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Abstract: Several regions in the High Arctic still lingered poorly explored for a variety of mineralization
types because of harsh climate environments and remoteness. Inglefield Land is an ice-free region
in northwest Greenland that contains copper-gold mineralization associated with hydrothermal
alteration mineral assemblages. In this study, Landsat-8, Advanced Spaceborne Thermal Emission
and Reflection Radiometer (ASTER), and WorldView-3 multispectral remote sensing data were
used for hydrothermal alteration mapping and mineral prospecting in the Inglefield Land at
regional, local, and district scales. Directed principal components analysis (DPCA) technique
was applied to map iron oxide/hydroxide, Al/Fe-OH, Mg-Fe-OH minerals, silicification (Si-OH),
and SiO2 mineral groups using specialized band ratios of the multispectral datasets. For extracting
reference spectra directly from the Landsat-8, ASTER, and WorldView-3 (WV-3) images to generate
fraction images of end-member minerals, the automated spectral hourglass (ASH) approach was
implemented. Linear spectral unmixing (LSU) algorithm was thereafter used to produce a mineral
map of fractional images. Furthermore, adaptive coherence estimator (ACE) algorithm was applied
to visible and near-infrared and shortwave infrared (VINR + SWIR) bands of ASTER using laboratory
reflectance spectra extracted from the USGS spectral library for verifying the presence of mineral
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spectral signatures. Results indicate that the boundaries between the Franklinian sedimentary
successions and the Etah metamorphic and meta-igneous complex, the orthogneiss in the northeastern
part of the Cu-Au mineralization belt adjacent to Dallas Bugt, and the southern part of the
Cu-Au mineralization belt nearby Marshall Bugt show high content of iron oxides/hydroxides
and Si-OH/SiO2 mineral groups, which warrant high potential for Cu-Au prospecting. A high spatial
distribution of hematite/jarosite, chalcedony/opal, and chlorite/epidote/biotite were identified with
the documented Cu-Au occurrences in central and southwestern sectors of the Cu-Au mineralization
belt. The calculation of confusion matrix and Kappa Coefficient proved appropriate overall accuracy
and good rate of agreement for alteration mineral mapping. This investigation accomplished
the application of multispectral/multi-sensor satellite imagery as a valuable and economical tool
for reconnaissance stages of systematic mineral exploration projects in remote and inaccessible
metallogenic provinces around the world, particularly in the High Arctic regions.

Keywords: Landsat-8; ASTER; WorldView-3; the Inglefield Mobile Belt (IMB); copper-gold
mineralization; High Arctic regions

1. Introduction

The application of multispectral satellite imagery for mineral prospecting in remote and inaccessible
metallogenic provinces is noteworthy for mining companies and the mineral exploration community for
reconnaissance stages of systematic exploration projects. Many regions in the High Arctic remain poorly
investigated for mineral exploration due to cold climate environments and remoteness, especially
the northern part of Greenland containing Zn-Pb and Cu-Au mineralization [1–3]. The visible and
near-infrared (VNIR), shortwave infrared (SWIR) and thermal infrared (TIR) bands of multispectral
remote sensing data contain unprecedented spectral and spatial capabilities for detecting hydrothermal
alteration minerals and lithological units associated with a variety of ore mineralization [4–22]. Numerous
investigations successfully used Landsat data series, Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER), and the Advanced Land Imager (ALI) multispectral data with moderate
spatial resolution for the reconnaissance stages of mineral exploration around the world [23–29].

Landsat-8 carries two-sensors, including the Operational Land Imager (OLI) and the Thermal
Infrared Sensor (TIRS). These two instruments collect data for nine visible, near-infrared, shortwave-
infrared bands (from 0.433 to 2.290 µm) and two thermal-infrared bands (from 10.60 to 12.51 µm).
The OLI bands have a 30 m spatial resolution, while the TIRS have a 100 m spatial resolution, which
acquire in 185 km swaths and segmented into 185 × 180 km scenes. The data have a high signal
to noise (SNR) radiometer performance, and 12-bit quantization of the data permits measurement
of subtle variability in surface conditions [30,31]. High radiometric sensitivity in the TIR bands
shows great potential for mapping exposed lithological units in polar regions through variation in
temperature as felsic to mafic rocks show a modified response to solar heating due to different mineral
compositions [31–33]. ASTER contains three VNIR bands from 0.52 to 0.86 µm with 15-m spatial
resolution, six SWIR bands from 1.6 to 2.43 µm with 30-m spatial resolution, and five TIR bands
from 8.0 to 14.0 µm with 90-m spatial resolution. Each scene of ASTER cuts 60 × 60 km2 [34]. Iron
oxide/hydroxide, hydroxyl-bearing, and carbonate mineral groups can be detected using VNIR and
SWIR bands of ASTER due to diagnostic spectral absorption features of transition elements (Fe2+,
Fe3+ and REE) in the VNIR region and Al-OH, Mg-OH, Fe-OH, Si-OH, CO3, NH4, and SO4 groups
in the SWIR region [35–37]. Discrimination of silicate lithological groups is feasible using TIR bands
of ASTER due to different characteristics of the emissivity spectra derived from Si–O–Si stretching
vibrations in the TIR region [18,38–41].

The multispectral commercial WorldView-3 (WV-3) sensor contains the highest spatial, spectral
and radiation in the VNIR (eight bands with 1.2 m spatial resolution) and SWIR (eight bands with
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3.7 m spatial resolution) portions among the multispectral satellite sensors, presently. WV-3 swath
width is 13.2 km [42–45]. The VNIR and SWIR bands of WV-3 are worthy of particular attention
for inclusive research related to detailed mineral exploration at district scale, particularly for remote
and inaccessible regions in the High Arctic where availability of field data is limited. Recently, some
investigations successfully used the VNIR and SWIR bands of WV-3 for mineral exploration and
mapping of hydrothermal alteration zones and lithologies [14,19,32,46–49]. These studies established
the efficiency of spatial resolution of the WV-3 dataset and emphasized the high capability of the
VNIR and SWIR spectral bands as a valuable multispectral remote sensing data for detailed geological
mapping and hydrothermal alteration mineral detection at district scale (1:10,000). The integration
of multispectral/multi-sensor satellite imagery contains great applicability as a cost-effective tool
compared to geophysical and geochemical techniques for mapping hydrothermal alteration minerals
and lithological units at regional, local, and district scales in remote and inaccessible metallogenic
provinces around the world.

Inglefield Land is an ice-free region (78◦N–79◦N and 72◦30′W–66◦W) in northwest Greenland
(Figure 1), which contains copper-gold mineralization hosted by garnet-sillimanite paragneiss,
orthogneiss, and mafic-ultramafic rocks [1–3,50–52]. A few geological investigations were carried out
in Inglefield Land by the Geological Survey of Denmark and Greenland (GEUS) during years 1994
(an airborne geophysical survey) and 1995 (fieldwork geological mapping, mineralization studies,
and a regional stream-sediment geochemical survey). A set of thematic maps with digital data in
geographic information system (GIS) format were generated using the data acquired from these
two field seasons [53,54]. From July to August 1999, fieldwork conducted in Inglefield Land by
the GEUS (as part of a multidisciplinary Kane Basin 1999 project) was directed to the exploration
of several remarkable gold mineralizations in the northeastern part of the Inglefield Mobile Belt
(IMB) [55,56]. Since there is no remote sensing study available for hydrothermal alteration mineral
and lithological mapping in the northeastern IMB, this study represents the first investigation on
multispectral/multi-sensor satellite imagery for copper-gold prospecting in this region.
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In this research, Landsat-8, ASTER, and WV-3 data were used for hydrothermal alteration
and lithological mapping at regional, local, and district scales in the northeastern Inglefield Mobile
Belt (IMB), Northwest Greenland (Figure 1). Mineralization in Inglefield Land is characterized by
copper-gold ore associated with hydrothermal alteration assemblages such as hematite, jarosite, biotite,
sericite, chlorite, epidote, and quartz (silicification), which overprint the altered areas (rust zones) and
wall-rocks [2,3]. Typical landscape in the Cu-Au mineralization belt (rust zones) is extensive gossan in
hilly terrain and meter-sized pyrrhotite mounds covered by gossan [3]. Consequently, this research
has three main purposes: (1) to map hydrothermal alteration minerals associated with copper-gold
mineralization in the northeastern IMB using Landsat-8, ASTER, and WV-3 satellite imagery at regional,
local, and district scales; (2) to implement specialized/standardized image processing algorithms to
VNIR/SWIR/TIR bands of multispectral/multi-sensor satellite imagery that are amendable for mineral
detection and analysis; and (3) to establish the applicability of multispectral/multi-sensor satellite
imagery as a valuable and cost-effective approach compared to costly geophysical and geochemical
techniques for mining companies and the mineral exploration community for reconnaissance stages of
systematic exploration projects in remote and inaccessible metallogenic provinces, specifically in the
High Arctic regions.

2. Geological Setting of Inglefield Mobile Belt (IMB)

The IMB in northwest Greenland (approximately 7000 km2) (Figure 1) forms the northern boundary
of the Rae Craton and continues to the west across the Smith Sound into the Ellesmerian Belt in
Canada [57,58]. It consists of quartzo-feldspathic gneisses, meta-igneous, and supracrustal rocks
of the Palaeoproterozoic age [59–61]. The IMB is subdivided into two terranes by the E-W striking
Sunrise Pynt Shear Zone, including (i) the Central Terrane and (ii) the Southern Terrane (Figure 1) [58].
The Central Terrane comprises of the Etah Group and Etah Meta-igneous Complex [57]. The Etah
Group is characterized by paragneiss, marble, calc-silicate rocks, ultramafic rocks, amphiboloite,
and quartzite [57–59]. The Etah Meta-igneous Complex consists of orthogneiss, tonalite, diorite,
granodiorite and minor gabbro, monzogranite, and syenite [58].

The Southern Terrane is interpreted as the margin of the Rae Craton, where Paleoproterozoic
sedimentation occurred probably in a passive margin setting [58]. In the Southern Terrane in
Prudhoe Land, Paleoproterozoic rocks overly and intrude to Neoarchean rocks of the Rae Craton [58].
The Prudhoe Land Supracrustal Complex consists of garnet-mica schist, quartzite, marble, mafic
granulite, and ultramafic rocks [55]. The IMB is unconformably overlain by an unmetamorphosed cover
containing the successions of two sedimentary basins (Figure 1), including (i) the sedimentary–igneous
rocks of the Mesoproterozoic Thule Basin that also includes basaltic sills and (ii) the Lower Palaeozoic
sedimentary rocks of the Franklinian Basin [56,62]. The Cambrian rocks of the Franklinian Basin only
remained in the IMB [60,61].

The copper-gold mineralization is delimited within an NE-trending structural belt (~70 × 4 km)
in the northeastern part of Inglefield Land (Figure 1). This crustal-scale structural belt consists of
sulphide + graphite-bearing bands, hydrothermal alteration zones (including hematite, jarosite, biotite,
chlorite, epidote, sericite assemblages, and silicification) and quartzo-feldspathic gneiss that named
rust zones [1,2,63,64]. Sulfide mineralization typically comprises of pyrrhotite, pyrite, chalcopyrite,
graphite, and cubanite that endured intense supergene alteration. Mylonitic or cataclastic textures
were also reported locally in the rust zones. Gossans strike for several meters to up to 5 km in the
mylonite and cataclasite [2,3]. Gold in several rock samples was assayed up to 12.5 ppm Au and
was characteristically associated with copper (up to 4 wt%) and enriched in Zn, Mo, Ni, Co, Ba, La,
and Th [2,3].
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3. Materials and Methods

3.1. Satellite Remote Sensing Data and Characteristics

Landsat-8, ASTER, and WV-3 data were used in this research for mapping and detection of
hydrothermal alteration minerals and lithological units associated with copper-gold mineralization in
the northeastern IMB at regional, local, and district scales. Technical characteristics of the Landsat-8,
ASTER, and WV-3 sensors are shown in Table 1. Landsat-8 and ASTER data are successfully used
in numerous mineral exploration projects around the world [6–12,15,16,27]. WV-3 is a high-spatial
resolution commercial multispectral satellite sensor with eight VNIR (0.42 to 1.04 µm) and eight
SWIR bands (1.2 to 2.33 µm), which was launched on 13 August 2014, by DigitalGlobe Incorporated
from Vandenberg Air Force Base [43]. It provides high spatial resolution in panchromatic, VNIR,
and SWIR with a nominal ground sample distance of 0.31 m, 1.24 m and 3.7 m, respectively (Table 1)
(www.digitalglobe.com). Comparison between the spectral bands of WV-3 with Landsat-8 and ASTER
emphasizes their priority and high potential for detailed mapping of alteration minerals in the VNIR
and SWIR regions (Figure 2). Iron oxides/hydroxide minerals can be comprehensively mapped and
discriminated by VNIR bands of WV-3 [14,19,47]. Additionally, SWIR bands of WV-3 contain excellent
capability for detailed mapping of Al-OH, Mg-Fe-OH, CO3, and Si-OH key hydrothermal alteration
minerals [44,45,47,49].

Table 1. Technical characteristics of the Landsat-8, Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER), and WorldView-3 (WV-3) sensors [31,43,65].

Sensors Subsystem Band Number Spectral Range
(µm)

Ground
Resolution (m)

Swath
Width(m)

Landsat-8

VNIR

1 0.433–0.453

30

185

2 0.450–0.515
3 0.525–0.600
4 0.630–0.680
5 0.845–0.885

SWIR
6 1.560–1.660

157 2.100–2.300
Pan 0.500–0.680

TIR
9 1.360–1.390

10010 10.30–11.30
11 11.50–12.50

ASTER

VNIR
1 0.520–0.600

15

60

2 0.630–0.690
3 0.780–0.860

SWIR

4 1.600–1.700

30

5 2.145–2.185
6 2.185–2.225
7 2.235–2.285
8 2.295–2.365
9 2.360–2430

TIR

10 8.125–8.475

90
11 8.475–8.825
12 8.925–9.275
13 10.25–10.95
14 10.95–11.65

www.digitalglobe.com
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Table 1. Cont.

Sensors Subsystem Band Number Spectral Range
(µm)

Ground
Resolution (m)

Swath
Width(m)

WV3

VNIR

Costal (1) 0.400–0.450

1.24

13.1

Blue (2) 0.450–0.510
Green (3) 0.510–0.580
Yellow (4) 0.585–0.625

Red (5) 0.630–0.690
Red edge (6) 0.705–0.745
Near-IR1 (7) 0.770–0.895
Near-IR2 (8) 0.860–1.040

SWIR

SWIR-1 (9) 1.195–1.225

3.70

SWIR-1 (10) 1.550–1590
SWIR-1 (11) 1.640–1.680
SWIR-1 (12) 1.710–1.750
SWIR-1 (13) 2.145–2.185
SWIR-1 (14) 2.185–2.225
SWIR-1 (15) 2.235–2.285
SWIR-1 (16) 2.295–2.365
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Figure 2. Comparison of the spectral bands of WV-3 with Landsat-8 and ASTER in the visible and
near-infrared (VNIR) and shortwave infrared (SWIR) regions [46].

In this study, two Landsat-8 scenes (LC80350032018233LGN00 and LC80350042018233LGN00)
covering Inglefield Land were acquired from the U.S. Geological Survey Earth Resources Observation
and Science Center (EROS) (https://earthexplorer.usgs.gov/). The data set attributes of these images are
summarized as follows: acquisition date: 21 August 2018, collection category: T1 (terrain corrected),
Path/Raw: 035/003 and 035/004, scene cloud cover: 11.97% and 2.18%, sun elevation: 22.115 and
23.400 and sun azimuth: −158.241 and −163.695. An ASTER scene (AST_L1T_00307022003234340)
covering the northeastern IMB was obtained from the EROS, USGS Global Visualization Viewer (GloVis)
(https://glovis.usgs.gov/). It is a level 1T product which is cloud-free and it was acquired on 3 July 2003.
The ASTER Level 1 Precision Terrain Corrected Registered At-Sensor Radiance (AST_L1T) data contains
calibrated at-sensor radiance, which corresponds with the ASTER Level 1B (AST_L1B), that has been
geometrically corrected, and rotated to a north up UTM projection (https://lpdaac.usgs.gov). Some WV-3
scenes were obtained by courtesy of the DigitalGlobe Foundation (www.digitalglobefoundation.org).
The VNIR imagery (M2AS-059185278010_01_P001) of the northeastern IMB was granted by the
DigitalGlobe Foundation (Copyright 2019 DigitalGlobe, Inc., Longmont CO USA 80503-6493), which
was cloud-free, standard level 2 A and acquired on 25 August 2018. The Level 2A standard WV-3
imagery product contains a uniform Ground Sample Distance (GSD), which is radiometrically corrected,
sensor corrected, and geometrically projected to the Universal Transverse Mercator (UTM) with the
World Geodetic System 84 (WGS-84) datum [66,67]. The Environment for Visualizing Images (ENVI)
(http://www.exelisvis.com) version 5.2 and ArcGIS version 10.3 (Esri, Redlands, CA, USA) software
packages were utilized for processing Landsat-8, ASTER, and WV-3 datasets.

https://earthexplorer.usgs.gov/
https://glovis.usgs.gov/
https://lpdaac.usgs.gov
www.digitalglobefoundation.org
http://www.exelisvis.com
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3.2. Pre-Processing of the Datasets

The Landsat-8 images were pre-georeferenced to the UTM zone 19 and 20 North projection
using the WGS84 datum. The ASTER and WV-3 images were also pre-georeferenced to UTM zone
19 North projection using the WGS-84 datum. Atmospheric correction is required to eradicate the
impact of atmospheric attenuation from remote sensing imagery and to re-scale the radiance at the
sensor data to the surface reflectance data. The absolute radiometric correction and conversion to the
top-of-atmosphere (TOA) spectral radiance are required for the WV-3 relative radiometrically corrected
images [66]. Hence, these corrections were applied to WV-3 VNIR data used in this study. Crosstalk
correction [68] was applied to ASTER data and layer staked of VNIR + SWIR bands with 15-meter spatial
dimensions was generated. The Fast Line-of-sight Atmospheric Analysis of Hypercubes (FLAASH)
algorithm [69] were applied to the remote sensing datasets used in this research by implementing the
sub-arctic summer (SAS) atmospheric and the Maritime aerosol models [70]. ASTER TIR (radiance at
the sensor) data without atmospheric corrections were used in this analysis for retaining the original
radiance signature.

3.3. Image Processing Algorithms

3.3.1. Directed Principal Components Analysis (DPCA) Technique

The DPCA is a direct information extraction technique to analyze the principal component
(PC) eigenvector loadings for selecting the most appropriate PC that focuses the most noteworthy
information of interest [71–73]. The magnitude and sign of eigenvector loadings specify whether
interesting information is characterized by a bright (positive loading) or a dark pixel (negative loading)
in the DPCA image [74]. To map hydrothermal alteration mineral assemblages, including (i) hematite
and jarosite (iron oxide/hydroxide group), (ii) biotite and sericite (Al/Fe-OH group), (iii) chlorite and
epidote (Mg-Fe-OH group), and (iv) silicification (Si-OH group (opal/chalcedony) and/or SiO2 group)
in the study area, some specialized band ratios were defined to be used as input datasets for running
the DPCA. The variance due to similarities in the spectral responses of the interfering component
and the component of interest appear in eigenvector loadings of similar signs on input band ratio
images. The DPCA contains strong eigenvector loadings of different signs on the input band ratio
images, showing a specific contribution of the component [73,74].

For mapping hydrothermal alteration minerals associated with rust zones in the copper-gold
mineralization belt, spectral characteristics of hematite, jarosite, biotite, muscovite, chlorite, epidote,
chalcedony (hydrous-silica), and opal (hyalite) were considered to identify using the DPCA technique.
Figure 3A–C shows laboratory reflectance spectra of hematite, jarosite, biotite, muscovite, chlorite,
epidote, chalcedony (hydrous-silica), and opal (hyalite) resampled to response functions of VNIR
+ SWIR bands of Landsat-8, ASTER, and WV-3, that were extracted from the USGS spectral library
version 7.0 [75]. For mapping the alteration mineral groups using Landsat-8 spectral bands, several
band ratio indices were adopted and developed [7,8,76]. Band ratio indices of 4/2 (all iron oxides),
6/4 (ferrous iron oxides), 6/5 (ferric oxides), and 6/7 (hydroxyl bearing alteration) can be allotted as
significant indicators of Fe3+, Fe2+, Al/Fe-OH, Mg-Fe-OH, and Si-OH groups using Landsat-8 spectral
bands (see Figure 3A). Additionally, the normalized difference snow index (NDSI), Al-OH-bearing
alteration minerals index (Al-OH-MI) and thermal radiance lithology index (TRLI) were used for
mapping snow/ice, cloud, water, alteration OH minerals, and land and lithologies [7]. For mapping
iron oxide/hydroxide mineral groups using Landsat-8 bands, three band ratios were developed on the
basis of the laboratory spectra of the minerals [77,78]. Hematite, jarosite, goethite, and limonite tend to
have strong absorption features in 0.4 to 1.1 µm (absorption features of Fe3+ near 0.45 to 0.90 µm and
Fe2+ near 0.90 to 1.2 µm) [77,78] coincident with bands 2, 4, and 5 and high reflectance at 1.56 µm to
1.70 µm equivalent with band 6 (Figure 3A). As a result, bands 2, 4, 5, and 6 of Landsat-8 can be used
for detecting Fe3+/Fe2+ and Fe-OH iron oxides (4/2), ferrous iron oxides (6/4), and ferric oxides (6/5).
Hydroxyl-bearing (Al-OH and Fe, Mg-OH) alteration has spectral absorption features in 2.1–2.4 µm
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and reflectance in 1.55–1.75 µm [35], corresponding band 7 (2.11–2.29 µm) and band 6 (1.57–1.65 µm) of
Landsat-8 (Figure 3A), respectively. Therefore, band ratio of 6/7 can map hydroxyl bearing alteration.
The DPCA was applied to the Landsat-8 band ratio indices (4/2, 6/4, 6/5, and 6/7) using a covariance
matrix for obtaining the image eigenvectors and eigenvalues.Remote Sens. 2019, 11, 2430 8 of 40 

 

 Figure 3. Cont.



Remote Sens. 2019, 11, 2430 9 of 39
Remote Sens. 2019, 11, 2430 9 of 40 

 

 Figure 3. Cont.



Remote Sens. 2019, 11, 2430 10 of 39
Remote Sens. 2019, 11, 2430 10 of 40 

 

 
Figure 3. Laboratory reflectance spectra of hematite, jarosite, biotite, muscovite, chlorite, epidote, 
chalcedony (hydrous-silica), and opal (hyalite) resampled to response functions of VINR + SWIR 
bands of Landsat-8 (A), ASTER (B), and WV-3 (C) that were extracted from the USGS spectral library 
version 7.0 [75]. Cubes indicate the position of the VINR + SWIR bands of Landsat-8, ASTER, and 
WV-3 in the range of 0.4 μm to 2.5 μm.  

Figure 3. Laboratory reflectance spectra of hematite, jarosite, biotite, muscovite, chlorite, epidote,
chalcedony (hydrous-silica), and opal (hyalite) resampled to response functions of VINR + SWIR
bands of Landsat-8 (A), ASTER (B), and WV-3 (C) that were extracted from the USGS spectral library
version 7.0 [75]. Cubes indicate the position of the VINR + SWIR bands of Landsat-8, ASTER, and WV-3
in the range of 0.4 µm to 2.5 µm.
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Several band ratio indices were tested for mapping the alteration mineral groups using ASTER
spectral bands (see Figure 3B). The band ratios of 2/1 and 4/2 were selected to map Fe3+/Fe2+ iron
oxides; (5 + 7)/6 was adopted to detect Al/Fe-OH minerals; (7 + 9)/8 was assigned to identify
Mg-Fe-OH minerals [79]; and (6 + 8)/7 were developed to map Si-OH minerals, respectively. Bands 1
(0.520–0.600 µm), 2 (0.630–0.690 µm) and 4 (1.600–1.700 µm) of ASTER cover the spectral absorption
and reflectance features of iron oxide/hydroxide minerals. Thus, band ratios of 2/1 and 4/2 can be
utilized for detecting Fe3+/Fe2+ iron oxides. Al-OH absorption features at 2.17 to 2.20 µm [35,77,78]
are corresponded with bands 5 and 6, whereas Mg-Fe-OH absorption features are situated in 2.30 to
2.35 µm [35,77,78] that are equivalent with bands 7 and 8 of ASTER (Figure 3B). Si-OH absorption
features are mostly concentrated at 2.20 to 2.30 µm, which are coincident with bands 6 and 7 of ASTER
(Figure 3B). Subsequently, relative absorption band depth (RBD) [80] of these bands can be used to
map Al/Fe-OH ((5 + 7)/6), Mg-Fe-OH ((7 + 9)/8), and Si-OH ((6 + 8)/7) minerals. The DPCA was
implemented to the band ratio indices (2/1, 4/2, (5 + 7)/6 and (7 + 9)/8) using a covariance matrix for the
spatial selected subset covering the Cu-Au mineralization belt and surrounding areas. Furthermore,
for mapping silica-rich rocks containing SiO2 group, Quartz Index (QI) = 11 × 11/10 × 12, Carbonate
Index (CI) = 13/14, and Mafic Index (MI) = 12/13 were selected [81] and applied to TIR bands of ASTER.
These lithologic indices were defined by Ninomiya et al. [81] for discriminating quartz, carbonate,
and mafic-ultramafic rocks, especially for mapping lithological units in arid and semi-arid regions.
The DPCA was employed to these indices. Eigenvector matrix was calculated using a covariance
matrix for the spatial selected subset covering the Cu-Au mineralization belt and surrounding areas.

The VNIR spectral bands of WV-3 contain the high capability to map Fe3+ and Fe2+ iron oxides
(gossan), ferric, and ferrous silicates. Considering the laboratory reflectance spectra of selected minerals
(see Figure 3C), the band ratio indices of 4 + 2/3 to map Fe3+ iron oxides, 6 + 8/7 for identifying Fe2+

iron oxides, 3 + 5/4 to detect ferric silicates (chlorite/epidote), and 5 + 7/6 for enhancing ferrous silicates
(biotite) were developed. These indices were used to implement the DPCA using a covariance matrix
for the spatial selected subset covering the southern part of the Cu-Au mineralization belt. The DPCA
statistical results were also calculated for the WV-3 band ratio indices.

3.3.2. Linear Spectral Unmixing (LSU)

The LSU is a sub-pixel image processing algorithm, which is utilized to define the relative
abundance of materials that can be diagnosed within optical imagery based on the materials’ spectral
properties [82–84]. The reflectance at each pixel of the image is presumed to be a linear combination
of the reflectance of each material (or end-member) existing within the pixel. It is advocated in this
algorithm that the pixel reflectance could be shown as a linear mixture of individual component
reflectance multiplied by its relative fractions [85]. For extracting reference spectra directly from the
Landsat-8, ASTER, and WV-3 images to generate fraction images of end-members using the LSU,
the automated spectral hourglass (ASH) approach was implemented [86,87]. This approach contains
the minimum noise fraction (MNF), the pixel purity index (PPI) and automatic end-member prediction
from the n-Dimensional Visualizer to extract the most spectrally pure pixels (end-members) from
the image [36,88]. Additionally, the continuum-removal process was performed to the extracted
end-members for isolating their spectral features [89]. Then, the end-members were compared with
the USGS library reflectance spectra of target minerals, including hematite, jarosite, biotite, muscovite,
chlorite, epidote, chalcedony (hydrous-silica), and opal (hyalite) (see Figure 3A–C). Umix unit-sum
constrained was adjusted 1.0 for running the LSU algorithm. This weighted unit-sum constraint is
then added to the system of simultaneous equations in the unmixing inversion process. Larger weights
in relation to the variance of the data cause the unmixing to honor the unit-sum constraint more closely.
To strictly honor the constraint, the weight should be many times the spectral variance of the data.
It also permits proper unmixing of MNF transform data, with zero-mean bands [70]. For interactive
stretching histogram, auto apply option was selected to have stretching or histogram changes applied
to the images automatically. Rule image classifier tool was used for post classification of the LSU rules
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images. Maximum value option was selected. Threshold value for classification of fraction images
derived from the LSU algorithm was 0.750.

3.3.3. Adaptive Coherence Estimator (ACE)

The ACE is a target detection algorithm that carries out a partial unmixing approach to isolate
feature of interest from the background and its input is a single score (abundance of the target)
per pixel [90]. It is generated from the generalized likelihood ratio (GLR) approach, which is a
homogenously most powerful invariant detection statistic [91,92]. The ACE is invariant to the relative
scaling of input spectra and has a constant false alarm rate (CFAR) for such scaling [93]. Geometrically,
it determines the squared cosine of the angle between a known target vector and a sample vector in a
whitened coordinate space. The space is faded based on assessing the background statistics, which
straightforwardly influences the presentation of the statistic as a target detector [94]. The standard
formulation of the ACE detection statistic is defined as follows:

ACE(x) =
[(t− µ)TΣ−1(x− µ)]

2

[(t− µ)TΣ−1(t− µ)][(x− µ)TΣ−1(x− µ)]
(1)

where t is a known target signature (reference spectra from a spectral library signature) and x is a data
sample. The background is assumed to be a Gaussian distribution parametrized by u and

∑
which

represent the mean and covariance, respectively. The ACE statistic is a number between zero and
one, which can be interpreted as a measurement of the presence of t in x. The ACE can be estimated
as the square of the cosine of the angle between x and t, in a coordinate space transformed by the
background estimation. For example, if ACE produces 0.85, indicating a relatively strong presence
of t in x. The key to effective ACE performance is accurate background estimation. Furthermore,
the ACE does not need information about all the end-members within an image scene. In this study,
the ACE algorithm was applied to VNIR + SWIR bands of ASTER covering the Cu-Au mineralization
belt and surrounding areas. Laboratory reflectance spectra of hematite, jarosite, biotite, muscovite,
chlorite, epidote, chalcedony (hydrous-silica), and opal (hyalite) extracted from USGS spectral library
version 7.0 [75] were used for running the ACE algorithm. New covariance statistics were computed
and subspace background was used. Background threshold was adjusted 0.900. The results of ACE
appear as a series of grayscale images, one for each selected end-member.

4. Results

4.1. Regional Lithological-Mineralogical Mapping in Inglefield Land Using Lansat-8 Data

A regional view of the northwestern part of Greenland was generated using a mosaic of Landsat-8
images (Figure 4). The NDSI, Al-OH-MI, and TRLI [7] were used for mapping snow/ice, cloud, water, land,
and lithologies. The NDSI (B3 − B6/B3 + B6), Al-OH-MI (B6/B7) × (B7), and TRLI (B10/B11) × (B11) were
assigned to Red-Green-Blue false-color composite, respectively (Figure 4). The ice/snow zones appear in
magenta, red, and orange shades that correspond to the different snow/ice facies. Stratocumulus cloud
coverage is represented as golden yellow especially in the east and northeastern parts (inland ice) of the
mosaic image-map. Water is depicted in a dark blue color. The Inglefield Land and Washington Land in
the west and northwestern parts of the scene appear in light blue and cyan shades. The shelf-platform
carbonate of the Franklinian Basin in the Washington Land and northwestern parts of the Inglefield
Land (adjacent to Smith Sound) typically contains cyan shade. The exposed lithologies, including the
complex metamorphic rocks of the Central Terrane and the Southern Terrane and Mesoproterozoic
sedimentary–igneous rocks of the Thule Basin manifest in a light blue tone (Figure 4).

Band ratio indices of B4/B2, B4/B6, and B6/B7 were assigned to the RGB false-color composite
for mapping iron oxides/hydroxides, ferrous iron oxides, and hydroxyl bearing alteration zones in
the IMB at the regional scale, respectively. Figure 5A shows the resultant image-map. Regarding the
geology map of the IMB (see Figure 1), the sedimentary successions of the Franklinian Basin and Thule
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Supergroup appear typically in cyan, pink, orange, and rose blush. Carbonate and siliciclastic rocks
are dominant lithological units in these two sedimentary basins, which are mostly represented as cyan
color. It could be due to the fact that most of Al-OH, Mg-Fe-OH, CO3, and Si-OH mineral groups
show high reflectance at 1.55–1.75 µm and strong absorption at 2.1–2.4 µm coincident with bands 6
and 7 of Landsat-8, respectively [7,76]. Pink, orange, and rose blush zones may contain dolomite
(Fe2+ absorption at 0.9–1.2 µm; the equivalent of band 5 of Landsat-8) or iron oxides/hydroxides
minerals. Basaltic sills in the Thule Basin are depicted in purple color (western part of image-map) due
to the high content of iron oxides/hydroxides minerals. Several golden yellow areas are recognizable
at the boundaries between sedimentary successions and the Etah metamorphic complex rocks in the
Central Terrane, which comprise Fe3+ and Fe2+ iron oxides/hydroxides. Paragneiss of the Etah Group
manifests in magenta to tangerine tone in both the Southern and Central Terranes due to a strong
amount of iron oxides/hydroxides, while Quaternary deposits appear as cyan color because of detrital
clay minerals. Syenite of the Etah meta-igneous complex is characterized by brown color adjacent to
the Sunrise Pynt Shear Zone. Orthogneiss in the western and northeastern parts of the IMB shows up
in gray shade (Figure 5A). Syenite and orthogneiss probably contain a high amount of ferrous iron
oxide minerals attributable to alteration products of primary mafic minerals such as biotite, hornblende,
amphibole, and clinopyroxene (augite).Remote Sens. 2019, 11, 2430 13 of 40 
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Figure 4. A regional view of the northwestern part of Greenland generated using a mosaic of Landsat-8
images as RGB false-color composite of the normalized difference snow index (NDSI), Al-OH-bearing
alteration minerals index (Al-OH-MI), and thermal radiance lithology index (TRLI). Yellow rectangle
shows the location of the Cu-Au mineralization belt.
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Table 2 shows the eigenvector matrix of the Landsat-8 band ratio indices (4/2, 4/6, 6/5, and 6/7)
derived from the DPCA for the selected subset covering the IMB. Analyzing the magnitude and sign
of the eigenvector loadings derived from DPCA technique for the IMB selected subset scene (Table 2)
indicates the DPCA1 contains positive eigenvector loadings for all input band ratio indices. Thus, it
does not have any unique contribution of input band ratio indices and the discrimination of alteration
mineral groups is impossible. The DPCA2 has a strong negative contribution (−0.770751) for ferric
oxides (B6/B5). However, it contains moderate loadings of other alteration mineral groups with the
opposite sign (Table 2). Ferric oxides manifest as dark pixel in the DPCA2 image due to negative
loading. The DPCA3 contains strong positive loadings of B4/B2 (0.686248) and B4/B6 (0.714648) for
iron oxides/hydroxides and ferrous iron oxides mineral groups, respectively (Table 2). However,
the eigenvector loadings in the DPCA3 for ferric oxides (B6/B5) and hydroxyl bearing alteration
(B6/B7) indices are weak and negative (−0.124892 and −0.052382). Therefore, the DPCA3 image shows
desired information related to Fe3+ and Fe2+ iron oxides/hydroxides as bright pixel. Figure 5B shows a
pseudocolor ramp of the DPCA3 rule image. The high concentration of Fe3+/Fe2+ iron oxides/hydroxide
minerals is observable in the boundaries between the Etah metamorphic complex rocks and sedimentary
successions of the Franklinian Basin and Thule Supergroup in the Central Terrane. Moderate to low
abundance of iron oxides/hydroxide minerals are associated with carbonate and siliciclastic rocks in
both sedimentary basins. The southern part of the Cu-Au mineralization belt nearby Marshall Bugt
contains high surface abundance of iron oxides/hydroxide minerals. The Etah group and meta-igneous
complex rocks show moderate to low spatial distribution of iron oxides/hydroxide minerals. Some of
the highly abundant iron oxides/hydroxide zones are located in Quaternary deposits and associated
with Basaltic sills in the Thule Basin (Figure 5B).
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Figure 5. Landsat-8 image-maps of the IMB. (A) RGB false-color composite of B4/B2, B4/B6, and B6/B7
band ratio indices covering the IMB. (B) Pseudocolor ramp of the DPCA3 rule image covering the IMB.
(C) Pseudocolor ramp of the DPCA4 rule image covering the IMB.
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Table 2. Eigenvector matrix of the Landsat-8 band ratio indices derived from the directed principal
components analysis (DPCA) for the Inglefield Mobile Belt (IMB) selected subset scene.

Eigenvector B4/B2 B6/B4 B6/B5 B6/B7

DPCA 1 0.412529 0.470934 0.624086 0.467501
DPCA 2 0.459849 0.282028 −0.770751 0.339030
DPCA 3 0.686248 0.714648 −0.124892 −0.052382
DPCA 4 −0.383955 −0.433543 −0.029349 0.814713

The Al-OH, Mg-Fe-OH, CO3 and Si-OH alteration mineral groups are mapped in the DPCA4
image due to the great positive contribution of B6/B7 ratio index (0.814713) (Table 2). On the other
hand, iron oxides/hydroxides (−0.383955), ferrous iron oxides (−0.433543), and ferric oxides (−0.029349)
indices show moderate to weak eigenvector loadings with a negative sign in the DPCA4 (Table 2). It is
evident that the DPCA4 image shows the alteration OH mineral groups as bright pixels. A pseudocolor
ramp of the DPCA4 rule image was generated (Figure 5C). High spatial distribution of the alteration
OH mineral groups is mostly associated with carbonate and siliciclastic units of the Franklinian Basin
and Thule Supergroup as well as Quaternary deposits in the Central Terrane. Moreover, orthogneiss
of the Etah meta-igneous complex and marble, amphibolite, and calc-silicate rocks of the Etah group
show a high surface abundance of alteration OH mineral groups. The central part of the Cu-Au
mineralization belt contains a remarkable concentration of the alteration OH mineral groups, which
might be related to amphibolite or alteration products of quartz diorite units. Paragneiss of the Etah
Group includes low to moderate surface distribution of the alteration OH minerals.

Figure 6A displays end-member spectra (n-D classes) extracted from the n-Dimensional analysis
technique for a selected spatial subset of Landsat-8 covering the Cu-Au mineralization belt and
surrounding areas. The n-D classes correspond to a set of unique pixels (a pure end-member), which
are used to act as end-members for the LSU spectral mineral-mapping. Comparison of the extracted
n-D classes with selected end-member reflectance spectra of the target minerals from the USGS spectral
library (see Figure 3A) indicates that some of the n-D classes could be considered for the LSU spectral
mineral-mapping. Some noticeable similarities between spectral signatures of the n-D classes and
the target minerals could be utilized for identifying iron oxide/hydroxide, clay mineral groups and
ferrous silicates (biotite, chlorite and epidote). The n-D class #1 and n-D class #6 typically represent
Al-OH/Si-OH absorption characteristics (Figure 6A). Muscovite, chalcedony, and opal show high
reflectance in band 6 (1.560–1.660 µm) and strong absorption in band 7 (2.100–2.300 µm) of Landsat-8
(see Figure 3A). The n-D class #2 and n-D class #4 can be considered as snow/ice/cloud group because
these classes show high reflectance in the visible wavelengths from 0.40 µm to 0.75 µm (band 1 to band
4 of Landsat-8), lower reflectance in the near-infrared from 0.80 µm to 0.90 µm (band 5 of Landsat-8),
and strong absorption in the short wave infrared from 1.57 µm to 1.78 µm (band 6 of Landsat-8) [95–97].
The n-D class #3 does not show any typical absorption features related to any geological materials and
hydrothermal alteration minerals. The n-D class #5 contains some similar spectral signatures related to
Mg-Fe-OH alteration minerals (ferrous silicates). Iron oxide (Fe+2/Fe+3) absorption features in bands 2
to 3 (0.50–0.60 µm) and bands 4 to 5 (0.70–0.90 µm) and Mg, Fe-OH absorption in bands 7 of Landsat-8
are recognizable for the n-D class #5 (Figure 6A). The n-D class #7 and n-D class #8 might be attributed
to the iron oxide/hydroxide minerals because of Fe3+ and Fe-OH absorption features at 0.45 µm to
0.70 µm, 0.80-0.90 µm, and 2.20-2.30 µm coinciding with bands 2, 3, 4, 5, and 7 of Landsat-8.

Fraction images of the end-members resulted from the LSU algorithm manifest as a series of
greyscale rule images (one for each extracted end-member). Considering the resultant fraction images
and the n-D classes (extracted end-member spectra) for the Landsat-8 selected subset, it is evident that
iron oxide/hydroxide minerals, clay minerals and ferrous silicates are main alteration mineral groups
in the study area. For post-classification of the fraction images (excluding snow/ice/cloud group) the
interactive density slicing tool was used to select colors for highlighting the high digital number (DN)
value areas (bright pixels) in the grayscale rule images. The red color class was considered for iron
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oxide/hydroxide group, the green color class was selected for clay mineral groups, and the yellow color
class was assigned for ferrous silicates, respectively. Figure 6B shows the LSU spectral mineral-map
for the Landsat-8 selected subset covering the Cu-Au mineralization belt and surrounding areas.
Iron oxide/hydroxide minerals (red pixels) are spectrally dominated in the image-map, whereas clay
minerals and ferrous silicates show less spatial distribution in the selected subset. Comparison to the
geological map of the study zone, suggests that an iron oxide/hydroxide group is typically concentrated
in the southwestern part of the Cu-Au mineralization belt at the boundary between orthogneiss and
paragneiss with the sedimentary succession of carbonate and basal siliciclastic rocks. However, an iron
oxide/hydroxide group is also detected in the Franklinian Basin sedimentary succession (central north)
and many other zones in orthogneiss and paragneiss of the Etah complex in the southwestern and
southeastern parts of the scene (Figure 6B). The high surface abundance of clay minerals (green pixels)
was mapped in orthogneiss, amphibolite, and quartz diorite units especially in the central part of the
Cu-Au mineralization belt. Basal siliciclastic rocks of the Franklinian Basin show high concentrations
of clay minerals in the central part of the scene. Ferrous silicates are lesser in the surface abundance
and generally associated with an iron oxide/hydroxide mineral group (Figure 6B).
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Figure 6. (A) The n-D classes (end-member spectra) extracted for a selected spatial subset (Landsat-8)
covering Cu-Au mineralization belt and surrounding areas. Landsat-8 band center positions are shown.
(B) LSU mineral map produced from fraction images overlaid on band 5 of Landsat-8 for the selected
spatial subset covering the Cu-Au mineralization belt and surrounding areas.

4.2. Hydrothermal Alteration Mapping in the Northeastern IMB Using ASTER Data

Analyzing the eigenvector matrix of the band ratio indices for mapping hydrothermal alteration
minerals using VNIR + SWIR bands of ASTER (Table 3) shows that the DPCA technique detected the
surface distribution of Fe3+/Fe2+ iron oxide/hydroxides, Al/Fe-OH, Mg-Fe-OH, and Si-OH minerals in
some specific DPCA images with a strong contribution of the input band ratio components. Figure 7A–E
shows the pseudocolor ramp of the DPCA rule images covering the selected spatial subset of the
Cu-Au mineralization belt and surrounding areas (similar size as the Landsat-8 LSU image-map).
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Table 3. Eigenvector matrix of the ASTER VNIR + SWIR band ratio indices derived from the DPCA for
the selected subset covering the Cu-Au mineralization belt and surrounding areas.

Eigenvector B2/B1 B4/B2 B5 + B7/B6 B7 + B9/B8 B6 + B8/B7

DPCA 1 −0.219557 −0.347765 −0.900627 −0.123124 −0.067567
DPCA 2 −0.547623 0.589087 −0.177962 −0.235635 −0.434915
DPCA 3 0.263209 0.141891 −0.759215 0.418035 0.399283
DPCA 4 −0.027870 −0.119071 0.531229 0.709489 −0.288482
DPCA 5 −0.568874 0.044535 0.108190 0.314737 −0.750756
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image-map; (D) Mg-Fe-OH minerals image-map; (E) Si-OH minerals image-map.
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The DPCA2 contains a strong contribution of Fe3+/Fe2+ iron oxide/hydroxides in the B2/B1
(−0.547623) and B4/B2 (0.589087), while the contributions of Al/Fe-OH, Mg-Fe-OH, Si-OH minerals are
weak to moderate with negative signs (−0.177962, −0.235635, and −0.434915, respectively) (Table 3).
Therefore, ferrous iron oxides (Fe+2) can be characterized as dark pixels due to the strong magnitude
and negative sign of eigenvector loadings (−0.547623) in the DPCA2. Considering the eigenvector
loadings in this DPCA (see Table 3), the contribution of other mineral groups as dark pixels, especially
Si-OH minerals, is also feasible. These dark pixels were converted to bright pixels by multiplication to
−1, and then a pseudocolor ramp of greyscale rule image was generated for the DPCA2. Figure 7A
shows the resultant image-map of ferrous iron oxides (Fe+2) and silica-rich units. Referring to the
geological map of the study area, high to moderate concentration of ferrous oxides/Si-OH was mostly
mapped in the sedimentary successions of the Franklinian Basin, which can be attributed to dolomite
and basal siliciclastic rocks. In the Cu-Au mineralization belt, some small zones show a high to
moderate spatial distribution of ferrous oxides/Si-OH components.

In the DPCA2, ferric iron (Fe+3) oxide/hydroxides can be mapped explicitly as bright pixels due
to strong and positive loadings of the B4/B2 (0.589087) (Table 3). Figure 7B shows the pseudocolor
ramp of the DPCA2 for ferric iron components. High to moderate surface abundance of ferric iron
components is typically detected at the contact of orthogneiss and paragneiss with the Franklinian
sedimentary successions. However, high concentration of ferric iron was also mapped in association
with orthogneiss and quartz diorite in the northeastern part of the selected subset near Dallas Bugt.
Carbonate successions of the Franklinian Basin and paragneiss of the Etah Group generally show a
moderate to high surface abundance of ferric iron in some parts of the selected subset (Figure 7B).
Several small zones of high to moderate concentration of ferric iron were identified within the Cu-Au
mineralization belt, which can be considered as gossan zones (rust zones). The 4/2 band ratio of ASTER
was documented as a reliable indicator for identifying gossan zones associated with massive sulfide
mineralization in the Neoproterozoic Wadi Bidah shear zone, southwestern Saudi Arabia and many
porphyry copper deposits around the world [98,99].

Al/Fe-OH minerals can be robustly detected in the DPCA3 image as dark pixels due to a high
negative contribution of the B5+B7/B6 (−0.759215) (Table 3). For inverting the dark pixels to bright pixels,
the DPCA3 image was negated. The pseudocolor ramp of the DPCA3 is shown in Figure 7C. The high
concentration of Al/Fe-OH minerals was only mapped in some small sites in the carbonate/siliciclastic
units of the Franklinian Basin, Quaternary deposits, quartz diorite, and amphibolite of the Etah
Group. The orthogneiss and paragneiss units show low to moderate distribution of Al/Fe-OH minerals.
The central part of the Cu-Au mineralization belt contains moderate to high spatial distribution of the
mineral groups, which is related to the quartz diorite and amphibolite units (Figure 7C). The DPCA4
contains strong loadings of B7 + B9/B8 (0.709489) and B5 + B7/B6 (0.531229) with a positive sign (Table 3).
Therefore, Mg-Fe-OH minerals can be mapped as bright pixels in the DPCA4 image. Although, this
image might have some contribution of Al/Fe-OH minerals due to great and positive eigenvector
loading of the B5 + B7/B6 component. Figure 7D shows a pseudocolor ramp of the DPCA4 image. High
spatial distribution of Mg-Fe-OH minerals is typically concentrated in the Franklinian sedimentary
successions and paragneiss units proximate to Marshall Bugt. However, the orthogneiss and quartz
diorite units adjacent to Dallas Bugt also contain a strong surface abundance of the mineral groups.
Few small locations inside the Cu-Au mineralization belt comprise high concentrations of Mg-Fe-OH
minerals that are associated with rust zones (Figure 7D).

The B6 + B8/B7 component in the DPCA5 has strong weighting (−0.750756) with a negative sign,
which can represent Si-OH minerals as dark pixels. Besides, the B2/B1 (ferrous iron oxides) shows high
contribution (−0.568874) with a negative sign in the DPCA5 (Table 3). This image was negated for
converting the dark pixels to bright pixels before applying pseudocolor ramp (Figure 7E). The resultant
image-map shows spatial distribution of Si-OH minerals that may have some contribution of ferrous
iron oxides. The high concentration of Si-OH minerals is characteristically mapped associated with
quartz diorite and at the contact of orthogneiss and paragneiss with the Franklinian sedimentary
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successions. In the Cu-Au mineralization belt, the high concentration of Si-OH minerals was mapped in
several localities associated with rust zones, especially in the southwestern part of the belt (Figure 7E).

Table 4 shows the eigenvector matrix of the ASTER TIR band ratio indices, including Quartz Index
(QI) = 11 × 11/10 × 12, Carbonate Index (CI) = 13/14, and Mafic Index (MI) = 12/13 [81], for the selected
subset covering the Cu-Au mineralization belt and surrounding areas. Considering eigenvector
loadings for mapping altered silica-rich rocks (containing SiO2 group), it is evident that the DPCA2 is
able to detect altered silica-rich rocks as bright pixels because of the strong contribution of QI (0.792423)
with a positive sign. The CI (−0.302209) and MI (−0.097008) components contain weak contributions
with a negative sign in the DPCA2 (Table 4). Figure 8A shows a pseudocolor ramp of the DPCA2
for the QI component. High to moderate concentration of quartz content was mostly mapped at the
contact of orthogneiss with the Franklinian Basin successions, orthogneiss, and quartz diorite units.
The low surface abundance of quartz was recorded for paragneiss and amphibolite. Several zones
containing intense concentration of quartz content were identified in the Cu-Au mineralization belt
(Figure 8A).

Table 4. Eigenvector matrix of the ASTER TIR band ratio indices derived from the DPCA for the
selected subset covering the Cu-Au mineralization belt and surrounding areas.

Eigenvector QI CI MI

DPCA 1 −0.596505 −0.527385 −0.605018
DPCA 2 0.792423 −0.302209 −0.097008
DPCA 3 −0.106481 0.790280 −0.530590Remote Sens. 2019, 11, 2430 22 of 40 
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The DPCA3 shows strong loadings for the CI (0.790280) with a positive sign and the MI (−0.530590)
with a negative sign, respectively (Table 4). Therefore, carbonate minerals can be detected as bright
pixels and mafic minerals as dark pixels in the DPCA3 rule image. Figure 8B displays a pseudocolor
ramp of the DPCA3 for the CI component. High to moderate concentration of carbonate minerals
were identified in carbonate successions of the Franklinian Basin. The Etah meta-igneous complex
(orthogneiss and quartz diorite) and the Etah Group (paragneiss and amphibolite) generally show
a low to moderate surface abundance of carbonate minerals. The Cu-Au mineralization belt mostly
locates in a low to moderate range of carbonate content zone (Figure 8B). Moreover, a pseudocolor
ramp of the MI was generated using the negation of the DPCA3 rule image (Figure 8C). Quartz-rich
zones (contact boundaries of sedimentary successions with metamorphic units) appear in a very low
range of mafic content in the MI image-map (Figure 8C). Mafic minerals show high to moderate
ranges in the entire image-map, which are mostly concentrated in the Franklinian Basin, paragneiss,
and orthogneiss units (Figure 8C).

The end-member spectra (n-D classes) extracted from the n-Dimensional analysis technique for
the ASTER selected spatial subset covering the Cu-Au mineralization belt and surrounding areas are
shown in Figure 9A. The n-D classes were compared with the end-member spectra of target minerals
from the USGS spectral library (see Figure 3B). Results indicate that some of the n-D classes contain
recognizable features similar to the target minerals. The n-D class #1 has an identical spectral signature
with chalcedony and opal (see Figures 3B and 9A). Strong absorption features in bands 7, 8, and 9
could be attributed to Si-OH absorption characteristics. The n-D class #2 represents a combined
spectral signature of jarosite and hematite due to Fe3+ (0.48 µm and 0.83–0.97 µm) and Fe-OH (2.27 µm)
absorption features [89], coinciding with bands 1, 2, 3, and 7 of ASTER. The n-D class #3 and n-D
class #5 do not contain any prominent spectral signatures related to the alteration minerals and can be
considered as an unaltered/unknown mineral group. Snow/ice spectral signatures are recognizable in
the n-D class #4 and n-D class #10 (Figure 9A). Strong reflectance in the VNIR portion (0.520–860 µm;
bands 1, 2 and 3 of ASTER) and low reflectance in the SWIR portion (1.60–2.430 µm; bands 4 to 9 of
ASTER) specify the snow/ice spectral properties [95]. The n-D class #6 contains spectral characteristics
close to chlorite and epidote, which shows a dominant Mg, Fe-OH absorption at 2.30–2.35 µm [100]
equivalent to bands 8 and 9 of ASTER. Biotite might be represented in the n-D class #7 because of
slight iron absorption and a major Mg, Fe-OH absorption (Figure 9A). The n-D class #8 reveals mixed
spectral features of hematite and jarosite. The n-D class #9 shows strong Al-OH spectral absorption
features at 2.20 µm [89], which is related to muscovite/kaolinite spectral signatures coinciding with
band 6 of ASTER.
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does not enhance any group of target minerals. The DPCA2 shows strong and positive eigenvector 
loading for mapping Fe3+ iron oxides (0.762743). However, the eigenvector loading for Fe2+ iron oxides 
(–0.369967) is weak and negative. The ferric (0.461865) and ferrous (0.262084) silicates have moderate 

Figure 9. (A) The n-D classes (end-member spectra) extracted for a selected spatial subset (ASTER
VNIR + SWIR) covering the Cu-Au mineralization belt and surrounding areas. ASTER band center
positions are shown. (B) ASTER LSU classification mineral map for the selected spatial subset covering
the Cu-Au mineralization belt and surrounding areas.

Figure 9B shows the LSU classification mineral map derived from fraction images of end-members
(excluding snow/ice and unaltered/unknown groups) for the selected spatial subset covering the Cu-Au
mineralization belt and surrounding areas. Results indicate that hematite/jarosite, muscovite/kaolinite,
and biotite are spectrally strong, while chalcedony/opal and chlorite/epidote have a moderate
contribution in total mixed spectral characteristics of the selected spatial subset. Comparison with
the geological map of the study area (see Figure 1) suggests that muscovite/kaolinite is dominant in
the Cu-Au mineralization belt, which is typically concentrated in the orthogneiss and amphibolite
lithological units. In addition, a high surface abundance of biotite was mapped in both orthogneiss
and paragneiss of the Etah meta-igneous complex and Etah group. The association of hematite/jarosite,
chlorite/epidote, chalcedony/opal, and muscovite/kaolinite was identified in several parts of the central
and southwestern sectors of the Cu-Au mineralization belt (Figure 9B), which are matched with the
distribution of the main Cu-Au occurrences as documented by Pirajno et al. [2]. The Franklinian
Basin sequences contain a high surface abundance of hematite/jarosite and chlorite/epidote and
muscovite/kaolinite and a moderate to low surface abundance of chalcedony/opal and biotite. The high
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concentration of hematite/jarosite was mapped in the carbonate succession, while chlorite/epidote
and muscovite/kaolinite were detected in the basal siliciclastic rocks. Chalcedony/opal is mostly
concentrated at the contact between the Franklinian Basin sequences and Etah meta-igneous complex
and Etah group. Low spatial distribution of biotite was detected in the basal siliciclastic rocks of the
Franklinian Basin sequences (Figure 9B).

4.3. Mapping Iron Oxide/Hydroxide Minerals in the Southern Part of the Cu-Au Mineralization Belt Using
WV-3 Data

A spatial selected subset of WV-3 imagery covering the southern part of the Cu-Au mineralization
belt was considered (Figure 10) for mapping Fe3+ and Fe2+ iron oxides and ferric and ferrous silicates.
Table 5 shows the eigenvector matrix of the WV-3 band ratio indices derived from the DPCA analysis,
including B4 + B2/B3 (for mapping Fe3+ iron oxides), B6 + B8/B7 (for mapping Fe2+ iron oxides), B3 +

B5/B4 (for mapping ferric silicates), and B5 + B7/B6 (for mapping ferrous silicates). The DPCA1 does
not contain any specific contribution of band ratio indices with different signs (all of the eigenvector
loadings are negative). Thus, this image-map contains spectral similarities and does not enhance any
group of target minerals. The DPCA2 shows strong and positive eigenvector loading for mapping Fe3+

iron oxides (0.762743). However, the eigenvector loading for Fe2+ iron oxides (–0.369967) is weak and
negative. The ferric (0.461865) and ferrous (0.262084) silicates have moderate to weak contribution with
positive signs in the DPCA2 image. Therefore, the DPCA2 image-map represents the Fe3+ iron oxides
as bright pixels, which might contain a very low contribution of ferric and ferrous silicates. Figure 10A
shows a pseudocolor ramp of the DPCA2 covering the southern part of the Cu-Au mineralization
belt, which includes two Cu-Au mineralization occurrences that have been already documented by
Pirajno et al. [2]. High to moderate concentration of Fe3+ iron oxides is mapped in the vicinity of Cu-Au
mineralization occurrences (Figure 10A). Moreover, many other parts inside the Cu-Au mineralization
belt show strong to moderate spatial distribution of Fe3+ iron oxides (Figure 10A), which could be
considered as high potential zones for Cu-Au mineralization.

The DPCA3 contains a significant contribution of Fe2+ iron oxides (–0.949469) and very low
eigenvector loading of Fe3+ iron oxides (0.049338) and ferric silicates (0.090503), while a moderate
contribution of ferrous silicates (0.396450) with a positive sign is present in this DPCA. Hence, the Fe2+

iron oxides will appear as dark pixels. The DPCA3 was negated (multiplication by −1) to generate the
Fe2+ iron oxides as bright pixels. A pseudocolor ramp of the DPCA3 was generated to map Fe2+ iron
oxides (Figure 10B). The high surface abundance of Fe2+ iron oxides was also detected proximate to the
mineralization localities. For mapping ferrous silicates, a pseudocolor ramp was applied to the DPCA3
without negation (Figure 10C). Spatial distribution of ferrous silicates can be seen in many parts of the
selected subset, especially in drainage systems and geological structures. However, a low concentration
of the ferrous silicates is mapped close to the Cu-Au mineralization occurrences (Figure 10C).

The DPCA4 has a strong negative eigenvector loading of ferric silicates (−0.864801) and moderate
positive contribution of Fe3+ iron oxides (0.496839), whereas eigenvector loadings for Fe2+ iron oxides
(−0.004738) and ferrous silicates (0.072448) are meager. As a result, the ferric silicates will manifest
as dark pixels in the DPCA4, which could be inverted to bright pixels by negation. The moderate
contribution of Fe3+ iron oxides can affect the resultant map. Figure 10D shows a pseudocolor ramp
for ferric silicates. In many parts, the surface abundance of ferric silicates is much stronger compared
to ferrous silicates, especially adjacent to Cu-Au mineralization occurrences. The high concentration of
ferric silicates shows a close spatial relationship with Fe3+ and Fe2+ iron oxides. The high to moderate
surface abundance of ferric silicates was mapped nearby the Cu-Au mineralization localities in the
selected subset (Figure 10D).
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Table 5. Eigenvector matrix of the WV-3 band ratio indices derived from the DPCA for the selected
subset covering the southern part of Cu-Au mineralization belt.

Eigenvector B4 + B2/B3 B6 + B8/B7 B3 + B5/B4 B5 + B7/B6

DPCA 1 −0.155644 −0.927722 −0.174958 −0.290683
DPCA 2 0.762743 −0.369967 0.461865 0.262084
DPCA 3 0.049338 −0.949469 0.090503 0.396450
DPCA 4 0.496839 −0.004738 −0.864801 0.072448
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End-member spectra (n-D classes) extracted from the n-Dimensional analysis technique for the
WV-3 selected spatial subset of the southern part of the Cu-Au mineralization belt are presented in
Figure 11A. Comparison with selected end-member reflectance spectra of the target minerals from
the USGS spectral library (see Figure 3C) shows the presence of some n-D classes containing similar
spectral characteristics with hematite, jarosite, ferric, and ferrous silicates. The n-D class #1, n-D class
#3, n-D class #5, and n-D class #8 do not contain any particular spectral signature related to alteration
minerals, which might be water/ice (snow/slush) or unknown geologic materials. The concentration of
transition metal cations such as Fe3+ and Fe2+ can affect the intensities of absorption features [99]. Fe3+

produces absorption features near 0.45 to 0.90 µm, while broad absorption features near 0.90 to 1.2 µm
are related to Fe2+ [100]. The n-D class #2 has absorption features related to ferric iron (Fe3+), which
corresponds with bands 5 (Red), 6 (Red edge), and 7 (Near-Infrared 1) of WV-3. It seems that this
n-D class is related to ferric silicates. The n-D class #4 shows a similar spectral pattern with hematite
(see Figures 3C and 11A). The n-D class #6 can be considered for jarosite. The n-D class #7 can be
attributed to the admixture of hematite and jarosite. Charge transfer absorption features between 0.48
to 0.72 µm and crystal-field absorption properties between 0.63 to 0.72 µm are documented for iron
oxide/hydroxide minerals such as hematite, limonite, goethite, and jarosite [101–103]. The n-D class #9
contains robust absorption features related to Fe2+, coinciding with bands 7 (Near-Infrared 1) and 8
(Near-Infrared 2) of WV-3. Hence, it can be characterized by ferrous silicate.
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Figure 11. (A) The n-D classes (end-member spectra) extracted for the WV-3 selected spatial subset
covering the southern part of the Cu-Au mineralization belt. WV-3 band center positions are shown.
(B) LSU mineral map produced from fraction images for the selected spatial subset covering the
southern part of the Cu-Au mineralization belt (WV-3 image, courtesy of the DigitalGlobe Foundation
(www.digitalglobefoundation.org)).

The LSU spectral mineral-map of the WV-3 spatial selected subset covering the southern part of the
Cu-Au mineralization belt was generated using fraction images derived from the n-D classes contain
end-member reflectance spectra of the target minerals. Figure 11B shows the resultant image-map.
In the vicinity of Cu-Au mineralization occurrences, high concentration of hematite, jarosite, and ferric
silicates was identified. On the other hand, carbonates (calcite and dolomite) also appear in association
with ferric silicate, especially in the central and northwestern parts of the selected subset. Most of the
ferrous silicates are detected in the drainage systems and geological structures.

www.digitalglobefoundation.org
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4.4. ACE Analysis for Detecting End-Member Minerals Using VINR + SWIR Bands of ASTER

For verifying the presence of mineral spectral signatures detected in the selected spatial subset
covering the Cu-Au mineralization belt and surrounding areas, the ACE algorithm was applied to
the VINR + SWIR bands of ASTER using laboratory reflectance spectra of hematite, jarosite, biotite,
muscovite, chlorite, epidote, chalcedony (hydrous-silica), and opal (hyalite) extracted from the USGS
spectral library [75]. Fraction images of the selected end-member were generated as a series of greyscale
rule images using the ACE algorithm. To show the high fractional abundance (high DN value pixels)
of the target minerals, a pseudo-color ramp of greyscale rule images was produced, one for each
selected mineral (Figure 12). The ACE image-maps were visually compared with the LSU classification
image-maps (see Figures 6B, 9B, 11B and 12). Results indicate that fractional abundances of hematite,
chlorite, epidote, chalcedony, and opal are high, whereas jarosite and biotite are low in the detected
altered zones. Spatial distribution of muscovite is typically different from other target minerals in the
identified altered zones and selected subset (Figure 12). However, some of the high abundance zones
contain jarosite, chalcedony, and opal that are spatially matched with muscovite. Comparison of the
DPCA image-maps and LSU classification image-map of ASTER (see Figure 7 and Figure 9B) with
the ACE fraction images indicates a little spatial dissimilarity between the DPCA4 image (Figure 7D)
for mapping Mg-Fe-OH minerals and fraction images of biotite, chlorite, and epidote (Figure 12).
However, the LSU classification image-map (Figure 9B) shows a high spatial similarity with fraction
images of hematite, jarosite, biotite, muscovite, chlorite, epidote, chalcedony, and opal.
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Figure 12. Fraction images of the selected end-member minerals derived from the adaptive coherence
estimator (ACE) algorithm for the selected spatial subset covering the Cu-Au mineralization belt and
surrounding areas. Pseudo-color ramp was applied to greyscale rule images.

4.5. Virtual Verification Assessment

Confusion matrix (error matrix) and Kappa Coefficient [101–103] were calculated for the LSU
classification image-maps derived from Landsat-8, ASTER, and WV-3 versus the ACE fraction images
derived from VINR + SWIR bands of ASTER (Tables 6–8). In this analysis, the confusion matrix was
assumed based on one-class per pixel classifications. The pixels were selected inside the altered zones
with high digital number values. The spatial resolutions of the pixels were considered and resampled
to a similar size to the ACE fraction images using a pixel aggregation (neighborhood averaging).
Furthermore, highly dissimilar pixels were excluded using a standard deviation threshold. Finally,
160 pixels of Landsat-8, 300 pixels of ASTER, and 200 pixels of WV-3 were selected and analyzed,
respectively (Tables 6–8).
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Table 6. Confusion matrix for the LSU classification image-maps derived from Landsat-8 versus the
ACE fraction images derived from VINR + SWIR bands of ASTER.

LSU Classification
Map Landsat-8

Detected Pixel Spectra by the ACE Algorithm

Iron Oxide/Hydroxides Clay Minerals Ferrous Silicates Totals User’s Accuracy

Iron oxide/hydroxides 46 2 8 56 82%
Clay minerals 2 48 4 54 88%

Ferrous silicates 12 10 28 50 56%

Totals 60 60 40 160

Producer’s Accuracy 76% 80% 70%

Overall accuracy = 76.25% Kappa Coefficient = 0.64

Table 7. Confusion matrix for the LSU classification image-maps derived from ASTER versus the ACE
fraction images derived from VINR + SWIR bands of ASTER.

LSU Classification
Map ASTER

Detected Pixel Spectra by the ACE Algorithm

Hematite/Jarosite Chlorite/Epidote Muscovite/Kaolinite Chalcedony/Opal Biotite Totals User’s Accuracy

Hematite/jarosite 42 8 3 10 8 71 59%
Chlorite/epidote 6 39 1 7 6 59 66%

Muscovite/kaolinite 0 1 43 2 5 51 84%
Chalcedony/opal 7 8 8 38 6 67 56%

Biotite 5 4 5 3 35 52 67%

Totals 60 60 60 60 60 300

Producer’s Accuracy 70% 65% 71% 63% 58%

Overall accuracy = 65.66% Kappa Coefficient = 0.57

Table 8. Confusion matrix for the LSU classification image-maps derived from WV-3 versus the ACE
fraction images derived from VINR + SWIR bands of ASTER.

LSU Classification
Map WV-3

Detected Pixel Spectra by the ACE Algorithm

Hematite Jarosite Ferric Silictes Ferrous Silicates Totals User’s Accuracy

Hematite 39 6 5 1 51 76%
Jarosite 7 40 4 3 54 74%

Ferric Silictes 3 4 38 9 54 70%
Ferrous Silicates 1 0 3 37 41 90%

Totals 50 50 50 50 200

Producer’s Accuracy 78% 80% 76% 74%

Overall accuracy = 77% Kappa Coefficient = 0.69

Table 6 shows confusion matrix for the LSU classification image-maps derived from Landsat-8
versus the ACE fraction images derived from VINR + SWIR bands of ASTER. The overall accuracy and
Kappa Coefficient are 76.25% and 0.64, respectively. Producer’s accuracy (omission error) indicates
the probability of a reference pixel being correctly classified and user’s accuracy (commission error)
shows the total number of correct pixels in a category, which is divided by a total number of pixels that
were classified in the category [104,105]. The highest producer’s accuracy (80%) and user’s accuracy
(88%) were achieved for the clay minerals class. However, the lowest producer’s accuracy (70%) and
user’s accuracy (56%) were recorded for the ferrous silicates class. It shows that spectral mixing and
confusion between the ferrous silicates and iron oxide/hydroxides classes is more feasible than the clay
minerals class using Landsat-8 spectral bands.

The overall accuracy of 65.66% and Kappa Coefficient of 0.57 were assessed for the LSU classification
image-maps versus the ACE fraction images derived from VINR + SWIR bands of ASTER (Table 7).
The muscovite/kaolinite class has the highest producer’s accuracy (71%) and user’s accuracy (84%).
The biotite class shows the lowest producer’s accuracy (58%) and the chalcedony/opal class contains
the lowest user’s accuracy (56%). So, the muscovite/kaolinite class pixels were strongly mapped
compared to other mineral classes in this study. Spectral mixing has been recorded for pixels contain
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hematite/jarosite, chlorite/epidote, chalcedony/opal, and biotite mineral assemblages. Consequently,
detecting the subtle spectral differences between alteration mineral classes are challenging and might
have some confusion using ASTER data. Calculation of confusion matrix for LSU classification
image-maps derived from WV-3 versus the ACE fraction images derived from VINR + SWIR bands
of ASTER indicates the overall accuracy of 77% and Kappa Coefficient of 0.69 (Table 8). Producer’s
accuracy and user’s accuracy for ferrous silicates class pixels are 74% and 90%, respectively. The jarosite
class pixels contain the highest producer’s accuracy (80%). The ferric silicates class pixels show the
lowest user’s accuracy (70%). Results indicate some spectral mixing effects between mineral classes,
but the overall accuracy (77%) and Kappa Coefficient (0.69) have a good potential for separating the
classes using WV-3 VNIR spectral bands.

5. Discussion

Mineral exploration is very challenging in the Arctic regions due to cold and harsh environments
and inaccessibility, especially in the northern part of Greenland that contains a variety of ore mineral
resources [3,104]. Application of remote sensing satellite/airborne imagery for mineral identification,
exploration, and prospecting in Greenland has been documented in the Sarfartoq carbonatite complex,
southern West Greenland [105,106] and the Kap Simpson complex area, East Greenland [107] as
well as the Franklinian Basin, North Greenland [8]. The Inglefield Mobile Belt (IMB), Northwest
Greenland contains copper-gold mineralization hosted by garnet-sillimanite paragneiss, orthogneiss,
and mafic-ultramafic rocks, which are confined in hydrothermal alteration zones (rust zones) [1–3].
In this study, the application of Landsat-8, ASTER, and WV-3 multispectral satellite remote sensing data
were evaluated for mapping hydrothermal alteration minerals associated with Cu-Au mineralization
in the IMB.

Using ratio indices of Landsat-8 spectral bands (B4/B2, B4/B6, and B6/B7) discriminate a variety of
sedimentary, metamorphic, and igneous lithological units at the regional scale based on different content
of iron oxides/hydroxides, ferrous iron oxides, and hydroxyl minerals (see Figure 5A). The sedimentary
successions of the Franklinian Basin and Thule Supergroup were mapped due to high amounts
of Al-OH, Mg-Fe-OH, CO3, and Si-OH mineral groups related to carbonate and siliciclastic rocks
and Fe2+ absorption that might be attributed to dolomitization. Basaltic sills of the Thule Basin,
paragneiss of the Etah Group, and syenite and orthogneiss of the Etah meta-igneous complex were
discriminated because of different surface abundance of Fe3+ and Fe2+ iron oxides/hydroxide minerals
(see Figure 5A). Quaternary deposits were mapped owing to the high surface distribution of detrital
clay minerals. The DPCA3 and DPCA4 images derived from Landsat-8 band ratio indices identified
Fe3+/Fe2+ iron oxides/hydroxide minerals and Al-OH, Mg-Fe-OH, CO3, and Si-OH alteration mineral
groups, respectively (see Figure 5B,C).

In the DPCA3 image-map (Figure 5B), the boundaries between the Etah metamorphic complex
rocks and sedimentary successions of the Franklinian Basin and Thule Supergroup in the Central
Terrane, as well as the southern part of the Cu-Au mineralization belt nearby Marshall Bugt, show
high surface abundance of iron oxide/hydroxide minerals. These locations are typically matched
with the documented rust zones, which are identified as Cu-Au sulfide mineralization areas [1–3].
Furthermore, a high concentration of the OH-alteration mineral groups was mapped in the DPCA4
image-map (see Figure 5C) that could be considered with some parts of the rust zones. The XRD
analyses, as documented by Pirajno et al. [2] for mineralogy of rust zones indicate the presence of biotite,
sericite, and chlorite. High spatial distribution of iron oxide/hydroxide minerals along the boundaries
between the metamorphic complex rocks and sedimentary successions in the southwestern part of
the Cu-Au mineralization belt was also detected in the LSU spectral mineral-map of the Landsat-8
(see Figure 6B). Ferrous silicates (biotite, chlorite, and epidote) were typically mapped with iron
oxide/hydroxide minerals, while clay minerals, detected in the central part of the Cu-Au mineralization
belt, are mostly adjacent to the amphibolite and quartz diorite lithological units (see Figures 1 and 6B).
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Detailed maps of the spatial distribution of Fe3+/Fe2+ iron oxide/hydroxides, Al/Fe-OH, Mg-Fe-OH,
and Si-OH minerals in the Cu-Au mineralization belt and surrounding areas (see Figure 7) were
generated by implementing the DPCA technique to ASTER band ratio components (B2/B1, B4/B2,
B5 + B7/B6, B7 + B9/B8, and B6 + B8/B7). The DPCA2 mapped the Fe3+/Fe2+ iron oxide/hydroxide
minerals, which are highly concentrated at the contact of metamorphic complex rocks with the
Franklinian sedimentary successions and orthogneiss in the northeastern and southern parts of the
Cu-Au mineralization belt (see Figure 7A,B). Numerous zones of high to moderate concentration of
iron oxide/hydroxide minerals were mapped inside the Cu-Au mineralization belt together with the
rust zones. The occurrence of iron minerals such as rozenite, jarosite, cacoxenite, and jahnsite was
reported in the Cu-Au mineralization belt as oxidation products of sulfide minerals associated with the
rust zones [2]. The DPCA3 and DPCA4 images represented the spatial distribution of Al/Fe-OH and
Mg-Fe-OH minerals, which show low abundances in the mineralization belt (Figure 7C,D). The DPCA5
detected Si-OH minerals and ferrous silicates, which are typically associated with quartz diorite and the
contact between metamorphic complex rocks with the Franklinian sedimentary successions (Figure 7E).
The high concentration of Si-OH minerals was mapped as associated with rust zones, particularly
in the southwestern part of the mineralization belt. Pirajno et al. [2] documented the association of
hydrolitic alteration assemblages (chlorite and biotite) and silicification that overprint the wallrocks
and rust zones in the Cu-Au mineralization belt.

The implementation of the DPCA to ASTER TIR band ratio indices (QI, CI, and MI) provided
complementary information for mapping of altered, silica-rich rocks (containing SiO2 group),
carbonates, and mafic minerals in the DPCA2 and DPCA3 (Figure 8A–C). The boundaries of orthogneiss
with the Franklinian Basin successions and quartz diorite units show a high to moderate concentration
of quartz content, which is matched with the DPCA5 derived from the ASTER VNIR + SWIR ratio
indices (see Figure 7E). In the Cu-Au mineralization belt, several zones containing high concentration of
quartz content were identified (see Figure 8A). Carbonate minerals were clearly detected in carbonate
successions of the Franklinian Basin, while mafic minerals were mostly mapped in the paragneiss
and orthogneiss units (see Figure 8A,B). Boundaries of sedimentary successions with metamorphic
rocks show a very low range of carbonates and mafic minerals. According to Pirajno et al. [1,2] and
Kolb et al. [3] Cu–Au mineralization in rust zones is restricted to the NE-trending strip, which has a
close spatial relationship with the contact of carbonate successions of the Franklinian Basin and the
basement metamorphic rocks.

Hematite/jarosite, muscovite/kaolinite, and biotite are spectrally dominated in the ASTER LSU
classification mineral map (Figure 9A), whereas chalcedony/opal and chlorite/epidote have a moderate
contribution in the total mixed spectral properties. The assemblage of hematite/jarosite, chlorite/epidote,
chalcedony/opal, and muscovite/kaolinite was detected in many parts of the Cu-Au mineralization belt
(Figure 9B), especially in the central and southwestern parts, where the main occurrences of Cu-Au
mineralization were reported by Pirajno et al. [2]. Muscovite/kaolinite has a high surface abundance in
the Cu-Au mineralization belt, which is typically concentrated in the orthogneiss and amphibolite
lithological units. Chalcedony/opal is generally concentrated at the contact between the Franklinian
Basin sequences and basement metamorphic complex (Figure 9B). The spatial distribution of the
alteration minerals in the ASTER LSU classification image-map was comparable with ASTER DPCA
image-maps, however, a detailed surface abundance of alteration minerals was more apparent in the
LSU classification image-map (see Figure 7A–E and Figure 9B).

Fe3+ and Fe2+ iron oxides and ferric and ferrous silicates were comprehensively mapped in
the southern part of the Cu-Au mineralization belt by applying DPCA to WV-3 band ratio indices
(see Figure 10 and Table 5). High to moderate surface abundance of Fe3+ iron oxides was mapped
near to Cu-Au mineralization occurrences (reported by Pirajno et al. [2]) in the DPCA2 image-map
(Figure 10A). Furthermore, ferric silicates and Fe2+ iron oxides were also mapped in the vicinity
of Cu-Au mineralization occurrences, which are recorded in the DPCA3 and DPCA4 image-maps
(Figure 10B–D). A number of zones containing high to moderate spatial distribution of Fe3+ and Fe2+ iron
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oxides and ferric silicates are recorded as feasible Cu-Au mineralization occurrences. The LSU spectral
mineral-map of the WV-3 shows spatial distribution of hematite, jarosite, ferric silicates/calcite/dolomite,
and ferrous silicates (see Figure 11B). The high concentration of hematite, jarosite, and ferric silicates
was mapped in the vicinity of Cu-Au mineralization occurrences, which is coincident with the DPCA
image-map (see Figure 10). As stated by Pirajno et al. [2], the whole-rock XRD analyses of the rust
zones have shown hydrous Fe sulfate and phosphate, jarosite, biotite, sericite, and chlorite, which are
paralleled with the remote sensing results derived from WV-3 VNIR data.

The presence of hematite, jarosite, biotite, muscovite, chlorite, epidote, chalcedony, and opal in
the selected spatial subset covering the Cu-Au mineralization belt and surrounding areas was verified
using the ACE fraction images (see Figure 12). Hematite, chlorite, epidote, chalcedony, and opal
show high surface abundances in the altered zones, while jarosite, biotite, and muscovite are lesser
in the altered zones and they are mostly associated with specific lithological units in the study area.
The DPCA image-maps of ASTER dataset show a little spatial dissimilarity with the ACE fraction
images, especially in the DPCA4 image (Figures 7 and 12). High spatial similarity with fraction images
was recorded in the LSU classification image-map (see Figure 9B). The overall accuracy and Kappa
Coefficient calculated for the LSU classification image-maps derived from Landsat-8 versus the ACE
fraction images derived from VINR + SWIR bands of ASTER were 76.25% and 0.64, respectively
(see Table 6). The overall accuracy of 65.66% and Kappa Coefficient of 0.57 were assessed for the
ASTER LSU classification image-maps (see Table 7). Using ASTER datasets, muscovite/kaolinite was
intensely mapped compared to hematite/jarosite, chlorite/epidote, chalcedony/opal, and biotite. On
the other hand, spectral mixing for hematite/jarosite, chlorite/epidote, chalcedony/opal, and biotite
was more feasible.

The overall accuracy of 77% and Kappa Coefficient of 0.69 were calculated for the WV-3 LSU
classification image-maps (see Table 8), which show a good potential for separating iron mineral classes.
Subsequently, the virtual verification indicates that the alteration zones mapped by the Landsat-8,
ASTER, and WV-3 datasets reveal a good rate of agreement (Kappa Coefficient of 0.57 to 0.69) and
reasonable accuracy (overall accuracy of 65.66% to 77%), which could be pondered for prospecting
Cu-Au mineralization. As a result, the boundaries between the Etah metamorphic and meta-igneous
complex and sedimentary successions of the Franklinian Basin in the Central Terrane, orthogneiss in
the northeastern part of the Cu-Au mineralization belt adjacent to Dallas Bugt, as well as the southern
part of the Cu-Au mineralization belt nearby Marshall Bugt, can be considered as high potential zones
for Cu-Au prospecting in the IMB.

6. Conclusions

Landsat-8, ASTER, and WV-3 multispectral remote sensing datasets were processed, interpreted,
and integrated for mapping hydrothermal alteration minerals and prospecting Cu-Au mineralization
in the IMB, Northwest Greenland. Iron oxides/hydroxide minerals and Al-OH, Mg-Fe-OH, CO3

and Si-OH/SiO2 alteration mineral groups were mapped by executing the DPCA, LSU, and ACE
image processing techniques to the Landsat-8, ASTER, and WV-3 datasets. The discrimination of
lithological units and the zones contain high concentration of iron oxides/hydroxide and clay minerals
in the IMB were achieved using Landsat-8 data at the regional scale. The information extracted from
Landsat-8 provides a synoptic view of alteration mineral zones in the IMB metallogenic province. Iron
oxides/hydroxide minerals typically concentrated at the contact between sedimentary successions of
the Franklinian Basin and Thule Supergroup with the Etah metamorphic and meta-igneous complex
rocks. ASTER datasets helped to map the spatial distribution of Fe3+/Fe2+ iron oxide/hydroxides,
Al/Fe-OH, Mg-Fe-OH, Si-OH/SiO2 mineral groups in the Cu-Au mineralization belt and surrounding
areas, comprehensively. Fe3+/Fe2+ iron oxide/hydroxides and Si-OH/SiO2 were also detected in the
contact between sedimentary successions and metamorphic and meta-igneous rocks, orthogneiss,
and quartz diorite. Intense concentration of iron oxide/hydroxides and Si-OH/SiO2 was identified
within documented rust zones (Cu-Au mineralization).
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Furthermore, fraction abundance of hematite, jarosite, biotite, muscovite, chlorite, epidote,
chalcedony, and opal was detected in the Cu-Au mineralization belt and surrounding areas using the
VNIR + SWIR bands of ASTER. Hence, the rust zones contain the assemblage of hematite/jarosite,
chalcedony/opal, and chlorite/epidote with little amount of muscovite/kaolinite. Using the WV-3 dataset,
Fe3+ and Fe2+ iron oxides and ferric and ferrous silicates were broadly mapped and discriminated
in the southern part of the Cu-Au mineralization belt. High to moderate spatial distribution of Fe3+

and Fe2+ iron oxides and ferric silicates were detected in the rust zones. Strong fraction abundance of
hematite, jarosite, and ferric silicates was also mapped in the rust zones. The virtual verification shows
an appropriate overall accuracy and reasonable rate of agreement for mapping alteration mineral zones
using image processing techniques and remote sensing multispectral/multi-sensor satellite imagery.
Consequently, high potential zones for Cu-Au prospecting were identified in the IMB, Northwest
Greenland, including (i) the boundaries between the Etah metamorphic and meta-igneous complex
rocks and sedimentary successions of the Franklinian Basin in the Central Terrane, (ii) orthogneiss in
the northeastern part of the Cu-Au mineralization belt adjacent to Dallas Bugt, and (iii) the southern
part of the Cu-Au mineralization belt nearby Marshall Bugt. It is recommended that these high
prospective zones be considered for future comprehensive fieldwork and detailed geophysical and
geochemical surveys in the IMB, Northwest Greenland. This investigation suggests the necessity
of multispectral/multi-sensor satellite image processing analysis as a cost-effective tool for mining
companies for reconnaissance stages of mineral prospecting before costly fieldwork, geophysical,
and geochemical surveys in remote and inaccessible metallogenic provinces around the world.
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