The vials were placed on
a mechanical shaker and left at room temperature for 48 h. The solu-
tions were centrifuged at 3500 rpm for 3min and the supernatants were
transferred into acid-cleaned 15ml centrifuge tubes after filtration
using high-density polyethylene (HDPE) 0.2 μm filters. After evapora-
tion onto the hot plate, the organic-rich samples were digested over-
night with concentrated nitric (140 °C), prior to being evaporated again
and prepared for ICP-MS analyses.

Next, the residues left after the H2O2 leaching step were rinsed with
ultrapure MQ water, dried overnight, crushed and weighed. The next
leaching step was performed using 3M HNO3, aiming at dissolving a
substantial fraction of sulfide minerals (Chao and Sanzolone, 1977), but
also, presumably, any residual carbonate and organic phases that would
have been left after the 0.25M HCl and 5% H2O2 steps, together with
probably some silicate minerals. Chao and Sanzolone (1977) in-
vestigated various chemical treatments for dissolving primary sulfide
minerals in sediments, showing that the use of moderately diluted
HNO3 solutions was quite effective for dissolving pyrite, hence our
decision to use 3M HNO3 for this leaching step. After addition of a Tm
spike, 3M HNO3 was added to the samples and left on a mechanical
shaker overnight. The leachates were separated by centrifugation
(3800 rpm for 4min) and transferred into an acid cleaned Teflon vial
prior to preparation for ICP-MS analyses. The residues were rinsed with
ultrapure MQ water, dried and crushed. Finally, about 15mg of the
final residual fractions were digested on the hotplate (140 °C for 5 days)
with concentrated HF and HCl.

2.3. ICP-MS analysis

All trace element analyses were performed at the Pôle Spectrométrie
Océan (Brest, France) on an Element XR ICP-MS. Polyatomic oxide and
hydroxide interferences on the REE were corrected using oxide for-
mation rates determined by analyzing solutions of MQ-H2O, Ba+Ce,
Pr+Nd and Sm+Tb at the beginning of each measurement session
and applied to all samples. Elemental concentrations were calculated
using the Tm addition method (Barrat et al., 1996; Bayon et al., 2009).
Over recent years, this method has been successfully applied to and
validated for a wide range of geological samples, including detrital and
organic sediments (Freslon et al., 2014; Bayon et al., 2015), carbonates
(Rongemaille et al., 2011), seawater (Bayon et al., 2011b; Freslon et al.,
2011). Briefly, raw trace element data were calibrated against an un-
spiked (no added Tm) BHVO-2 reference solution run after every three
samples to correct for instrumental drift. The BHVO-2 values used for
the calculations (Barrat et al., 2012; Jochum et al., 2016) are given in
Table 1. Trace element abundances in the samples are then calculated
using the mass of sample spiked with Tm and the amount of Tm added.
The internal precision on all measurements was generally better than
5%. Repeated analyses of the JLs-1 (Triassic limestone) reference ma-
terial were also performed, with a precision of< 10% for most trace
elements (Table 2), except for Li (11.8% RSD), Ti (61% RSD) and Zr
(17% RSD). Due to high Ba/REE ratios, several carbonate samples
(including JLs-1) analyzed displayed anomalously high Eu (and to a
lesser extent Gd) concentrations as a result of under-corrected inter-
ferences, hence these two elements were not reported.

2.4. Lipid biomarker analysis

Detailed procedures for lipid biomarker analyses were previously

described by Lee et al. (2018). Briefly, total lipid fractions were ex-
tracted 3 times with dichloromethane (DCM):methanol (MeOH) (2:1).
One-half of the total lipid extract (TLE) was dried over anhydrous
Na2SO4 and treated with tetrabutylammonium sulfite reagent to re-
move elemental sulfur. The TLE was chromatographically separated
into apolar and polar fractions over an Al2O3 (activated for 2 h at
150 °C) column. The apolar fraction was eluted using hexane: DCM
(9:1), and 40 μl of 5α-androstane (10 μgml−1) was added as an internal
standard. The polar fraction was recovered with DCM:MeOH (1:1) as an
eluent and divided into two aliquots, to which either C22 7,16-diol
(10 μgml−1) or C19 nonadecanoic acid (10 μgml−1) were added as an
internal standard. Each aliquot was derivatized through the procedures
of silylation and methylation, prior to quantification with gas chro-
matography (GC) and identification with gas chromatography–mass
spectrometry (GC–MS). GC and GC–MS conditions were as described by
Lee et al. (2018). Molecular compounds were determined by comparing
their mass spectral fragmentation patterns and retention times with
previously published data (e.g. Stadnitskaia et al., 2008; Lee et al.,
2018).

2.5. Principal component analysis (PCA)

Based on the fractional abundances of microbial lipids, principal
component analysis (PCA) was performed using R software version
3.4.2 (package information; FactoMineR) to provide a general view of
the variability of the microbial lipid distributions. For the statistical
analysis, gaps in the data set were filled as described by Yunker et al.
(2005). Briefly, in cases when some of microbial lipids were not de-
termined, a value of one-half of minimum value detected for that

Table 2
Elemental concentrations (mg/kg) for BHVO-2 and JLs-1.

Element BHVO-2 JLs-1

Reference valuesa This study RSD (%)

Li 4.7 0.07 11.8
Ca 81429b 403500c –
Sc 32.3 0.019 7.8
Ti 16,364 2.75 61.0
V 317 3.00 2.4
Mn 1290 14.68 2.4
Co 45 0.045 4.9
Ni 121 0.30 4.6
Cu 123 0.15 7.3
Zn 101 2.09 2.6
Rb 9.08 0.10 5.5
Sr 396 274 2.3
Y 27.6 0.24 0.4
Zr 164.9 0.14 17.0
Mo 4.07b 0.079 3.3
Ba 131 432 2.6
La 15.2 0.094 2.6
Ce 37.5 0.171 3.1
Pr 5.31 0.021 1.8
Nd 24.5 0.084 0.7
Sm 6.07 0.019 1.5
Tb 0.94 0.003 1.8
Dy 5.31 0.019 1.6
Ho 1.00 0.005 3.4
Er 2.54 0.014 4.4
Tm 0.34 – –
Yb 2.00 0.012 3.2
Lu 0.27 0.002 2.2
W 0.22 0.10 3.5
Pb 1.51 0.08 9.1
Th 1.21 0.017 2.6
U 0.41 1.68 1.1

a Barrat et al. (2012).
b Jochum et al. (2016).
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variable in the whole data was set as the limit of detection. These values
then were replaced by a random number between zero and the limit of
detection. Finally, samples were transformed using Z-score normal-
ization to remove artefacts related to the large differences in con-
centration between samples.

3. Results

Trace element data for carbonate (1M AA leachates), sulfide-rich
(3M HNO3 leachates), detrital (HF-HCl digestion), bulk organic (5%
H2O2 leachates) and lipid fractions are reported in Table 3 and de-
scribed below in separate sections. For clarity, results are also presented
as normalized values (Figs. 2 and 3), which helps identifying any

particular trace element enrichment or depletion in studied mineral and
organic fractions. In addition, archaeal and bacterial lipid biomarker
data were presented in Table 4 and described in a separate section.

3.1. Carbonate phases (aragonite, calcite): 1 M AA leachates

Studied carbonate samples display a large range of Sr concentra-
tions (between ~300 to 15,500mg/kg). As already described pre-
viously (e.g. Jørgensen, 1992; Savard et al., 1996; Bayon et al., 2007),
aragonite-rich samples are characterized by much higher Sr contents
(between ~8000 to 15,500mg/kg), than calcite- or dolomite-domi-
nated samples (generally< 3000mg/kg). Other elements also display
large concentration ranges, for example for Co (between 0.03 and

Fig. 2. Enrichment factor of inorganic fractions (carbonate phases+ sulfide minerals+ detrital silicate fractions). (a) 1M acetic acid (AA) leachate data normalized
to values for the JLs-1 carbonate reference material; (b) 3M HNO3 leachate data normalized to values for corresponding 1M AA leachates; (c) conc. HF+HCl data
normalized to post-Archaean Australian shale (PAAS) reference values.
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Fig. 3. Enrichment factor of organic fractions (organic compounds+ lipid biomarkers). (a) 5% H2O2 leachate data normalized to values for corresponding 1M acetic
acid (AA) leachates; (b) 5% H2O2 leachate data normalized to values for corresponding 3M HNO3 leachates; (c) lipid-bound trace element data normalized to values
for 1M AA leachates; (d) lipid-bound trace-element data normalized to values for 3M HNO3 leachates.
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2.42mg/kg), Mo (0.05–5.13mg/kg) and Nd (0.10–10.3mg/kg). Com-
pared to the marine limestone standard (JLs-1), cold seep carbonate
samples are generally characterized by much higher trace element
contents (Fig. 2a), many of them (Li, Sc, transition metals, Sr, Mo, REE,
Pb and Th) being up to a few hundred times more enriched. In contrast,
three elements (Ti, Ba and W) display much lower concentrations (up to
100 times depleted compared to JLs-1).

3.2. Sulfide minerals: 3 M HNO3 leachates

The concentrations for Ca in 3M HNO3 leachates range between
37,088 and 115,006mg/kg, hence being significantly lower than in 1M
AA leachates. Selected trace element concentrations also display a very
large range of values (between 2.0 and 36.4mg/kg for Ti;
0.03–3.84mg/kg for Co; 0.05–2.16mg/kg for Mo; and 0.06–8.37mg/
kg for Nd). Trace element data for 3M HNO3 leachates are normalized
to the 1M AA leachate data in order to evaluate their degree of en-
richment or depletion relative to corresponding carbonate phases.
Apart from Ca and Sr, and to a lesser extent Mn, Ba, REE, W and U,
which are generally depleted in 3M HNO3 leachates compared to 1M
AA leachates, most trace elements are enriched up to 10 times (Co, Ni,
Zn, Rb, Zr, Mo, Hf, and Th) or 100 times (Ti, Cu, Pb) in the sulfide-rich
leached fractions of studied carbonate samples.

3.3. Detrital silicate fractions: conc. HF+HCl acid digestion

Measured Ca concentrations for the residual silicate fractions asso-
ciated with seep carbonates (between 679 and 6165mg/kg) are much
lower than in any other studied mineral/organic phases. This shows
that our sequential chemical procedure was effective at quantitatively
removing most carbonate material. Many trace elements generally
display a relatively small range of concentrations (Table 3). Trace ele-
ment abundances in residual silicate fractions can be normalized to
reference shale values, such as the Post Archean Australian shale
composite (PAAS; Taylor and McLennan, 1985), in order to identify
particular enrichment or depletion relative to an average bulk sediment
composition. Several elements, such as Ca, Mn, Cu, Sr, Ba and Pb, are
significantly depleted in the residual silicate fraction of seep carbonates
relative to PAAS, but this simply reflects, at least to some extent, the
fact that PAAS is a bulk reference composite sediment that also contains
non-silicate phases (carbonates) enriched in these particular elements.
However, a few samples display much higher PAAS-normalized con-
centrations for Ba and Sr (up to 30 times), which reflect the presence of
barite, i.e. a common authigenic mineral at cold seeps that is resistant
to most chemical leaching procedures, including digestion using con-
centrated HF-HCl solutions. In addition, many residual silicate fractions
are also characterized by pronounced PAAS-normalized enrichments in
Mo, also up to 30 times.

3.4. Bulk organic compounds: 5% H2O2 leachates

The 5% H2O2 leachates are generally characterized by very high Ca
concentrations (up to ~570,000mg/kg), indicating that carbonates
represent the dominant phase extracted during this leaching step. This
is also reflected by the high Sr (up to 6300mg/kg) and Mg (up to
127,000mg/kg) concentrations determined in the same solutions. As a
consequence, it appears difficult to draw any conclusions regarding the
partitioning of selected trace elements into the organic compounds
hosted by seep carbonates. However, normalizing the 5% H2O2 leachate
data to those obtained for 1M AA (carbonates) and 3M HNO3 (sulfides)
leachates can still help identifying some particular elements that would
be more specifically associated with the organic component hosted by
seep carbonates. This is the case for at least three elements (V, Mo and
W), which all show pronounced normalized-enrichments (up to a
thousand times) in 5% H2O2 leachates (Fig. 3a and b). To a lesser ex-
tent, the transition metals (Co, Ni, Cu, Zn) also appear to be enriched

(up to 10–100 times) in 5% H2O2 leachates compared to 1M AA and
3M HNO3 leachates.

3.5. Total lipids

In contrast to the 5% H2O2 leachates, the extracted lipid fractions
display much lower Ca concentrations (between 2270 and 51,045mg/
kg, with an average of 15,000mg/kg), hence indicating limited car-
bonate dissolution (generally< 5wt%). Among the other studied ele-
ments, Li concentrations range from 6.6 to 32.6mg/kg; Ti from 1.1 to
29.6mg/kg; Cu from 0.9 to 37.9mg/kg; Mo from 0.1 to 3.0mg/kg and
W from 0.01 to 0.08mg/kg. In comparison, REE display very low
concentrations with Nd concentrations between ~0.1 and 1.0mg/kg.
Compared to the abundances determined in carbonate (1M AA) and
sulfide (3M HNO3) leachates, elemental concentrations in lipid frac-
tions are very low for the following elements: Ca, Sc, Mn, REE, Th and U
(Fig. 3c and d). In contrast, some trace elements, such as Li, Ti, V, Cu,
Zn, Mo, and W exhibit clearly identifiable enrichments (up to 100
times) in lipids.

3.6. Microbial lipid biomarkers

Concentrations of archaeal and bacterial lipids showed large var-
iations in studied authigenic carbonates (Table 4). For archaeal lipids,
the irregular tail-to-tail isoprenoids such as crocetane, which was co-
eluted with phytane, pentamethylicosane (PMI), and polyunsaturated
pentamethylicosenes (PMEs) were detected, varying between 0.03 and
0.25 μg/g dry weight (dw), 0.02 to 0.25 μg/g dw, and 0.01 to 0.49 μg/g
dw, respectively. Moreover, isoprenoid dialkyl glycerol diethers (iso-
prenoid DGDs), such as archaeol and sn-2-hydroxyarchaeol, were the
most predominant archaeal lipids in studied samples, displaying con-
centration ranges between 0.01 and 6.97 μg/g dw, and 0.03–22.13 μg/g
dw, respectively. For bacterial lipids, non-isoprenoid DGDs with anteiso
pentadecyl moieties or cyclopropyl groups attached at both the sn-1 and
sn-2 positions were identified, ranging from 0.01 to 1.07 μg/g dw.
Among FAs detected, saturated FAs (e.g. C16:0 and C18:0) were most
predominant, with the range of 0.06–1.99 μg/g dw (Table 4). Other FAs
(e.g. i-C15:0, ai-C15:0, C16:1ω7, C18:1ω9 and C18:1ω7) were ap-
proximately 3 to 10 times lower in concentrations (0.01 to 0.16 μg/g
dw) compared to saturated FAs.

4. Discussion

4.1. Distribution of trace elements in authigenic carbonate phases

As discussed in previous studies, the distribution of trace elements
in cold seep carbonates can be controlled by various parameters, in-
cluding mineralogy, composition of the fluids from which they have
precipitated from, and redox conditions (Peckmann et al., 2001; Conti
et al., 2004; Bayon et al., 2007; Feng et al., 2009; Ge et al., 2010). In
addition to Sr, which is significantly enriched in aragonite compared to
other carbonate phases (see Section 3.1), U and Mn are also pre-
ferentially incorporated into aragonite- (characterized by high Sr/Ca
contents) and calcite- (low Sr/Ca) dominated samples (Fig. 4a and b),
respectively. To a large extent, the chemical composition of sur-
rounding pore waters also plays a major role in controlling trace ele-
ment distribution patterns in authigenic carbonates. This explains why
many trace elements are enriched in cold seep carbonates compared to
marine bioskeletal carbonates (e.g. JLs-1 limestone; Fig. 2a). This is
illustrated taking the example of the REE, which also exhibit a re-
lationship with mineralogy in a Nd/Ca versus Sr/Ca plot (Fig. 4c). The
abundance of REE in pore waters is generally much higher than in
overlying bottom waters, because of various early diagenetic processes,
such as the reduction of Fe-Mn oxyhydroxide phases or organic matter
remineralization, which can release substantial amounts of dissolved
REE within the sub-surface sediment (Haley et al., 2004). Since high-
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Mg authigenic carbonate minerals, such as dolomite, often form in re-
latively deeply buried sulfate-depleted sediment layers (typically a few
meters below the seafloor) characterized by high dissolved REE con-
tents (Soyol-Erdene and Huh, 2013), they are likely to incorporate
higher amounts of REE compared to mineral phases such as aragonite,
which precipitate in the near seafloor environment from less REE-en-
riched pore waters.

In addition to this source effect, the ubiquitous presence of anoxic
conditions at cold seeps also explains why many redox sensitive ele-
ments are typically more enriched in methane-derived carbonates
compared to other marine carbonate material such as JLs-1 (Fig. 2a).
For instance, this is the case for redox sensitive elements like Mo, U, Ni,
V, Cd, Co, and Zn, which are typically immobilized under anoxic con-
ditions. In fact, many of these elements have been used in previous
studies for providing constraints into the redox conditions of formation
of carbonate minerals (Morford and Emerson, 1999; Sarkar et al.,
2003). Enrichments in Mo have been reported widely in many seep
carbonate samples (Central Mediterranean, Cangemi et al., 2010; Vo-
contian Trough, SE-France, Tribovillard et al., 2013; Gulf of Mexico, Hu
et al., 2014; Northwestern South China Sea, Liang et al., 2017; South-
western Taiwan, Wang et al., 2019). Ge et al. (2010) also found parti-
cularly high abundances of Mo, V, Co, Ni and U in authigenic carbonate
samples recovered from the Shenhu and Dongsha seep areas of the
South China Sea compared to marine bioskeletal carbonates.

In marked contrast, as shown in the Results section, Ba, Ti and W
often display much lower abundances in studied seep carbonates re-
lative to JLs-1 (Fig. 2a). For Ba, this depletion is best explained by the
fact that precipitation of authigenic barite at cold seeps acts as an ef-
fective sink for pore water Ba. While previous partitioning experiments
have demonstrated that Ba is preferentially incorporated into aragonite
compared to calcite (Pingitore Jr and Eastman, 1984), our results in-
dicate instead that Ba generally exhibit higher concentrations in calcite
rather than in aragonite-dominated samples (Fig. 4d). This preferential

enrichment of Ba in calcite relative to aragonite is most likely con-
trolled by the availability of Ba at the depth of mineral formation (e.g.,
Torres et al., 2002, 2010; Snyder et al., 2007). At methane seeps, pore
water Ba concentrations markedly increase in the sediment column
located below the depth of sulfate depletion, as a consequence of barite
(BaSO4) dissolution. The upward diffusing resulting flux of dissolved Ba
is almost quantitatively precipitated into authigenic barite at the sul-
fate-methane transition zone (SMTZ), but a minor fraction of dissolved
Ba is also likely to be incorporated into the high-Mg carbonate phases
that form at the SMTZ when it is located well below the sediment-
seafloor interface. In contrast, aragonite generally forms in the sulfate-
rich near seafloor environment at cold seeps (Burton, 1993; Luff and
Wallmann, 2003; Peckmann et al., 2009), where pore water Ba contents
are presumably much lower than in the deeper methanogenic sedi-
ments, hence possibly explaining the relatively low Ba concentrations
encountered in most aragonite-rich samples (Liang et al., 2017).

The cause of Ti and W depletion in studied carbonate samples re-
mains unclear, as these features have never been described previously
in the literature, at least to the best of our knowledge. This will be the
focus of a part of the discussion below, when interpreting the results
obtained for the organic fractions. One hypothesis would be that these
elements have been partly re-adsorbed onto residual phases during the
1M AA leaching step, thereby explaining the depleted Ti and W con-
centrations in corresponding leachates. However, if this had been the
case, one would have also expected similar depletions for other particle
reactive elements such as Zr and Hf. Because this is not the case
(Fig. 2a), we argue that the observed Ti and W depletions in carbonates
simply reflect their very low concentrations in surrounding pore waters
at the time of carbonate precipitation, as a consequence of (micro)
biogeochemical processes that will be discussed below.

Fig. 4. Metal/Ca ratios in 1M acetic acid (AA) leachates. (a) Sr/Ca versus Mn/Ca; (b) Sr/Ca versus U/Ca; (c) Sr/Ca versus Ba/Ca; (d) Sr/Ca versus Nd/Ca.
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4.2. Trace element enrichments associated with the presence of sulfide
minerals

The data obtained on 3M HNO3 leachates allow us to identify the
trace elements that are likely to be preferentially associated with sulfide
minerals within seep carbonates. Of course, we are well aware that this
leaching step is not selective and may have also led to substantial dis-
solution of residual carbonate phases, organic compounds and silicate
minerals. As a matter of fact, although Ca and Sr in 3M HNO3 leachates
are significantly depleted compared to corresponding carbonate phases
(i.e. 1M AA leachates), their presence in 3M HNO3 leachates clearly
indicates that a substantial fraction of the material dissolved by 3M
HNO3 corresponds to carbonates that were left behind the previous
0.25M HCl leaching step. Similarly, a few other trace elements, such as
Mn, Ba, REE, W and U, almost systematically display lower con-
centrations in 3M HNO3 leachates relative to 1M AA solutions,
showing that they are mostly depleted in sulfide minerals. In addition,
the pronounced enrichments displayed by elements typically associated
with detrital silicates (Ti, Rb, Zr and Th) clearly indicate that partial
dissolution of silicate minerals occurred during the leaching step. In
contrast, however, the high elemental abundances determined for
transition metals (Co, Ni, Cu, Zn, Mo) and Pb in 3M HNO3 leachates,
relative to corresponding carbonate phases, are most likely best ex-
plained by the presence of sulfide minerals and/or organic compounds
in studied carbonate samples. The relative partitioning of these ele-
ments between sulfide and organic phases will be discussed below.

4.3. Trace elements in residual detrital fractions

The residual detrital fractions associated with studied carbonate
samples mostly correspond to terrigenous silicate minerals, but also
presumably include some refractory organic compounds and/or sulfide
minerals that were left behind after the 5% H2O2 and 3M HNO3
leaching steps. In this regard, the most striking feature of the dataset for
detrital fractions is the pronounced enrichments in Mo that character-
ized many samples (Fig. 2c).

In recent years, the distribution of Mo in bulk sediments at cold
seeps has received increasing attention, as a potential tracer of methane
seepage dynamics (Peketi et al., 2012; Sato et al., 2012; Hu et al.,
2015b; Chen et al., 2016). The range of Mo concentrations measured in
seep-related sediments from the Nankai Trough (Sato et al., 2012) and
the South China Sea (Chen et al., 2016) is similar (up to ~32mg/kg) to
that found in the detrital fractions analyzed in this study (up to 25mg/
kg), being enriched by a factor of about 30 compared to other typical
hemipelagic sediments (Sato et al., 2012). This strong Mo enrichment
was taken as an evidence that cold seep sediments could possibly re-
present a net sink in the global biogeochemical marine cycling of Mo
(Sato et al., 2012; Hu et al., 2015b). Previous studies have suggested
that the enrichment of Mo in marine sediments could relate to high
organic contents (Wilde et al., 2004; Guo et al., 2007), or to the pre-
sence of high dissolved sulfide (HS−) concentrations in the sediment,
which can lead to conversion of soluble molybdate (MoO42−) into
particle-reactive thiomolybdate (MoOxS4−x

2−) species that are then
sequestered within the sediment (Helz et al., 1996, 2011). Clearly, the
observed Mo enrichment in the residual silicate fractions associated
with seep carbonates can be ascribed to the presence of high dissolved
sulfide contents at cold seeps and precipitation of sulfide minerals in the
sediment.

Interestingly, we did not identify any particular enrichment for
tungsten (W) in studied detrital fractions. Tungsten is the geochemical
twin of Mo, and apart from a few differences, both elements generally
behave similarly in the marine environment (see Dellwig et al., 2019 for
a recent detailed review). In open ocean waters, both Mo and W are
intensively scavenged onto Fe-Mn oxyhydroxide phases, which can then
be released subsequently into pore waters, following sediment deposi-
tion and diagenetic alteration under suboxic/anoxic conditions. Similar

to Mo, high sulfide concentrations in pore waters lead to the conversion
of tungstate to thiotungstate that can be incorporated into Fe-sulfides or
organic compounds. As will be discussed below, the absence of any W
enrichment in studied sulfide and detrital fractions, in contrast to Mo,
suggests that an unknown mechanism leads to decoupling of Mo and W
in cold seep sediments.

4.4. The characteristics of lipid biomarkers and trace elements in organic
fractions

The distribution patterns of microbial lipids extracted from our
series of authigenic carbonate samples were examined by PCA (Fig. 6).
For archaeal lipids, the first PC component (PC1) accounted for 42.0%
of the total variance, and the second PC component (PC2) explained
30.9% of the total variance. The high abundances of isoprenoid DGDs
(in particular archaeol and sn-2-hydroxyarchaeol) were responsible for
distinguishing between samples for PC1, whereas irregular tail-to-tail
isoprenoids (mainly phytane and crocetane) were important for PC2
(Fig. 6a). Based on the PCA results, we also performed a hierarchical
clustering of principal components (HCPC) to cluster samples with ar-
chaeal lipid abundances. The samples were grouped into three distinct
clusters, i.e. Cluster 1, Cluster 2, and Cluster 3 (Fig. 6a). The HCPC
results showed that each cluster was associated with distinctive abun-
dances of archaeal lipids investigated. Cluster 3 was associated with the
predominant isoprenoid DGDs, which are indicative of AOM-related
ANME-1 and -2 assemblages. Cluster 1 with phytane+ crocetane is also
indicative of ANME-2 related to AOM, but phytane contributions to
these samples might be higher than those of Cluster 3. In contrast,
Cluster 2 related to PMI, PMI-3, and sn-3-hydroxyarchaeol archaeal
lipids are more related to ANME-1 and 2. Among them, the presence of
saturated PMI analogue may reflect the growth stages (e.g. lipid bio-
synthesis) of these communities (Blumenberg et al., 2005; Nauhaus
et al., 2007). For bacterial lipids, PC1 and PC2 accounted for 54.4% and
17.3% of the total variance, respectively (Fig. 6b). Most bacterial lipids
(i.e. non-isoprenoid DGDs and FAs) were responsible for distinguishing
between samples for PC1. The compounds having the strongest influ-
ence on PC2 were non-isoprenoid DGDs. Similar to archaeal lipids,
bacterial lipids were also grouped into three distinct clusters (Fig. 6b).
Cluster 1 identifies a distinctive group characterized by high DGD (If)
contributions. Cluster 2 has also a higher contribution of DGD (If)
compared to Cluster 3 characterized, with mixed lipid patterns. In this
regard, Cluster 1 and 2 appear to be associated with sulfate reducing
bacteria inhabiting cold seep environments (e.g. Pancost et al., 2001).

Compared to leaching with hydrogen peroxide solution, lipid ex-
traction leads to much reduced carbonate dissolution, and hence is
probably best suited for investigating organic-bound trace element
patterns in seep carbonates. Nevertheless, the two methods result in
comparatively similar normalized elemental distribution patterns
(Fig. 3), both displaying more or less pronounced enrichments in the
following elements: Li, Ti, V, Co, Ni, Cu, Zn, Mo and W. Most of these
elements have been already previously identified in microorganism
cells, in particular in seep-related microbial assemblages, where they
are known to be bound to specific sites of proteins and enzymes (e.g.
Barton et al., 2007; Glass and Orphan, 2012). Importantly, this suggests
that the determination of trace element patterns in seep carbonates can
provide interesting information of the utility of metals to microbial life,
and possibly help identifying particular elements with a previously
unrecognized importance for microbial metabolism at cold seeps. Mi-
crobial metalloenzymes play key roles in catalyzing major biogeo-
chemical reactions, in particular the anaerobic oxidation of methane
(Zerkle et al., 2005). The AOM can be largely regarded as a reverse
methanogenesis pathway (Hallam et al., 2004; Thauer and Shima,
2008; Scheller et al., 2010), and both reactions are thought to require
the same combination of trace metals ranging from Fe, Ni, Co, Mo (and/
or W) and Zn (Glass and Orphan, 2012). Below, we use our findings on
the distribution of trace elements in lipid fractions to further discuss the
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role of specific metals in microbial methane cycling at cold seeps. In
particular, by comparing lipid-bound data with elemental abundances
measured in corresponding carbonate and sulfide phases, we can dis-
cuss how microbial activity at cold seeps can be affected by trace metal
bioavailability in pore waters.

4.4.1. Ni and Co
Both Ni and Co are known to play a crucial role in methanogenesis

and anaerobic methanotrophy (e.g. Glass and Orphan, 2012). At sub-
marine methane seeps, Ni-containing proteins were first extracted from
microbial mats collected in the Black Sea, which provided one of the
first direct evidence for the importance of Ni in the AOM process
(Krüger et al., 2003). Various geochemical investigations of methano-
genic archaea also revealed significant enrichments of Ni and Co at the
cell-scale (Cameron et al., 2012; Glass et al., 2018). A study conducted
on Cretaceous methane-derived carbonates identified relatively high Ni
signals using laser ablation ICP-MS, which were taken as evidence for
past microbial activity (Reitner et al., 2015). To date, at least three Ni-
dependent enzymes have been identified in methanogens, including the
carbon monoxide dehydrogenase/acetyl-CoA (coenzyme A) synthase,
and the Ni cofactor F430 in the methyl coenzyme M reductase, which
catalyzes the final step of methanogenesis (Ferry, 1993; Ragsdale and
Kumar, 1996). Cobalt is a core element of vitamin B12 (cobalamin) that
can be biosynthesized anaerobically by methanogens and sulfate-re-
ducing bacteria, and is involved in methanogenesis and reverse me-
thanogenesis pathways (Glass et al., 2014). In this study, while we did
not find any strong relationships between lipid biomarker patterns and
elemental concentrations, the abundance of Co in extracted lipid frac-
tions displays positive correlation with C17:0, C18:1w9c and DGD (If).
In addition, the slight positive correlations observed between Ni and Co
enrichments in lipid fractions (relative to 3M HNO3 data) and our PCA
results for archaeal lipids (PC1 score; archaeol and sn-2-hydro-
xyarchaeol concentrations) adds further support that measured lipid-
bound Ni and Co abundances are related to the presence of archaeal
communities (Fig. 7). Importantly, the availability of Ni and Co in
natural ecosystems most likely represents a limiting factor for the ac-
tivity of these archaeal communities (Basiliko and Yavitt, 2001). In this
study, the evidence that studied carbonate phases always displays re-
latively high Ni and Co concentrations (Fig. 2) suggests that these
elements are generally present in relative abundance in surrounding
pore waters. This would indicate that dissolved Ni and Co supply at cold
seeps (at least in those investigated during the course of this study) does
not represent a limiting factor on microbial activity.

4.4.2. Cu
While the potential utility of Cu in the anaerobic oxidation of me-

thane is yet to be fully understood (Sushkevich et al., 2017), it is well
known that Cu plays a central role in the metabolism of aerobic me-
thane-oxidizing bacteria. In presence of Cu, the particulate methane
mono‑oxygenase (pMMO), a membrane protein found in methano-
trophic bacteria, catalyzes the oxidation of methane to methanol. An
increase in Cu concentration can result in up to 55-fold expression of
pMMO (Glass and Orphan, 2012). In this study, while lipid-bound Cu
concentrations in seep carbonates do not appear to correlate with lipid
biomarker patterns, a few aragonite-rich seep carbonates (sample 2-3,
2-4, with Sr/Ca > 0.020) appear to host microbial lipid fractions
characterized by higher Cu contents (as inferred from Cu/Ca ratios;
Fig. 5). As already mentioned above, aragonite precipitation at cold
seeps is favored at sites characterized by high methane fluxes, where
the SMTZ is located at shallower sediment depth, in the near-seafloor
environment (e.g., Burton, 1993; Bayon et al., 2007; Peckmann et al.,
2009; Nöthen and Kasten, 2011). Near the sediment-water interface, it
is likely that methane oxidation partly proceeds through Cu-dependent
aerobic methane-oxidizing bacteria, which would possibly explain why
lipid fractions extracted from a few aragonite-rich carbonates display
higher Cu contents than those recovered from high-Mg carbonate

phases (which presumably formed from deeper and fully anoxic sedi-
ment layers). This would be in full agreement with previous biomarker
investigations, which also identified the presence of aerobic methano-
trophs in seep carbonates formed near the seafloor (Himmler et al.,
2015).

4.4.3. Mo and W
Molybdenum (Mo) and its geochemical twin tungsten (W) are also

important metals in the metabolism of microbial communities involved
in the AOM, especially when it is coupled to nitrate reduction (Haroon
et al., 2013; Glass et al., 2014). The most well-known biological func-
tion for Mo is as nitrate reductase and nitrogenase enzyme (Kisker et al.,
1997; Zerkle et al., 2005; Glass and Orphan, 2012; Mcglynn et al.,
2013), in which Mo (or W) is bound to a pterin cofactor to form mo-
lybdopterin (or tungstopterin). Some methanogens also require Mo
and/or W in formyl-methanofuran dehydrogenases system, which cat-
alyze the initial conversion of carbon dioxide to methane (L'vov et al.,
2002; Ferry, 2010).

In this study, Mo and W were found to be significantly enriched in
lipid fractions, although no major correlation could be identified be-
tween lipid-bound Mo-W trace element data and our PCA results for
archaeal lipids (figure not shown here). The ubiquitous presence of Mo
in all studied fractions, including lipids but also corresponding carbo-
nate and sulfide mineral phases, indicates the abundance of bioavail-
able Mo at cold seeps. In contrast, while W also displays pronounced
enrichments in lipid-bound fractions, the low W concentrations de-
termined in both carbonate phases and sulfide minerals at seeps suggest
instead that dissolved W concentrations in surrounding pore waters are
relatively depleted. While this assumption agrees with a previous trace
metal investigation of pore waters at Hydrate Ridge (Glass et al., 2014),
which reported very low dissolved W concentrations at methane seeps,
it is in contrast with the fact that thiotungstate should be more soluble
than thiomolybdate species in pore waters (Mohajerin et al., 2014,
2016). Based on the above, we speculate that the low W abundances in
seep carbonate and sulfide phases (and presumably in pore waters)
reflect substantial microbial requirements in W during the AOM. This
hypothesis would be supported by previous evidence of striking cor-
relations between W enrichments and the presence of hyperthermo-
philes in hydrothermal mineral deposits (Holden and Adams, 2003),
suggesting that W may be preferred over Mo by anaerobic microbial
communities at submarine methane seeps (L'vov et al., 2002; Holden
and Adams, 2003).

5. Conclusions

Our combined investigation of trace element systematics in authi-
genic carbonates and associated lipid fractions provides evidence for

Fig. 5. Cu/Ca ratios in extracted lipid fractions versus Sr/Ca in corresponding
1M acetic acid (AA) leachates.
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Fig. 6. Principal component analysis (PCA) results for microbial lipid biomarkers. (a) archaeal and (b) bacterial compounds.

Fig. 7. Results of PCA for archaeal lipids (PC1 score) versus enrichment factors for Ni and Co in carbonate-hosted lipid fractions. The slight positive correlations
provide support that lipid-bound Ni and Co abundances are related to archaeal and sn-2-hydroxyarchaeal concentrations.
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the utility of trace metals to microbial life at cold seeps. While trace
element distribution patterns of inorganic carbonate phases mainly
reflect the chemical composition of surrounding pore waters at the time
of carbonate precipitation, pronounced trace metal enrichments asso-
ciated with total lipid fractions for Ni, Co, Cu, Mo and W relate to their
implication in various microbial enzymatic activities.

The abundance of Ni, Co and Mo is ubiquitous in studied lipid
biomarkers, but also in corresponding carbonate phases and sulfide
minerals, suggesting that a substantial pool of dissolved Ni, Co and Mo
is available at cold seeps for the microorganisms involved in the
anaerobic oxidation of methane. In contrast, we propose that important
microbial requirement in W during the AOM can lead to strong deple-
tion of dissolved W in pore waters at cold seeps, as inferred from the
very low W concentrations determined in both carbonate phases and
sulfide minerals. This finding suggests that W could represent a limiting
factor for microbial methane oxidation at seeps. Overall, this study
demonstrates the utility of combining trace element systematics to lipid
biomarker investigations in order to improve our understanding of the
microbial biogeochemistry of deep-sea extreme environments.
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