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• OM and sea-salts comprised 85% of the
PM1 (686 ± 226 ng m−3) at the KSG.

• The OC/EC ratio was greater than 10
with biogenic source for OC from the
ocean.

• Char-EC was enhanced in biomass
burning-impacted air from nearby con-
tinent.

• Soot-EC is a good tracer indicating local
influence in Antarctic environment.
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Thewater-soluble ions and carbonaceous compounds of PM1weremeasured at the King Sejong Station (KSG) in
the northern part of Antarctic Peninsula from March to November in 2009. As the sum of all measured species
including organic matter [OM; organic carbon (OC)*1.9], the PM1 mass reached a maximum of 936 ng m−3

with the mean of 686 ± 226 ng m−3. The most abundant constituents were OM (389 ± 109 ng m−3) and sea-
salts (Na+ and Cl−, 193 ± 122 ng m−3), which comprised 85% of the PM1 mass. In contrast, the contribution
of SO4

2− was below 1% and its depletion relative to Na+ was prevalent particularly during winter, which was at-
tributed to the frost flowers on newly formed sea-ice surface. The OC concentrationwas the highest in fall and its
subcomponents OC2 and OC3 were moderately correlated with sea-salts (r = 0.5), indicating the marine bio-
genic source for OC. The elemental carbon (EC) concentration was much lower than OC, leading to the mean
OC/EC ratio over 10. While the charred fraction of EC (EC1) was elevated by the long-range transport of biomass
burning plume from nearby continent, the mass fraction of soot-EC (EC23) was increased concurrently with en-
hanced NO3

−, suggesting EC23 as a good indicator for local influence in pristine environments like Antarctic
region.

© 2019 Published by Elsevier B.V.
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1. Introduction

Aerosol plays a significant role in Earth's climate by affecting the
global radiative balance (Boucher et al., 2013). Natural or anthropogenic
aerosols are emitted to the atmosphere from various sources at the

http://crossmark.crossref.org/dialog/?doi=10.1016/j.scitotenv.2019.02.099&domain=pdf
https://doi.org/10.1016/j.scitotenv.2019.02.099
meehye@korea.ac.kr
https://doi.org/10.1016/j.scitotenv.2019.02.099
http://www.sciencedirect.com/science/journal/00489697
www.elsevier.com/locate/scitotenv


1311S. Lim et al. / Science of the Total Environment 668 (2019) 1310–1316
Earth surface or formed from gaseous precursors. Sea salts are impor-
tant components of natural aerosols, particularly in the marine bound-
ary layer. Sea-salt-containing aerosols are mechanically produced
either over ice-free ocean surface by bubble bursting or over freshly
formed sea ice (Monahan et al., 1986; Rankin et al., 2000; Wolff et al.,
2003). Carbonaceous aerosol (CA) is ofmajor interest owing to its atmo-
spheric abundance, variety of emission sources, and significant climate
effects. CA is often divided into organic carbon (OC) and elemental car-
bon (EC). OC is produced directly from biogenic emissions and combus-
tion processes, and indirectly via formation of secondary particles from
the oxidation of precursor gases. It is commonly considered to be the
non-absorptive fraction of CA (Jacobson et al., 2000), whereas some
OC fractions absorb solar radiation at short wavelength (Andreae and
Gelencsér, 2006). EC, referred to as black carbon (BC) or soot, is primar-
ily emitted by biomass burning and fossil-fuel combustion. It is a strong
light-absorber and transported over long distance due to its small size in
sub-micrometer (Bond et al., 2013; Ramanathan and Carmichael, 2008).
For instance, in high-latitude or high-altitude areas EC transported from
mid-latitudes (Bisiaux et al., 2012; Lim et al., 2017; Weller et al., 2013)
has been identified as a significant contributor to accelerating snowmelt
(Hansen and Nazarenko, 2004; Xu et al., 2016).

The Antarctic atmosphere consists of lower number and mass of
aerosols as it is geographically isolated from human activities. Conse-
quently, it provides unique place to study the atmospheric chemistry
of pristine environment and thus to improve the understanding of the
processes governing aerosol formation and transport (Jourdain and
Legrand, 2002; Savoie et al., 1993;Weller andWagenbach, 2007). How-
ever, its remote location and harsh environment hinders comprehen-
sive study. Previous studies on aerosol composition reveal that sea-
salts are most abundant (Minikin et al., 1998; Savoie et al., 1993;
Teinilä et al., 2014;Wagenbach et al., 1998) and anthropogenic aerosols
such as BC are often long-range transported from other continents
(Chaubey et al., 2010; Weller et al., 2013; Wolff and Cachier, 1998).

Aerosols transported toAntarctic regions, particularly CA, showmul-
tiple source signature of the Southern Hemisphere, depending on the
source strength and wind patterns. The King Sejong Station (KSG), lo-
cated on the Barton Peninsula of King George Island, Antarctica, was a
platform to study aerosol characteristics including chemical composi-
tion (Mishra et al., 2004), size distributions (Kim et al., 2017), and single
particle properties (Eom et al., 2016). These studies focused mainly on
Fig. 1. Location of the King Sejong Station (KSG; 62°
coarse-mode or nano-particles. Here, we report for the first time the
chemical characteristics and the variation of sub-micron aerosols
(PM1) collected at KSG from fall to spring with emphasis on sea-salts
and CA.

2. Methods

Sub-micron aerosols (PM1) were collected at KSG, the Korean Ant-
arctic Station in the northern part of the Antarctic Peninsula (62°13’S,
58°47’W; Fig. 1), from March to November in 2009. A low-volume
aerosol sampler with PM1 cyclone (URG, USA) was installed in the lab-
oratory that was approximately 300 m southwest to the power genera-
tion building. We used the same inlet system as Mishra et al. (2004)
described, which was specially designed for aerosol sampling at harsh
environments. PM1 was collected at 16.7 L min−1 on 37-mm Teflon
and Quartz fiber filters (Pall corp., USA) for analysis of water-soluble
ions and carbonaceous compounds, respectively. Quartz fiber filters
were pre-baked at 485 °C for 6 h. Total 16 samples were collected con-
tinuously at ~15-day interval. After collection, the filters were immedi-
ately stored in a freezer at lower than−20 °C. All filterswere shipped in
a refrigerated container from KSG to Korea Polar Research Institute in
Korea.

Water-soluble ions laden on the Teflon filter were analyzed with an
ion chromatography, and OC and EC were determined, according to the
InteragencyMonitoring of Protected Visual Environments thermal/opti-
cal reflectance protocol (i.e., IMP_TOR; Chow et al., 1993). The IMP_TOR
method assumes that EC is a low-volatility carbon fraction that is not
liberated in an oxygen-free environment till 550 °C, allowing it to be
separated from themore volatile OC that evolves at lower temperatures.
Briefly, OC is measured as OC1, OC2, OC3, and OC4 liberated at different
temperatures below 120 °C, 250 °C, 450 °C, and 550 °C, respectively.
Some OC that is charred during the gradual increase in temperature is
defined as pyrolyzed organic carbon (OP) after the split between OC
and EC. EC1 and EC23 (sumof EC2 and EC3) are evolved under O2 atmo-
sphere at 550 °C and 700–800 °C, respectively. Finally, OC and EC are re-
ported as the sumof OC1, OC2, OC3, OC4, andOP and the sumof EC1 and
EC23, respectively. The mass concentrations of all water-soluble ionic
species and carbonaceous compounds were corrected for the mean
blank values. The analytical lower detection limit (LDL) of water-
soluble ions and total carbon (TC) was defined as 1 standard deviation
13’S, 58°47’W). The red symbol indicates KSG.



Fig. 2.Monthly wind rosemeasured at KSG fromMarch to November in 2009. Sizes of the bins are proportional to the frequency of measurements. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

1312 S. Lim et al. / Science of the Total Environment 668 (2019) 1310–1316
(σ) of their blank concentrations. For statistics, the values below LDLs
were replaced with 1/3σ of blank concentrations. Of the 16 samples,
three samples were discarded due to analytical issues.

3. Results and discussion

3.1. Measurement summary

According to the local wind speed and direction measured at KSG
(Fig. 2), easterly dominated in May and June (austral fall and early win-
ter) and northwesterly in March, September, October, and November
(austral early fall and spring). The other periods show shifting flow pat-
terns. The synoptic wind field at 850 hPa (https://www.esrl.noaa.gov/
psd/data/gridded/data.ncep.reanalysis2.html) also exhibits strong
westerly winds passing over the southern part of South America in
March, September and October (Fig. S1), indicating that the measured
Table 1
Statistical summary of the PM1 constituents measured at the King Sejong Station (KSG) from M

Unit in ng m−3 Water-soluble ions

Na+ Cl− NO3
− SO4

2− NH4
+

Mean 76.7 116.6 10.5 2.9 13.9
S.D.b (46.7) (78.2) (9.5) (1.4) (4.4)

a Sum of water-soluble ions, OM (OCx1.9), and EC.
b One standard deviation.
wind pattern is in accordance with synoptic scale of meteorology as
well.

The measurement results are summarized in Table 1, Fig. 3, and
Fig. 4. In Antarctic coastal regions, aerosol mass is well represented by
the sum of ionic species and carbonaceous compounds (Facchini et al.,
2008; Kerminen et al., 2000; Teinilä et al., 2000), which were measured
in this study. Adopting the upper-bound organic matter (OM)/OC ratio
of 1.9 for mid-latitude rural areas (Bae et al., 2006; Simon et al., 2011),
the sum of water-soluble ions, OM, and EC was assumed as PM1 mass.
The PM1 mass ranged from 100 to 936 ng m−3 with a mean of
686 ng m−3. Of PM1 constituents, OC was predominant with a mean
of 205 ± 57 ng m−3. The second most abundant species was Cl− with
a mean of 117 ± 78 ng m−3. As a result, OM and sea-salts (Na+ and
Cl−) occupied 85% of PM1. The mean equivalent molar ratio of anion
to cation was 0.52 ± 0.23, indicating a greater contribution of alkalinity
probably due to anion depletion, which will be discussed in Section 3.3.
arch to November in 2009.

Carbonaceous compounds PM1
a

Ca2+ K+ Mg2+ OC EC

18.1 6.5 15.9 204.8 35.4 686.0
(8.5) (4.9) (8.9) (57.2) (18.8) (226.5)

https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.html
https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.html


Fig. 3. The average chemical composition of PM1 at KSG. PM1 mass was estimated as the
sum of the water-soluble ions, OM (OCx1.9), and EC mass concentrations.

Fig. 4. (a)Meanwind speedwith themode ofwind direction for each sampling period and
mass concentrations of water-soluble ions, OC, and EC in PM1, and (b) their fractions
against PM1 mass for the whole sampling period. Error bars for wind speed indicate ±1
standard deviation. The dates on the horizontal axis are the starting day for each sample.
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3.2. Water-soluble ions

The water-soluble ions of PM1 mass were an order of magnitude
lower than that of annual total suspended particle (TSP) measured at
KSG (year 2000–2001) (Mishra et al., 2004). Asmi et al. (2010) reported
the ratio of coarse (PM8.5) to fine (PM1) sea-salts (sum of Na+ and Cl−)
of 4 at theAboa station in Antarctica that is located ~130 km far from the
coast. These studies demonstrate that sea-salts are enriched in coarse
mode particles of the Antarctic atmosphere. In the PM1 of this study,
OMwas themost abundant with considerable contribution of sea-salts.

The mean ratio of Cl− to Na+ was 1.75 ± 0.85, which is close to the
ratio in seawater (1.79). Themean ratio of Ca2+ toNa+was 0.183,which
isfive times greater than that of seawater (0.038) butmuch smaller than
those of soil and crust (1.78) (Bowen, 1979; Röthlisberger et al., 2002).
These results suggest that the influence of soil is not significant.
Thus, the contribution of sea-salt to PM1 was estimated using the
equation of Cl− + 1.47⨯Na+, where 1.47 is the seawater ratio of
(Na++K++Mg2+ + Ca2+ + SO4

2− + HCO3
−)/Na+ (Asmi et al., 2010;

Quinn and Bates, 2005). The sea-salts concentration was 248 ±
133 ng m−3, accounting for 88% of all water-soluble ions measured in
this study and 36% of the PM1 mass. In PM1, the contribution of sea-
saltswas considerably large,whereas nitrogen-containing ionic species,
i.e., nitrate and ammonium, together with EC comprised only 10%. It is
primarily due to stormy current reinforced by westerly jet through
the year.

The ionic concentrationswere slightly higher in spring (October and
November) and fall (April and May) by 61% and 34%, respectively, and
lowered in winter (June–August) by 10% with respect to their mean
values (Fig. 5). Both Na+ and Cl− were also enhanced in spring and
fall by ~80% and ~40%, respectively. This seasonal tendency of ionic spe-
cies was consistent to what was previously observed for TSP at KSG
(Mishra et al., 2004). The aerosol number concentrations also showed
the maxima during the spring and summer and the minima during
the winter (Kim et al., 2017).

The main factor controlling the seasonal loading of sea-salts is the
variation in thedistance from seawater. Inwinter, the seawater is frozen
along the coast, resulting in the lesser release of sea-salts into the over-
lying air. It was seen in a firn core record retrieved in the James Ross is-
land, which is about 230 km away from KSG (Aristarain and Delmas,
2002). In addition to the sea-salt transport over the shorter distance
from the seawater during the spring and fall, wind direction and
strength enhanced sea-salt loading at KSG (Kreutz et al., 2000; Kaspari
et al., 2005). The sea-salt concentration was coincidently high with
wind speed in May, September, and October (Figs. 2 and 4). The south-
easterly (from the Atlantic Ocean) and the northwesterly (from the Pa-
cific Ocean) strong winds probably facilitated the transport of sea-salts
into inland. The concentrations of Ca2+, K+ and SO4

2− were relatively
high during June and July with dominant easterly (N30%) (Fig. 2). It is
probably due to the impact of ornithogenic soil enriched with guano
(Jourdain and Legrand, 2002; Ugolini, 1972), which is related to the to-
pographical feature of KSG.



Fig. 5. For Na+, SO4
2−, EC1, EC23, OC, and PM1 mass, the mean concentrations (top) and

deviation from the mean (bottom) are compared for different periods. Apr.-May, Jun.-
Aug., and Sep.-Nov. are defined as austral fall, winter, and spring, respectively. The data
for Oct.-Nov. are further shown. In top panel, PM1 mass concentration is on the right y-
axis and error bars denote ±1 standard deviation.
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3.3. SO4
2− depletion relative to Na+

In Antarctica, SO4
2− aerosol mainly originates from sea-salts. In sum-

mer, biogenic SO4
2− is added to bulk aerosols (Curran and Jones, 2000;

Saltzman et al., 1986), enhancing SO4
2− concentration in the atmo-

sphere (Minikin et al., 1998; Wagenbach et al., 1998). For instance, the
summer to winter ratio of SO4

2− was up to 10 in size-segregated mea-
surements at Dumont d'Urville, a coastal site (Jourdain and Legrand,
2002). Themean SO4

2−concentration was 2.9 ± 1.4 ngm−3 in the pres-
ent study, accounting for 0.4% of the PM1mass. The SO4

2− concentration
was two orders of magnitude lower than that of TSP at the same site
(Mishra et al., 2004). Our lower concentration was attributed to its
smaller particle size and the lack of summer samples.

The nss-SO4
2− mass estimated using the ratio of SO4

2− to Na+ in sea-
water (0.25) was less than zero, which resulted from the low SO4

2− to
Na+ ratio (0.05 ± 0.04) (Fig. 6) and indicates a systematic depletion
Fig. 6. The concentrations of Na+, SO4
2−, and nss-SO4

2− and the SO4
2−/Na+ ratio. The green

line indicates the SO4
2−/Na+ ratio of sea water (0.25). (For interpretation of the references

to colour in this figure legend, the reader is referred to the web version of this article.)
of SO4
2− relative to Na+ in sea-salt aerosols (Rankin et al., 2002, 2000).

It is likely associated with the formation of frost flowers over the
newly formed sea-ice surfaces, which are widespread around the
Antarctica in the winter months (Minikin et al., 1998; Teinilä et al.,
2014; Wagenbach et al., 1998). Frost flowers preferentially precipitate
Na+ and SO4

2− as mirabilite (Na2SO4·10H2O) at below −8.2 °C. This
fractionation was reported to remove most of SO4

2− from seawater at
the temperature commonly observed in the Antarctic winter (Rankin
et al., 2002), and suggested as a significant source of sea-salt aerosol in
winter (Wagenbach et al., 1998). Indeed, the SO4

2− to Na+ ratio was
below 0.02 with the half of the mean SO4

2− concentration during July-
mid August (Fig. 6), revealing the significant SO4

2− depletion during
the winter.

3.4. OC and EC

OC was the most abundant component in PM1 and EC remained in
low level (Fig. 3), resulting in the high OC/EC ratio over 10. The OC/EC
ratio is typically below 5 at mid-latitudes. Among the OC sub-
components, OC2 and OC3 concentrations were the highest and the re-
fractory components of OC4 and OP concentrations were low. EC1 and
EC23 were equally distributed in EC.

OC concentration was slightly elevated in fall by 17% and lowered in
spring by 6% relative to themean (Fig. 5). EC concentration increased in
spring by 15%with elevated EC/TC ratio by 33%, and decreased inwinter
by 16% (Fig. 5). The temporal variation of EC concentration was similar
to that of equivalent BC (EBC) that was observed for the same period
(Kim et al., 2017), although the mean EC concentration was 2 times
lower in our study. The discrepancy is probably due to different mea-
surement techniques used in two studies (Petzold et al., 2013).

Since the water-soluble ionic species originated primarily from ma-
rine sources, the relationship between carbonaceous compounds and
water-soluble ions were examined (Table S1). OC was moderately cor-
related with sea-salts including Na+ and Cl− (R= 0.5), suggesting that
the considerable OC fraction was derived from the marine sources
(Antony et al., 2011; Legrand et al., 2013). The temporal variation of
OC concentration was unambiguous, being the highest in fall, right
after the most extensive period of phytoplankton bloom in the south-
west Atlantic sector of the Southern Ocean (Park et al., 2010), and low-
est in spring (Fig. 5). Thus, it is highly likely that the enhanced OC was
associated with marine biogenic activity particularly during the period
of phytoplankton bloom. Both Na+ and Cl− were positively correlated
with major OC fractions, OC2 and OC3 but negatively with minor frac-
tions, OC1 and OP. This result suggests that among OC components,
OC2 and OC3 were derived largely from marine sources. EC1 was also
well correlated with Na+ and Cl− (R = 0.6) but for different reasons.
EC can be subdivided into two classes and operationally defined based
on the analytical method used: EC1 as char-EC and EC23 as soot-EC
(Han et al., 2007, 2010). EC1 is known as a charred fraction of EC that
can be emitted largely from incomplete combustion such as biomass
burning (Han et al., 2010; Kumar and Attri, 2016; Lim et al., 2012).
Therefore, EC1 and sea-salt concentrations were increased by strong
wind that facilitated sea-salt production and EC1 transport. In contrast
to EC1, EC23 is generally defined as a carbon particle forming at high
temperature via gas-phase processes (Masiello, 2004) and its main
source has been apportioned to be vehicle exhaust at mid-latitudes
(Cao et al., 2005; Kim, 2004; Lim et al., 2012). In this study, EC23 was
correlated with NO3

−, SO4
2−, and NH4

+ (R = 0.5, 0.4, and 0.4, respec-
tively), implying fossil fuel combustion as its main source.

3.5. Enhanced OC and EC mass concentrations

The variation of OC and EC and its controlling factorswere further in-
vestigated case-by-case. Based on their concentrations and fractional
contribution to PM1 mass, three cases were selected and discussed as
follows.
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3.5.1. Enhanced OC with sea-salt during April 16–May 02, 2009
OC1 level increased by ~30% in fall and winter (Fig. 4b). The maxi-

mum OC1 concentration (72 ng m−3) was found together with a mod-
erately high OC concentration (241 ng m−3) in the second half of April
(Figs. 4a and 7). The enhancement of OC1 concentrationwas coincident
with the high Na+ concentration, which was increased by 50%. In addi-
tion, the moderate SO4

2− depletion together with a slight Cl− depletion
was found, which suggests the influence of frost flowers. OC1 is semi-
volatile carbon fraction by the analytical definition and thus probably
associated with relatively fresh emission sources (Kim, 2004; Lim
et al., 2012). These chemical features indicate that OC1 was associated
with relatively fresh marine sources during the cold months, when its
transport to the inland was promoted. It was partly supported by the
dominant local winds of easterly (Fig. 4a) from the Weddell Sea with
the largest area covered by sea ice annually (Cavalieri and Parkinson,
2008).

3.5.2. Long-range transport of biomass burning-driven EC during October
09–October 29, 2009

During this period, the maximum ionic mass concentration
(493 ng m−3) including Na+ (165 ng m−3) and Cl− (256 ng m−3)
were observed with the maximum EC1 (41 ng m−3) concentration
and EC1/TC ratio (0.2) (Fig. 4a and Fig. 7). In contrast, the OC concentra-
tion was similar to its mean with the lowest OC1 concentration. A good
correlation between EC1 and Na+ was observed with the strong west-
erly during the entire sampling period. This period was distinguished
by strong northwesterly with wind speed 30% higher than the mean
(Fig. 2). Large-scale atmospheric circulation seemed to cause the effi-
cient EC1 transport from other continents to the northern part of
Antarctica. The broad EC peak of this case was in good agreement with
the BC measurements at Neumayer in the Weddell Sea sector, where
themaximumBC concentrationswere observed in October andNovem-
ber (Weller et al., 2013). In South America as themain BC source region
for the Weddell Sea region (Pereira et al., 2006), biomass burning typi-
cally peaks in September–October (van der Werf et al., 2006). The vari-
ability in biomass-burning source strength and large-scale meridional
transport from low- and mid-latitudes were thus the primary factors
controlling the annual variability of EC1 over the northern part of
Antarctica.

3.5.3. Local effects during July 15–September 16, 2009
In the two cold months, the carbonaceous concentrations remained

relatively lowwith the minimum level of ionic species. While Na+ con-
centrationwas only the half of itsmean, themaximum EC23 concentra-
tion was observed in August, albeit low (Fig. 7). It is also noteworthy
that the relative fraction of EC23 and NO3

− against mass increased, par-
ticularly in associationwith northerly or northeasterly winds below the
annual mean (8.3 ± 1.2 m s−1) under the relatively calm condition
Fig. 7. Comparison of chemical characteristics of PM1 for the selected cases: Case I for April
16, 2009–May 02, 2009, Case II for October 09, 2009–October 29, 2009, and Case III for July
15, 2009–September 16, 2009.
(Fig. S2). The enhanced fraction of EC23 is likely due to the local influ-
ence of fossil-fuel combustion at KSG and therefore, EC23 is suggested
as a good tracer for local effect at pristine environment such as the Ant-
arctic region. The formation of NO3

− could also be promoted by NOx
emissions in the station itself.

4. Conclusions

FromMarch to November 2009, PM1 atmospheric particulatematter
was collected to measure water-soluble ions and carbonaceous com-
pounds at the King Sejong Station (KSG) in the northern part of Antarc-
tic Peninsula. OC was the most abundant in PM1 and its concentration
ranges from 36 to 265 ng m−3 with the mean of 205 ± 57 ng m−3.
The next most abundant species were Cl− (117 ± 78 ng m−3) and
Na+ (77 ± 47 ng m−3), confirming that sea-salts comprised a major
fraction of PM1 inAntarctic region.WhenOC is converted toOMbymul-
tiplying the factor of 1.9, the mass of PM1 was in the range of 100 to
936ngm−3 as the sumof allmeasured species. The averageOMconcen-
tration was 389 ± 109 ngm−3 and accounted for 57% of PM1mass. The
sea-salt loading was enhanced by the strong northwesterly or easterly
winds and the highest during the spring and fall. Particularly, SO4

2−

was depleted relative to Na+, which was associated with frost flowers
over the newly formed sea-ice surfaces. The moderate correlation of
OC with sea-salts and its seasonality suggest the predominant marine
biogenic source for OC. The EC concentration was much lower than
OC, leading to the high OC/EC ratio over 10. As the charred fraction of
EC, EC1 was enhanced with strong northwesterly wind, which was at-
tributed to the long-range transport of biomass-burning plume from
nearby continent. The mass fraction of EC23 increased with NO3

−

under the calm condition during cold months, thus suggesting the
EC23 as a good tracer for local effect in pristine Antarctic environment.
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