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A B S T R A C T

The vertical pattern of pelagic ciliate communities was observed at eight layers in the Chukchi Sea and the
northern Bering Sea of the western Arctic Ocean during the summer sea-ice reduction period (August 5 to August
24, 2016). A total of 44 ciliate species were identified, with seven species dominated the communities in the
water column. Multivariate and univariate analyses demonstrated that: (1) community structures of ciliates vary
significantly among eight water depths; (2) variations in the vertical distribution of ciliates were significantly
correlated with changes in physicochemical variables, especially the ammonia; (3) the distributions of the three
dominant species were significantly and positively related to the chlorophyll a and ammonia concentrations; and
(4) species richness and abundance were significantly and positively correlated with the concentrations of
ammonia and chlorophyll a. These results suggest that pelagic ciliates may reflect vertical variations in the water
quality status of western Arctic ecosystems.

1. Introduction

Pelagic ciliates are important components of the microplankton
fauna in marine ecosystems (Finlay et al., 1979, 1988; Sherr and Sherr,
1987; Caron and Goldmann, 1990; Zhu et al., 2012; Jiang et al., 2013,
2014, 2015, 2016; Yang et al., 2016). They play crucial roles in com-
munity function and ecosystem processes by mediating the flux of
carbon and energy from pico- and nanoplanktonic producers to higher
trophic levels (Stoecker and McDowell-Cappuzzo, 1990; Sime-Ngando
et al., 1995; Yang et al., 2004, 2009, 2010, 2012, 2016; Xu and Xu,
2017; Xu et al., 2017; Zhong et al., 2017). Ciliates' short life cycles and
rapid responses to environmental changes have allowed standardiza-
tion of observations for spatial and temporal comparisons, and thus
they have been employed widely as a bioindicator for bioassessment of
water quality in marine ecosystems (Cairns et al., 1972; Kchaou et al.,
2009; Jiang et al., 2011, 2013; Xu et al., 2014; Xu and Xu, 2017; Xu
et al., 2017; Zhong et al., 2017).

Since the late 1990s, catastrophic sea-ice reductions have had no-
table effects on plankton production and diversity during summer in the
Pacific (western) sector of the Arctic Ocean (Coachman and Barnes,
1961; Shimada et al., 2001, 2006; Nishino et al., 2008; Dolan et al.,
2012). Previous studies have shown that phytoplankton production and
diversity may increase significantly in these regions compared with ice-

covered areas due to an increase of light in the water column and
greater wind-induced mixing, which replenishes nutrients at the sea
surface (e.g., Dolan and Coats, 1990; Carmack et al., 2006; Lee and
Whitledge, 2005; Nishino et al., 2008). Thus, pelagic primary produc-
tion can significantly influence the vertical distribution of micro-
zooplankton, such as pelagic ciliates (Springer et al., 1989; Lee et al.,
2010; Jiang et al., 2014, 2015, 2016). Although Jiang et al. (2015)
reported variations in pelagic ciliate community patterns, the useful-
ness of pelagic ciliates as an indicator for the monitoring of vertical
changes in water conditions in polar areas remains undetermined.

In this study, environmental drivers of vertical variation in pelagic
ciliate communities were studied based on a dataset from one cruise in
the western Arctic Ocean. Our objectives in this study were: (1) to
demonstrate the spatial patterns of community structures and biodi-
versity at various water depths, (2) to identify the relationships be-
tween ecological features of pelagic ciliates and environmental condi-
tions, and (3) to confirm the potential of ciliates as a bioindicator for
the assessment of vertical variation in water conditions in the western
Arctic Ocean.

https://doi.org/10.1016/j.marpolbul.2018.05.017
Received 31 October 2017; Received in revised form 9 May 2018; Accepted 10 May 2018

⁎ Corresponding author.
E-mail address: ejyang@kopri.re.kr (E. Yang).

Marine Pollution Bulletin 133 (2018) 182–190

Available online 25 May 2018
0025-326X/ © 2018 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/0025326X
https://www.elsevier.com/locate/marpolbul
https://doi.org/10.1016/j.marpolbul.2018.05.017
https://doi.org/10.1016/j.marpolbul.2018.05.017
mailto:ejyang@kopri.re.kr
https://doi.org/10.1016/j.marpolbul.2018.05.017
http://crossmark.crossref.org/dialog/?doi=10.1016/j.marpolbul.2018.05.017&domain=pdf


2. Materials and methods

2.1. Study stations

A multidisciplinary survey was conducted onboard the IBRV Araon
in the northern Bering Sea and the Chukchi Sea of the western Arctic
Ocean, encompassing an area extending from the Mendeleyev Ridge to
the Chukchi Borderland (including the Chukchi Plateau and Northwind
Ridge) during summer (August 5–24, 2016; Fig. 1). A total of 23 sam-
pling stations were visited (Fig. 1).

2.2. Sampling and sample processing

In total, 85 samples were collected from 23 stations during the
cruise. Vertical profiles of seawater temperature, salinity, density of
water, and dissolved oxygen (DO) were obtained using a CTD rosette
system (SBE 911+; Sea Bird Electronics), which was deployed at each
station in a depth profile from the surface to 200m. Water samples for
nutrient analysis were drawn from the CTD rosette sampler, which
consists of 24 10-l Niskin bottles, into 50-ml conical tubes and stored
immediately in a refrigerator at 2 °C until analysis. Ammonium (NH4),
nitrite+ nitrate, (NO2+NO3), phosphate (PO4), and silicic acid [Si
(OH)4] were measured onboard within 3 days of sampling using a four-
channel continuous auto-analyzer (QuAAtro, Seal Analytical) according
to Joint Global Ocean Flux Study protocols. Water samples

(300–500ml) for total chlorophyll a (Chl a) measurement were col-
lected from each depth and filtered immediately through glass fiber
filters (47mm; Gelman GF/F). Concentrations of Chl a were measured
onboard using a Turner Trilogy fluorometer after extraction with 90%
acetone (Parsons et al., 1984). To determine the abundance of ciliates, a
Niskin rosette sampler was used to collect water samples from each
depth; 500-ml seawater samples were fixed with Lugol's iodine solution
(4% final concentration, volume/volume) and then stored at 4 °C in
darkness until analysis (Pitta et al., 2001; Kchaou et al., 2009; Choi
et al., 2012; Yang et al., 2016). Preserved samples were allowed to
settle in a graduated cylinder for at least 48 h. The upper layer of water
was siphoned off, leaving 20ml of concentrated sample. A 1-ml aliquot
of each concentrated sample was placed in an acrylic chamber, and the
ciliates were counted under a light microscope (Olympus BX51) at
magnifications of 200–400×. Tintinnids were identified based on lorica
morphology using the species descriptions of Kofoid and Campbell
(1929, 1939); other ciliates were identified from references such as
Montagnes and Lynn (1991) and Song et al. (2003). The taxonomic
scheme of Lynn (2008) was used.

2.3. Data analyses

Multivariate analyses were carried out using PRIMER software (v.
7.0.13; Clarke and Gorley, 2015). The species distributions were sum-
marized using clustering analysis on matrices of “index of association”

Russia USA
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Fig. 1. Sampling stations of the Korean icebreaker Araon in the Bering Sea and Chukchi Sea of the western Arctic Ocean, encompassing an area extending from the
Mendeleyev Ridge to the Chukchi Borderland (including the Chukchi Plateau and Northwind Ridge), August 5–24, 2016.
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Fig. 2. Environmental conditions: average values of water temperature (a), dissolved oxygen (b), salinity (c), phosphate (d), chlorophyll a (e), Si(OH)4 (f), NH4 (g),
and NO2+NO3 (h) during the study period.
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Fig. 3. Clustering analysis of species distributions for the 44 pelagic ciliate species at eight water depths (a) and shade plot of individual abundances (ind. l−1) at each
depth (b) during the study period.
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computed from standardized species-abundance data (Clarke and
Gorley, 2015). The variations in pelagic ciliate community structure
and water conditions were ordinated by applying routine CAP (cano-
nical analysis of principal coordinates) on Bray-Curtis similarity ma-
trices from fourth root transformed species-abundance data and Eu-
clidean distance matrices of log-transformed and normalized

environmental data, respectively (Clarke and Gorley, 2015). Differ-
ences in biotic and abiotic matrices among eight water layers were
tested using the PERMANOVA routine (Anderson et al., 2008). Mental
analyses were conducted using the RELATE protocol to test the sig-
nificance of relationships between similarity matrices at the 0.05 level,
and the biota-environment (BIOENV) routine was used to identify the
best matches among environmental variables to the spatial variations in
community structures of pelagic ciliates.

3. Results

3.1. Environmental conditions

The average values for environmental conditions in eight depth
ranges are shown in Fig. 2. All eight environmental variables showed
clear vertical variation among the eight depth ranges sampled. For
example, the average values of water temperature exhibited a de-
creasing trend, whereas those of Si(OH)4, PO4, and NO2+NO3 showed
clear increasing trends from 1 to 10m to 100m. The concentrations of
Chl a and NH4 were lowest at 100m and highest at 40–50m.

3.2. Taxonomic composition and vertical distribution

A total of 44 ciliate species was recorded, along with their dis-
tributions, from eight 10m water depth intervals (Fig. 3). Clustering
analysis using the SIMPROF test on index of association values dis-
criminated these ciliates into four groups (Fig. 3a): groups I (20 species)
and II (3 species) were generally distributed throughout the eight
depths, group III (18 species) generally occurred at depths of 1–30m,
and group IV (3 species) dominated the samples collected at a depth of
30–40m (Fig. 3b).

With relative abundances of> 20%, seven species were identified
as dominant species, and their distributions revealed clear succession
from 1m to 100m (Fig. 4). For example, Lohmanniella oviformis domi-
nated samples from 20 to 30m, and Strombidium capitatum was pre-
dominant in the ciliate community at 40–50m (Fig. 4).

3.3. Vertical variations in species richness and abundance

The species richness had a decreasing trend from 1 to 30m, and
peaked at a depth of 50–60m (Fig. 5a), whereas ciliate abundance
dropped from 1 to 40m, followed by an increase to a peak at a depth of
40–50m (Fig. 5b).

3.4. Vertical variations at different depths

The vertical variations in relative species number and relative
abundance of the seven dominant species and other species exhibited a
clear spatial pattern among the eight depth intervals (Fig. 6).

Based on CAP ordination of the vectors of seven dominant ciliate
species, the 84 data points showed a clear spatial pattern among the
eight depths (Fig. 7a, b). For example, the data points at 100m were
separated from those of other depths by the second canonical axis (CAP
2). PERMANOVA revealed significant differences among the eight
depths, especially between 1 and 60m and 100m (P < 0.05).

3.5. Linkage between biotic and abiotic factors

To elucidate the relationships between pelagic ciliate community
patterns and environmental changes among the eight water depths,
CAP ordination of the Euclidean distance matrix was performed, which
showed a high degree of consistency with the spatial community pat-
terns (Fig. 7c and d). RELATE analysis revealed a significant correlation
between the two matrices (ρ=0.291, P < 0.05). BIOENV analysis
identified the top nine matches with biota, involving the combination
of temperature, DO, salinity, and nutrients, especially PO4, NO2+NO3,

Fig. 4. Succession of the seven dominant ciliate species from 1m to 100m
during the study period.
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Fig. 5. Vertical variations in species number (a) and abundance (b) from 1m to 100m during the study period.

Fig. 6. Variations in relative species number (a) and relative abundance (b) from 1m to 100m during the study period.
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and NH4 (Table 1). Pearson correlation analysis demonstrated that the
species number and total abundance of the ciliates were significantly
and positively correlated with water temperature, NH4, and Chl a
(Table 2). Of the seven dominant species, three (Mesodinium rubrum,
Tontonia gracillima, and Pelagostrobilidium neptuni) were generally sig-
nificantly and positively related to water temperature, NH4, and Chl a
(Table 3).

4. Discussion

Since the 1990s, Arctic sea ice has decreased dramatically due to
global climate changes (Serreze et al., 2007; Stroeve et al., 2007;
Comiso et al., 2008; Perovich, 2011; Jiang et al., 2013). These changes
affect the Arctic and global climate systems by altering heat exchange
between the ocean and the atmosphere (Garrison and Buck, 1989;
Budikova, 2009; Comeau et al., 2011; Overland, 2011). As reported
previously, Pacific-origin Summer Water (PSW) reaches the Chukchi

Fig. 7. Canonical analysis of principal coordinates for biotic data (a) with vectors (b), and for environmental variables (c) with vectors (d), showing the vertical
patterns of biotic and abiotic matrices.

Table 1
RELATE analysis between the pelagic ciliate communities and environmental
conditions, showing the top 9 best matches of abiotic variables to the changes in
abiotic data.

Rank Environmental variables ρ value P value

1 Temp, DO, PO4, NO2+NO3-N, NH3-N 0.214 0.01
2 Temp, PO4, NO2+NO3-N, NH3-N 0.214 0.01
3 Temp, Sal, PO4, NO2+NO3-N, NH3-N 0.213 0.01
4 Temp, Sal, DO, PO4, NO2+NO3-N, NH3-N 0.213 0.01
5 Temp, DO, PO4, NO2+NO3-N, NH3-N, SiO2 0.211 0.01
6 Temp, PO4, NO2+NO3-N, NH3-N, SiO2 0.211 0.01
7 Temp, Sal, PO4, NH3-N 0.210 0.01
8 DO, PO4, NH3-N 0.203 0.01
9 Sal, PO4, NH3 0.201 0.01

ρ value, Spearman correlation coefficient; P value, statistical significance level.
PO4, phosphate; NO2+NO3, nitrate and nitrite; NH4-N, ammonia; Temp,
temperature; DO, dissolved oxygen; Sal, salinity.

Table 2
Pearson correlations between average values of the species number (S), abun-
dance (N), richness (D), diversity (H′), evenness (J′) and average of environ-
mental variables with spatial variations at 23 sampling stations in the Chukchi
Sea and the northern Bering Sea of the western Arctic Ocean during the summer
sea-ice reduction period.

Parameters S N D J′ H′

Temp 0.407a 0.417a 0.406a 0.196 0.360a

Sal 0.031 0.016 0.060 0.121 0.083
DO 0.051 0.034 0.073 0.176 0.112
PO4 −0.380a −0.390a −0.346a −0.411a −0.396a

NO2+NO3-N −0.411a −0.408a −0.380a −0.429a −0.434a

NH4-N 0.243a 0.295a 0.212 0.097 0.200
SiO2 −0.299a −0.296a −0.265a −0.379a −0.337a

Chl a 0.475a 0.495a 0.456a 0.264a 0.442a

a Significant difference at the 0.05. See Table 1 for other abbreviations.
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Sea, changes advective direction toward the northwest, along the
northern slope of the Chukchi Sea, and is delivered to the Chukchi
Borderland region, which consists of the Northwind Ridge and the
Chukchi Plateau (Shimada et al., 2006; Carmack and Melling, 2011).
Horizontal transportation and release of heat from PSW in that region
are the primary reasons for the rapid and extensive sea-ice retreat and
accompanying changes in the water column structure (Shimada et al.,
2006). Therefore, pelagic ciliates living in this region are facing severe
changes in environmental conditions in temporal and spatial terms
(Jiang et al., 2014).

Previous investigations have demonstrated that ecological features
of planktonic and periphytic ciliate communities can reflect water
quality status (e.g., pollution or eutrophication) or changes in en-
vironmental conditions (Andersen, 1988; Xu et al., 2010, 2011; Jiang
et al., 2011, 2013). In this study, the distributions of 44 ciliate species,
and in particular those of the 7 dominant ciliates, indicated a clear
vertical pattern among depths. Based on the results of multivariate and
univariate analyses, pelagic ciliate communities showed significant
variation in community pattern and biodiversity from 1m to 100m.
Correlation analysis demonstrated that the spatial differences in these
ecological features of pelagic ciliates at different depths were related
significantly to changes in environmental variables along the depth
gradient. Best matching analysis revealed that water temperature, DO,
and nutrients (NH4, PO4, and NO2+NO3), alone or in combination,
were potential drivers that shape the vertical patterns of pelagic cili-
ates. Three dominant species (Mesodinium rubrum, Tontonia gracillima,
and Pelagostrobilidium neptuni) were significantly and positively corre-
lated with water temperature and the concentration of NH4.

Community-based ecological parameters (e.g., species richness,
abundance, and biodiversity indices) have been used commonly to
summarize community features in field investigations and are amenable
to simplified statistical analyses (e.g., Jiang et al., 2011; Xu et al.,
2014). Thus, these parameters are considered to be helpful indicators in
determining the water quality status of aquatic environments (e.g.,
Huston, 1979; Ismael and Dorgham, 2003; Jiang et al., 2011; Xu et al.,
2014). Generally, higher values of these parameters indicate better
water quality, with the possible exception that low levels of organic
pollution are optimal (Huston, 1979; Ismael and Dorgham, 2003). In
our study, species richness and abundance were significantly and po-
sitively related to water temperature and NH4. Our findings suggest that
these community-based features of pelagic ciliates, specifically those of
the dominant ciliate species, can be used as a bioindicator of water
quality status and its vertical distribution in Arctic ecosystems. How-
ever, further investigations must be conducted in a range of marine
habitats and over extended time periods to verify this conclusion.

Our results are generally consistent with a previous report of the
vertical distribution and structure of pelagic ciliate communities based
on a dataset collected from a total of 32 stations at depths from the
water surface to 150m in a region of the western Arctic Ocean ex-
periencing summer sea-ice reduction during the study period of August
1–September 10, 2012 (Jiang et al., 2015). In this study, on the other
hand, we determined that the environmental variable ammonia, rather

than the concentration of DO as reported by Jiang et al. (2015), was the
main driver of the vertical distribution of ciliate abundance and rich-
ness from surface water to a depth of 100m. This discrepancy might be
due to differences in sampling water depths. For example, in the present
study, species richness and abundance of ciliates dropped sharply, de-
spite pronounced increases in the concentrations of PO4, Si(OH)4, and
NO2+NO3, in layers deeper than 90m. This effect might be due to the
low food supply (i.e., concentration of Chl a) available for the ciliates.
Thus, we suggest that bioassessment of environmental status using
pelagic ciliates is limited to water depths at which the food supply is
sufficient for the survival of ciliates.

In this study, three species (group IV; Fig. 3a) occurred in samples
collected from the depth of 40–50m, where the NH4 and Chl a con-
centrations peaked. Although they were not associated statistically with
environmental variables, we nonetheless suggest that they are poten-
tially useful indicators of water quality status at those depths.

In summary, the community structures of pelagic ciliates showed
significant variation among eight water depths. The variations in the
vertical distributions of ciliates were correlated significantly with
changes in physico-chemical variables, especially ammonia, alone and
in combination with water temperature, DO, and salinity. The dis-
tributions of the three dominant species had significant positive rela-
tions to water temperature and ammonia. Species richness and abun-
dance were significantly and positively correlated with the
concentrations of ammonia and Chl a. These results suggest that pelagic
ciliates reflect vertical variations in the water quality status of Arctic
ecosystems.
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