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Abstract: Listvenites normally form during hydrothermal/metasomatic alteration of mafic and
ultramafic rocks and represent a key indicator for the occurrence of ore mineralizations in orogenic
systems. Hydrothermal/metasomatic alteration mineral assemblages are one of the significant
indicators for ore mineralizations in the damage zones of major tectonic boundaries, which can be
detected using multispectral satellite remote sensing data. In this research, Advanced Spaceborne
Thermal Emission and Reflection Radiometer (ASTER) multispectral remote sensing data were used
to detect listvenite occurrences and alteration mineral assemblages in the poorly exposed damage
zones of the boundaries between the Wilson, Bowers and Robertson Bay terranes in Northern Victoria
Land (NVL), Antarctica. Spectral information for detecting alteration mineral assemblages and
listvenites were extracted at pixel and sub-pixel levels using the Principal Component Analysis
(PCA)/Independent Component Analysis (ICA) fusion technique, Linear Spectral Unmixing (LSU)
and Constrained Energy Minimization (CEM) algorithms. Mineralogical assemblages containing
Fe2+, Fe3+, Fe-OH, Al-OH, Mg-OH and CO3 spectral absorption features were detected in the damage
zones of the study area by implementing PCA/ICA fusion to visible and near infrared (VNIR)
and shortwave infrared (SWIR) bands of ASTER. Silicate lithological groups were mapped and
discriminated using PCA/ICA fusion to thermal infrared (TIR) bands of ASTER. Fraction images of
prospective alteration minerals, including goethite, hematite, jarosite, biotite, kaolinite, muscovite,
antigorite, serpentine, talc, actinolite, chlorite, epidote, calcite, dolomite and siderite and possible
zones encompassing listvenite occurrences were produced using LSU and CEM algorithms to ASTER
VNIR+SWIR spectral bands. Several potential zones for listvenite occurrences were identified,
typically in association with mafic metavolcanic rocks (Glasgow Volcanics) in the Bowers Mountains.
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Comparison of the remote sensing results with geological investigations in the study area demonstrate
invaluable implications of the remote sensing approach for mapping poorly exposed lithological
units, detecting possible zones of listvenite occurrences and discriminating subpixel abundance of
alteration mineral assemblages in the damage zones of the Wilson-Bowers and Bowers-Robertson
Bay terrane boundaries and in intra-Bowers and Wilson terranes fault zones with high fluid flow.
The satellite remote sensing approach developed in this research is explicitly pertinent to detecting
key alteration mineral indicators for prospecting hydrothermal/metasomatic ore minerals in remote
and inaccessible zones situated in other orogenic systems around the world.

Keywords: Bowers Terrane; listvenite; hydrothermal/metasomatic alteration minerals; damage zones;
ASTER; Northern Victoria Land; Antarctica

1. Introduction

Hydrothermal/metasomatic alteration mineral assemblages are one of the significant indicators for
ore mineralizations in the damage zones of lithotectonic units in orogenic systems [1–3]. They can be
detected and mapped by the application of multispectral satellite remote sensing data [4–12]. Listvenite
is a metasomatic rock composed of variable amounts of quartz, magnesite, ankerite, dolomite, sericite,
calcite, talc and sulfide minerals. It is formed by interaction of mafic and ultramafic rocks with low to
intermediate temperature CO2- and S-rich fluids, and is commonly found along the major fault and
shear zones at terrane boundaries or major tectonic units in orogenic systems [13–16]. As such, listvenite
is spatially associated with ophiolites, greenstone belts and suture zones in orogenic belts [17–24].
Listvenite occurrences are considered to represent key indicators for certain mineral associations
connected with ore mineralizations such as gold and other hydrothermal deposits like Ag, Hg, Sb, As,
Cu, Ni, Co, as well as magnesite and talc [14,18,20,25,26].

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) multispectral
remote sensing satellite data provide appropriate spatial, spectral and radiometric resolutions
suitable for mapping hydrothermal/metasomatic alteration mineral assemblages [6–12,27–31].
Iron oxide/hydroxide, hydroxyl-bearing and carbonate mineral groups present diagnostic spectral
absorption features due to electronic processes of transition elements (Fe2+, Fe3+ and REE) and
vibrational processes of fundamental absorptions of Al-OH, Mg-OH, Fe-OH, Si-OH, CO3, NH4 and
SO4 groups in the visible and near infrared (VNIR) and shortwave infrared (SWIR) regions [32–35].
These mineral groups can be detected using three VNIR (from 0.52 to 0.86 µm; 15-m spatial resolution)
and six SWIR (from 1.6 to 2.43 µm; 30-m spatial resolution) spectral bands of ASTER [36,37].
Additionally, thermal infrared bands (TIR; 8.0–14.0 µm; 90-m spatial resolution) of ASTER are
capable of discriminating silicate lithological groups due to different characteristics of the emissivity
spectra derived from Si–O–Si stretching vibrations in the TIR region [36,38–42]. Accordingly, ASTER
remote sensing satellite datasets are particularly useful for the detection of listvenites and alteration
mineral assemblages occurring in damage zones of terrane and major tectonic boundaries in orogens
around the world. However, only a few studies exist, which used ASTER remote sensing data for the
regional mapping of listvenite occurrences, such as Rajendran et al. [43], who used ASTER VNIR+SWIR
spectral bands for the detection of listvenites along the serpentinite–amphibolite interface of the Semail
Ophiolite in the Sultanate of Oman.

In Northern Victoria Land (NVL) of Antarctica, the widespread occurrence of listvenites was
documented as one of the main types of hydrothermal/metasomatic fault-related rocks in the
damage zones between the Wilson Terrane (WT) and the Bowers Terrane (BT) (Figures 1 and 2) [44].
Thisboundary coincides with the Lanterman suture zone, where mafic and ultramafic rocks with
indications of UHP (ultrahigh pressure) metamorphism implies ancient subduction processes at
the palaeo-Pacific active continental margin of East Gondwana during the Late-Ediacaran to Early
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Paleozoic Ross Orogeny [45–48]. Structural investigations in the poorly exposed damage zones of the
terrane boundaries reveal that the dominant features are (i) steeply dipping reverse and strike-slip
faults; (ii) diffuse veining; and (iii) hydrothermal/metasomatic alteration mineral assemblages and
listvenites (Figure 2) [47,49–51].
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Figure 2. (A) Sketch map with the location of the fault (damage) zones where the hydrothermal
alteration and veining is more intense (modified from [51]). (B) Sketch map of lithological-mineralogical
sequences in the damage (fault) zone at the boundary of WT and BT (modified from [44]).

Another occurrence of listvenites was reported from the upper Dorn Glacier at the eastern side
of the northern Bowers Mountains only a few km west of the BT-RBT boundary represented by the
Millen Schist Belt [1,50]. In the aforementioned paper, the authors reported gold mineralization in
the listvenite bodies and the surrounding hydrothermal alteration mineral zones. The gold-bearing
quartz veins (Dorn lodes) are hosted by hydrothermally altered rocks (approximately up to 300 m
wide), which are mainly characterized by variable amounts of ankerite, muscovite, chlorite, pyrite and
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arsenopyrite. The mineralization is located in a brittle-ductile reverse high-strain shear zone in lower
greenschist facies metavolcanic and metasedimentary rocks [1].

Recently, remote sensing studies have been conducted by Pour et al. [6,7] for regional-scale
lithological mapping in NVL and local-scale alteration mineral mapping in the Morozumi Range and
Helliwell Hills areas of the WT. However, no comprehensive remote sensing study is yet available
for the boundary region between the WT and the BT further to the east, where listvenite bodies, in
particular, occur in the damage zones. Consequently, the main objectives of this study are: (i) to extract
spectral information directly from ASTER image spectra at pixel and sub-pixel levels for detecting
alteration mineral assemblages and listvenites in the damage (fault) zones particularly of the WT-BT
boundary using a series of specialized/standardized image processing algorithms; (ii) to prospect
listvenite occurrences in the poorly exposed damage zones of the WT-BT boundary; (iii) to verify
and compare ASTER image processing results with available field and laboratory data collected from
the fault zones of the WT-BT boundary; and (iv) to test the results of the listvenites along the WT-BT
terrane on particular listvenite occurrences in intra-BT fault zones in the northern Bowers Mountains
and thus its general potential in detecting similar synorogenic mineral alteration zones in NVL and
other orogens around the world.

2. Geological Setting of NVL and the Bowers Terrane

Northern Victoria Land (NVL) is composed of three NW-trending litho-tectonic units or terranes of
late Proterozoic–Ordovician age, which are from west to east (i) the Wilson Terrane (WT), (ii) the Bowers
Terrane (BT), and (iii) the Robertson Bay Terrane (RBT) (Figures 1 and 2) [53–55]. They are generally
interpreted to have formed during west-directed subduction processes at the palaeo-Pacific active
continental margin of East Gondwana during the Latest Ediacaran to Early Palaeozoic Ross Orogeny [45].
The WT encompasses polydeformed low- to high-grade (up to granulite facies) metasedimentary
sequences intruded by the Granite Harbour Igneous Complex (calc-alkaline plutons with magmatic arc
affinity of the latest Ediacaran to Cambro-Ordovician age) [45,56–58]. The BT comprises very low-grade
to low-grade (prehnite-pumpellyite to lower-greenschist facies) metavolcanic and metasedimentary
rocks, which are considered to be an intra-oceanic arc complex [59,60] or a fore-arc volcanic complex
at the Ross-orogenic active continental margin [54]. The RBT is a very low- to locally in its western
part low-grade (zeolite to prehnite-pumpellyite facies) turbidite sequence, which is interpreted as a
synorogenic sedimentary pile in an accretionary environment [61–63]. The tectonic boundary between
the WT and the BT is generally referred to as the Lanterman Fault Zone (LaFZ), whereas the Leap Year
Fault Zone (LYFZ) separates the BT from the RBT by the strongly sheared Millen Schist Belt (Figures 1
and 2) [47,64,65]. These fault zones represent long-lived structures in the structural edifice of NVL,
which were repeatedly reactivated [66].

After the Ross orogeny, the three terranes were intruded by Devonian/Carboniferous
calcalkaline intrusions (Admiralty Intrusives) and associated felsic volcanics (Gallipoli Volcanics) [67].
A subsequent erosion/exhumation phase produced a regional peneplain surface, on which the
Late Carboniferous-Early Jurassic terrestrial sedimentary sequence of the Beacon Supergroup was
deposited [68,69]. This was followed by tholeiitic magmatism of late Early Jurassic age (Ferrar Dolerite
and Kirkpatrick Basalt) [70]. The Cenozoic tectonics in NVL is predominantly linked to the development
of the West Antarctic Rift System (WARS), which involved repeated reactivation of the former Paleozoic
discontinuities of the NVL crust [66,71,72]. The Cenozoic transtensional structures influenced the
emplacement of alkaline magmatic rocks of the McMurdo Igneous Complex (see Figure 1) [60].

The BT consists of three lithostratigraphic sequences of likely Cambrian to Ordovician in age,
including from bottom to top the Sledgers, the Mariner, and the Leap Year groups, respectively [73].
The Sledgers Group includes: (i) the Glasgow Volcanics with basalts, spilites, volcanic breccia and tuffs
and (ii) the Molar Formation with sandstone, conglomerate, mudstone and subordinate limestone.
The Mariner Group comprises a regressive sequence of shallow marine sandstone, subordinate
conglomerate, mudstone and limestone. The Leap Year Group consists of quartz-rich sandstone and
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conglomerate [74–76]. Figure 2B shows a schematic section of the WT-BT boundary, the strip close to
the contact with the metaconglomerates on the BT side is characterized by xenolithic blocks of eclogite,
amphibolite, serpentinite and listvenite as the main lithologies [77]. The metamorphic grade in the WT
ranges from greenschist to amphibolite and up to the granulite facies, which is notably higher and
more diverse than the entire BT. In the BT, higher metamorphic grades, including HP metamorphism,
are confined only to the proximity of the Lanterman suture zone at the tectonic boundary between the
WT and the BT [45,46,78].

3. Materials and Methods

3.1. ASTER Data Characteristics and Pre-processing

Twelve ASTER level 1T (Precision Terrain Corrected Registered At-Sensor Radiance) scenes
obtained from U.S. Geological EROS (http://glovis.usgs.gov/) were used for mapping the poorly
exposed damage zones of the WT-BT boundary. Table 1 shows the dataset characteristics of the ASTER
images used in this research. Atmospheric correction was applied to the ASTER data using Fast
Line-of-sight Atmospheric Analysis of Spectral Hypercube (FLAASH) algorithm [79,80], which is
available in the ENVI (Environment for Visualizing Images, http://www.exelisvis.com) version 5.2
software package. The Sub-Arctic Summer (SAS) atmospheric and the Maritime aerosol models were
used for running the FLAASH algorithm [81]. Crosstalk correction is required before processing
of ASTER data to remove the influences of energy overflow from band 4 into bands 5 and 9 [82].
Hence, it was implemented with respect to the ASTER SWIR bands used in this research. The ASTER
images were pre-georeferenced to the UTM zone 58 South projection using the WGS-84 datum and
rotated to the north up to the UTM projection. Furthermore, the 30-m-resolution SWIR bands were
re-sampled to have spatial dimensions of 15 m (corresponding to the VNIR 15-m resolution) using
the nearest neighbour re-sampling technique for producing a stacked layer of VNIR+SWIR bands.
A masking procedure was used to remove the snow/ice, cloud and shadow by applying the Normalised
Difference Snow Index (NDSI) [7,30,83,84]. Radiance at the sensor TIR data without atmospheric
corrections was used in this analysis for retaining the original radiance signature. The digital number
(DN) value of each pixel in level 1T data at band i (i = 10–14) is linearly converted to radiance registered
at the sensor (Lsen) (Wm−2

·Sr−1
·µm−1) [41,42], by the application of Equation (1):

Li
sen = cofi

× (DNi
− 1) (1)

where, cof 10 = 0.006882, cof 11 = 0.006780, cof 12 = 0.006590, cof 13 = 0.005693, and cof 14 = 0.005225.

Table 1. The dataset characteristics of ASTER images used in this research.

Granule ID Date and Time of
Acquisition Path/Row Cloud

Coverage
Sun

Azimuth
Sun

Elevation

AST_L1T_00312282003214501 2003/01/01, 21:45:01 66/110 1% 55.417 34.625
AST_L1T_00301012003215056 2003/01/01, 21:51:05 66/110 2% 56.520 34.555
AST_L1T_00301012003215105 2003/01/01, 21:51:05 66/111 1% 56.972 34.077
AST_L1T_00301012003215114 2003/01/01, 21:51:14 66/111 1% 57.568 33.573
AST_L1T_00301192003213854 2003/01/19, 21:38:54 66/111 3% 61.896 29.830
AST_L1T_00301192003213845 2003/01/19, 21:38:45 66/111 1% 61.357 30.402
AST_L1T_00312022006215521 2006/12/02, 21:55:21 67/110 1% 52.247 34.707
AST_L1T_00312022006215530 2006/12/02, 21:55:30 67/110 3% 52.693 34.114
AST_L1T_00312022006215539 2006/12/02, 21:55:39 67/111 5% 53.417 33.845
AST_L1T_00301022005221335 2005/01/02, 22:13:35 68/110 1% 52.821 35.641
AST_L1T_00301022005221344 2005/01/02, 22:13:44 68/110 2% 53.395 35.254
AST_L1T_00301022005221353 2005/01/02, 22:13:53 68/111 4% 53.756 35.665

http://glovis.usgs.gov/
http://www.exelisvis.com
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3.2. Image Processing Algorithms

Spectral information for detecting alteration mineral assemblages and listvenites in the damage
zones of the WT-BT boundary were extracted at pixel and sub-pixel levels using specialized/standardized
image processing algorithms. For regional-scale mapping of the WT-BT boundary, pixel-based
algorithms, including Principal Component Analysis (PCA) and Independent Component Analysis
(ICA) were used. Sub-pixel-based algorithms, namely Linear Spectral Unmixing (LSU) and Constrained
Energy Minimization (CEM), were applied for detailed mapping in some selected subsets of the damage
zones at local scale. Figure 3 shows an overview of the BT and surrounding area (the coverage of
ASTER images used in this study), along with six selected subsets of the fault zones (zones 1–6) for
detailed mineral mapping. A flowchart of the methodology used in this research is shown in Figure 4.
For processing the datasets, the ENVI (Environment for Visualizing Images, http://www.exelisvis.com)
version 5.2 and ArcGIS version 10.3 (Esri, Redlands, CA, USA) software packages were used.
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techniques can be found in ENVI Tutorials. Research Systems, Inc., Boulder, CO [81].

3.2.1. Spectral Information Extraction at the Pixel Level

A fusion of PCA and ICA algorithms was implemented to the ASTER VNIR+SWIR and TIR
datasets for extracting image spectra at the pixel level to map poorly exposed lithologies and alteration
mineral assemblages. The PCA technique selects uncorrelated linear combinations (Eigenvector
loadings) of variables in such a way that each component successively extracted linear combination
and contains a smaller variance [85–88]. The Eigenvector loadings contain important information for
identifying hydrothermal/metasomatic alteration mineral assemblages. By computing the correlation
of each band k with each component p, it is possible to determine how each band “loads” or are
associated with each principal component (Equation (A1), see Appendix A) [86].

A PC image with moderate to high eigenvector loading for the indicative bands (reflection and/or
absorption bands) of the mineral with opposite signs enhance that mineral [89]. If the loading is positive
in the reflection band of the mineral, the enhanced pixels related to the mineral will manifest as bright
pixels. On the contrary, if the loading is negative in the reflection band of the mineral, the enhanced
pixels related to the mineral will manifest as dark pixels [90]. Consequently, eigenvector loadings in
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each PCA will identify the PC image in which the spectral information of the specific alteration mineral
is loaded as bright or dark pixels [91]. The ICA is a statistical and computational technique for array
processing and data analysis, aiming at recovering unobserved signals or ‘sources’ from observed
mixtures, exploiting only the assumption of mutual independence between the signals [92,93]. It is
a method for separating the combinations with the most non-Gaussian possible probability density
functions from the more Gaussian signal mixtures [94,95]. These are identified as the “independent
components” (ICs) of the observations [96].

For pixel-based image spectra extraction, PCA analysis can remove correlations, but it is not
capable of omitting higher-order dependence. However, the ICA removes both correlations and
higher-order dependence. Accordingly, a fusion of PCA and ICA has great capability to identify
pixels related to poorly exposed lithologies and alteration minerals in the background of extensive
snow/ice cover (Antarctic environments). The PCA can be used to give weight to the components and
remove the correlation before applying ICA for revealing hidden factors. As a result, this fusion has a
great performance to identify the pixels containing the spectral signature of the alteration minerals
or mineral groups that are maximally independent of each other. In this study, four spatial subset
scenes (include six selected damage zones; see Figure 3) covering exposed lithologies in the WT-BT
boundary and intra-BT fault zones in the northern Bowers Mountains were selected for implementing
the PCA/ICA fusion technique. The performance characteristics of the technique are summarized
in Figure 4. The image eigenvectors were obtained for the PCA analysis using a covariance matrix
of VNIR+SWIR and TIR bands (Table A1; Table A2, see Appendix A). Subsequently, a forward ICA
rotation was applied to the PCs images (see Figure 4). The IC images were statistically examined
for each of the selected spatial subset scenes (Tables A1 and A2, see Appendix A). The ICs contain
maximally independent pixels of alteration minerals or mineral groups were selected to produce
Red-Green-Blue (RGB) color composite image maps.

3.2.2. Spectral Information Extraction at the Sub-pixel Level

The LSU and CEM algorithms were applied to VNIR+SWIR bands for detailed mapping of
alteration minerals and listvenites at the sub-pixel level in the six selected subsets of fault zones
(see Figure 3). The LSU is a sub-pixel sampling algorithm [97–99], the reflectance at each pixel of the
image is assumed to be a linear combination of the reflectance of each material (or end-member) present
within the pixel. The LSU is used to determine the relative abundance of end-members within a pixel
based on the end-members’ spectral characteristics. In this algorithm, it is assumed that the observed
pixel reflectance can be modeled as a linear mixture of individual component reflectance multiplied
by their relative proportions. Mathematically, the LSU can be represented as Equation (A2) [100]
(see Appendix A).

In this study, the Automated Spectral Hourglass (ASH) technique [81,101,102] was employed
to extract reference spectra directly from the ASTER image for producing fraction images of
end-members using the LSU. The ASH technique uses the spectrally over-determined data for
finding the most spectrally pure pixels (end-members) to map their locations and estimates their
sub-pixel abundances [81]. It includes several steps, namely: (i) the Minimum Noise Fraction
(MNF) [103,104]; (ii) the Pixel Purity Index (PPI) [105]; and (iii) automatic end-member prediction
from the n-Dimensional Visualizer [104,106]. The performance characteristics of MNF, PPI and the n-D
Visualizer used in this study are shown in Figure 4. The continuum-removal process was applied to the
extracted end-members for isolating their spectral features and putting them on a level playing field
so they may be intercompared. Continuum-removal and feature comparison is the key to successful
spectral identification [34,107,108].

The CEM is a target detection algorithm [109–111] that implements a partial unmixing of spectra
to estimate the abundance of user-defined end-member materials from a set of reference spectra
(either image or laboratory spectra) [112]. It specifically constrains the desired target spectra using a
Finite Impulse Response (FIR) filter [113,114], while minimizing effects caused by unknown background
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signatures [115,116]. Mathematical details of the CEM performance can be found in Chang et al. [112]
and Manolakis et al. [111]. For running the CEM, only prior knowledge of desired target spectra
(end-member materials) is needed. In this study, the reference spectra of some hydrothermal
alteration minerals (typically associated with listvenites) were selected from the USGS spectral library
(version 7.0; [117]) for executing the CEM. The performance characteristics of the CEM are summarized
in Figure 4. End-member spectra of goethite, hematite, jarosite, biotite, kaolinite, muscovite, antigorite,
serpentine, talc, actinolite, chlorite, epidote, calcite, dolomite, siderite and chalcedony were selected
and convolved to response functions of ASTER VNIR+SWIR bands (Figure 5). The end-member
spectra of the target minerals were used to generate fraction images of prospective alteration minerals
associated with listvenites in the poorly exposed fault zones along the WT-BT boundary and intra-BT
fault zones in the northern Bowers Mountains.
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Figure 5. Laboratory reflectance spectra of the selected alteration minerals resampled to response
functions of ASTER VINR+SWIR bands [117]. Cubes show the location of the ASTER VINR+SWIR
bands (B1 to B9) from 0.50 µm to 2.5 µm. (A) goethite; (B) hematite; (C) jarosite; (D) biotite; (E) kaolinite;
(F) muscovite; (G) antigorite; (H) serpentine; (I) talc; (J) actinolite; (K) chlorite; (L) epidote; (M) calcite;
(N) dolomite; (P) siderite; and (Q) chalcedony.

3.3. Fieldwork Data and Laboratory Analysis

Different locations of exhumed fault systems that are systematically associated with hydrothermal
alterations in the poorly exposed damage zones along the WT-BT and BT-RBT boundaries, as well
as along major faults and shear zones within the BT and in the easternmost WT along the Rennick
Glacier, were investigated. Geological field work was performed during various Italian (PNRA) and
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German Scientific Expeditions (GANOVEX) in Northern Victoria Land (NVL) and was particularly
conducted at several major outcrop sites in the Lanterman Range area, the Molar Massif, and the
Bowers Mountains, the Explorers Range on the Rennick Glacier side to the western part facing the
Lillie Glacier. Locations of alteration zones and listvenites were recorded using a Garmin Montana 608t
handheld GPS with an average accuracy of 5 m and an iPhone SE using GPS plus GLONASS (Table A3,
see Appendix A). Field photos were taken of exposed lithologies, hydrothermally fault-bounded altered
rocks and listvenites occurrences during most recent expeditions (2015–2016 and 2016–2017 summer
season) and several rock samples were also collected for laboratory analysis. The rock samples were
examined by optical microscopy of thin sections and investigated by X-ray diffraction (XRD) analysis
for determining their mineralogical composition. Mineral phases were investigated by a Philips
PW3710 X-Ray diffractometer (current: 20 mA, voltage: 40 kV, range 2θ: 5–80◦, step size: 0.02◦ 2θ,
time per step: 2 s) at DISTAV (University of Genova, Italy), which mounted a Co-anode, as in [49].
Acquisition and processing of the XRD data were carried out using the Philips High Score software
package. Additionally, confusion matrix (error matrix) and Kappa Coefficient were calculated for LSU
classification mineral maps versus field data (Table A4, see Appendix A).

4. Results

4.1. Regional Overview of the BT and Surrounding Areas

A regional view of the poorly exposed lithological units was generated for the BT and surrounding
areas using a mosaic of ASTER images (Figure 6). ASTER Fe-MI = (band 4/band 3) × (band 2/band
1), Al-OH-MI= (band 5 × band 7)/(band 6 × band 6) and Fe, Mg-OH-MI= (band 7 × band
9)/(band 8 × band 8) spectral-band ratio indices [7] were assigned to RGB color composite, respectively.
Spatial distribution of iron oxide/hydroxide minerals, Al-OH minerals and Fe,Mg-O-H minerals is
manifested by a variety of false color composite in the exposures (Figure 6). Exposed lithologies
with a high content of iron oxide/hydroxide minerals are represented as red, magenta and orange
colors. The Bowers Mountains and many other parts of the BT and neighbouring areas such as
Morozumi Range, Helliwell Hills and Lanterman Range contain a high surface abundance of iron
oxide/hydroxide minerals (red, magenta and orange pixels) (Figure 6). Regarding the geological maps of
the region, the lithological units in these zones mostly consist of the Wilson Terrane metamorphic rocks,
Granite Harbour Igneous Complex, metavolcanic rocks (Glasgow Volcanics), Admiralty Intrusives,
Ferrar Dolerite and Kirkpatrick Basalt.

Most of the sedimentary rock units in the study area comprise the Beacon Supergroup, Robertson
Bay Group, Molar Formation, Mariner Group and Leap Year Group, which appear in green and blue
colors (Figure 6). Generally, sedimentary rocks contain large amounts of Al-OH and Fe,Mg-O-H mineral
assemblages (detrital clay minerals). Very poorly exposed outcrops adjacent to the Morozumi Range,
Helliwell Hills and ANARE Mountains are represented as cyan color (Figure 6). The exposures in the
central part of the Mirabito Range, the southern part of the Alamein Range and the central-northern
part of the Everett Range are depicted as yellow color (Figure 6). This indicates that these exposures
mostly contain iron oxide/hydroxide minerals in association with Al-OH minerals. Some of the exposed
rocks in the southern and western parts of the Mirabito Range and the northern part of the ANARE
Mountains are manifested in purple color (Figure 6) due to the admixture of iron oxides/hydroxides
with Fe,Mg-O-H mineral groups.
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Figure 6. ASTER mosaic image of Fe-MI, Al-OH-MI and Fe,Mg-OH-MI as RGB color composite.
It shows exposed lithologies in the Bowers Terrane (BT) and surrounding areas. The locations of some
large mountain ranges are shown.

4.2. Alteration and Lithological Mapping in the Fault Zones at Regional Scale

The analysis of the eigenvector matrix for VNIR+SWIR bands (Table A1) and the visual examination
of the output IC images indicate the existence of maximally independent pixels related to alteration
minerals or mineral groups in some PCAs that contain unique contributions (magnitude and sign
of eigenvector loadings) of the minerals. The eigenvector loadings calculated for the spatial subset
covering zone 1 and the surrounding areas (Table A1A) reveal that PCA5 has a strong contribution of
band 1 (0.571038) and band 3 (−0.731120) with opposite signs. PCA6 shows moderate loadings of band
5 (−0.281197), band 6 (0.308307) and band 7 (0.264687) and strong loadings of band 8 (−0.553969) and
band 9 (0.588366), each with opposite signs. PCA7 contains strong weightings of band 5 (0.497821),
band 6 (−0.618179) and band 7 (0.507327) with opposite signs, and moderate to low weightings of band
8 (−0.246778) and band 9 (0.048065).

Iron oxide/hydroxide minerals (hematite, goethite, jarosite and limonite) exhibit diagnostic
absorption characteristics in band 1 (0.52–0.60 µm), band 2 (0.63–0.69 µm) and band 3 (0.78–0.86 µm)
of ASTER [31,118]. The Al-OH minerals (kaolinite, alunite and muscovite) contain absorption features
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in band 5 (2.145–2.185 µm), band 6 (2.185–2.225 µm) and band 7 (2.235–2.285 µm) of ASTER [119].
On the other hand, the Fe,Mg-O-H and CO3 minerals (chlorite, epidote and calcite) have distinctive
absorption features in band 8 (2.295–2.365 µm) and band 9 (2.360–2.430 µm) of ASTER [120,121].
Accordingly, PCA5, PCA6 and PCA7 have great potential to hold maximally independent pixels related
to iron oxide/hydroxide minerals, Al-OH minerals and Fe,Mg-O-H and CO3 minerals, which can be
specifically revealed using ICA analysis. Examination of the Z-Profiles (interactively plot the spectrum
for the pixel under the cursor [81]) of the output IC images indicated that the identified pixels are
independently and spectrally related to the indicated minerals.

PCA5, PCA7 and PCA6 were assigned to the RGB color composite for mapping iron
oxide/hydroxide minerals, Al-OH minerals and Fe,Mg-O-H and CO3 minerals, respectively. Figure 7A
shows the resultant image map for the spatial subset covering zone 1 and the surrounding areas.
Magenta, red, yellow and light yellow pixels predominate in the exposed zones, and green and blue
pixels are less in abundance (Figure 7A). Thus, iron oxide/hydroxide minerals have high surface
abundance in the exposed lithologies in zone 1. However, Al-OH minerals and Fe,Mg-O-H and CO3

mineral assemblages have low surface abundance and are generally associated with iron mineral groups
as magenta, yellow and light yellow pixels. With reference to the geological map of zone 1 and the
surrounding areas, the exposed lithological units mostly consist of Wilson Terrane metamorphic rocks,
Granite Harbour Igneous Complex, Beacon Supergroup and Ferrar Dolerite. Surface distribution of
iron oxide/hydroxide minerals (red and magenta pixels) is typically associated with the Ferrar Dolerite
and Granite Harbour Igneous Complex (Figure 7A), for instance, the exposures of Ferrar Dolerite in the
northern part of the Alamein Range and the exposed zones of the Granite Harbour Igneous Complex
along the Hunter Glacier in the southern part of the Lanterman Range. The Al-OH and Fe,Mg-O-H
and CO3 minerals (green, blue, yellow and light yellow pixels) are mainly concentrated in exposures
of the Beacon Supergroup and Wilson Terrane metamorphic rocks (particularly amphibolite-facies
metasedimentary rocks).

Table A1B shows the eigenvector loadings for the spatial subset covering zones 2 and 3. PCA3
shows strong contributions of band 1 (−0.470308) and band 3 (0.711152) with opposite signs. PCA6
contains strong loadings of band 8 (0.440341) and band 9 (−0.347880) with opposite signs. PCA7 has
strong to moderate contributions of band 5 (0.612809), band 6 (−0.398723) and band 7 (0.186662) with
opposite signs, and strong loadings of band 8 (0.403665) and band 9 (−0.344018). Considering the
eigenvector loadings in PCA7, this PCA contains the contribution of both Al-OH and Fe,Mg-O-H
and CO3 mineral groups. ICA rotation is able to separate maximally independent pixels related to
two different mineral groups. Therefore, PCA3, PCA7 and PCA6 were selected for ICA rotation
and subsequent generation of an RGB color composite to detect iron oxide/hydroxide, Al-OH and
Fe,Mg-O-H and CO3 minerals, respectively. Figure 7B displays the resultant image map for the
spatial subset covering zones 2 and 3. Several types of mineral assemblages are detected. Prevalent
distribution of iron oxide/hydroxide minerals (red and magenta pixels) is associated with most of the
exposures, while Al-OH minerals (green pixels) and Fe,Mg-O-H and CO3 minerals (blue pixels) are
specifically predominant in some exposed zones. The admixture of the mineral groups (yellow and
cyan pixels) is also observable in some small exposures (Figure 7B). Comparison with the geological
map of the study zones indicates that iron oxide/hydroxide minerals are typically associated with
exposures of the Granite Harbour Igneous Complex of the WT, Glasgow metavolcanic rocks of the BT,
Robertson Bay Group of the RBT and Admiralty Intrusives. The Al-OH minerals and Fe,Mg-O-H and
CO3 minerals characterize the exposed zones of metasedimentary rocks (the Molar Formation, Mariner
Group and Leap Year Group) of the BT, Wilson Terrane metamorphic rocks and Ferrar Dolerite.
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covering zones 2 and 3; (C) Spatial subset covering zone 4 and surrounding areas; and (D) Spatial
subset covering zones 5 and 6.

Considering eigenvector loadings for the spatial subset covering zone 4 and surrounding areas
(Table A1C), it is evident that PCA4, PCA5 and PCA6 contain spectral information to identify iron
oxide/hydroxide, Al-OH and Fe,Mg-O-H and CO3 mineral groups at the pixel level. PCA4 shows
strong weightings of band 1 (0.646205) and band 3 (−0.741104) with opposite signs. PCA5 has strong to
moderate contributions of band 5 (0.617458), band 6 (0.257579) and band 7 (−0.353971) with opposite
signs. PCA6 contains strong loadings of band 8 (0.722429) and band 9 (−0.484494) with opposite signs
(Table A1C). Therefore, the ICA rotation and subsequent RGB color composite were applied to PCA4,
PCA5 and PCA6 for mapping the iron oxide/hydroxide, Al-OH and Fe,Mg-O-H and CO3 mineral
groups, respectively. Figure 7C displays the resultant image map for the spatial subset covering zone
4 and the surrounding areas. The iron oxide/hydroxide mineral group appears as red and magenta
color pixels, which mainly predominate in exposed lithologies associated with the Litell Rocks region
(consists of Kirkpatrick Basalts/Ferrar Dolerite) in the south-western part of the image. The Al-OH
mineral group is represented as green and cyan color pixels, which are associated with exposed rocks
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in the Bowers Mountains (Figure 7C). Conceivably, they are exposures of the Molar Formation and the
Mariner Group that contain a high content of clay minerals. The Fe,Mg-O-H and CO3 minerals manifest
in blue color pixels, which have low surface abundance in the study zone. However, they are generally
associated with iron oxide/hydroxide minerals in several exposed zones (Figure 7C). The exposures
could possibly contain a high content of Fe,Mg-O-H and iron oxide/hydroxide minerals in the Bowers
Mountains are Glasgow metavolcanic rocks of the BT. The Autobahn Moraine is a prominent and
linear large moraine stretching over several 10s of kilometres along the Rennick Glacier [122]. The iron
oxide/hydroxide and Al-OH mineral groups are mapped in the Autobahn Moraine (the central part of
Figure 7C).

Analysing the eigenvector loadings for the spatial subset covering zones 5 and 6 (Table A1D)
indicate that PCA4 has strong contribution of band 1 (−0.576526) and band 3 (0.760114), PCA6 contains
strong loadings of band 8 (−0.676196) and band 9 (0.342499) and PCA7 shows strong weightings of
band 5 (0.454540), band 6 (−0.555810) and band 7 (0.600908). Thus, PCA4, PCA7 and PCA6 were
selected for the ICA rotation and were subsequently assigned to an RGB color composite for identifying
iron oxide/hydroxide, Al-OH and Fe,Mg-O-H and CO3 mineral groups. Figure 7D shows the resultant
image map for the spatial subset covering zones 5 and 6, which covers the Bowers Mountains, Millen
Schist and Robertson Bay Terrane (RBT) from west to east. Magenta, red, yellow and green pixels
govern most of the exposures, while blue pixels are much less abundant. Hence, iron oxide/hydroxide
and Al-OH mineral groups and their admixture are dominant mineral assemblages in the study zone.
The Glasgow Volcanics, the Molar Formation, Millen Schist, Robertson Bay Group and Admiralty
Intrusives are exposed in zones 5 and 6 with reference to the geological map. It is discernible that the
exposures of Glasgow Volcanics and Admiralty Intrusives contain a high surface distribution of iron
oxide/hydroxide with some admixture of Al-OH minerals, which appear as magenta, red and yellow
pixels in Figure 7D. The Molar Formation, Millen Schist and Robertson Bay Group appear in green
color pixels due to the high content of Al-OH mineral assemblages (Figure 7D).

TIR radiation has been stated to be a function of temperature and emissivity [38,123]. In the
ASTER TIR dataset, bands 10, 11 and 12 comprise spectral emissivity and temperature information,
while in bands 13 and 14, surface temperature dominates the spectral emissivity information [7,123].
Additionally, ultramafic/mafic rocks (gabbro, dolerite and dunite; 40–45% SiO2) show high spectral
emissivity in bands 10 to 12 (8–9 µm) and low emissivity in bands 13 and 14 (10–12 µm), as well as high
surface temperature due to low albedos and low thermal inertia [41,42,123–125]. Felsic rocks (granite and
granitoid; 60–80% SiO2) show low spectral emissivity in bands 10 to 12 and high emissivity in bands
13 and 14, as well as low surface temperatures attributable to high albedos [41,42,123,124]. In view
of this, ASTER TIR bands incorporate maximally independent pixels related to ultramafic-to-mafic,
intermediate and felsic lithological units, which can be specifically detected using PCA/ICA analysis.

The analysis of the eigenvector matrix for TIR bands in Table A2 shows unique contributions of
eigenvector loadings (magnitude and sign) in some specific PCAs. The Z-Profiles of detected pixels
indicate distinctive spectral emissivity features related to different lithological units (ultramafic, mafic,
intermediate and felsic rocks) in the output IC images. Table A2A shows eigenvector loadings for
the spatial subset of zone 1 and the surrounding areas. PCA2 shows strong contributions of band
12 (−0.793719) and band 14 (0.566669) with opposite signs. PCA3 contains strong loadings of band
10 (−0.639764) and band 11 (−0.511314) with negative signs and band 14 (0.432023) with a positive
sign. PCA4 has strong weightings of band 10 (0.630731) and band 11 (−0.744700) with opposite signs.
Considering the characteristics appearing in the eigenvector loadings (Table A2A), PCA2 contains
maximally independent pixels related to ultramafic-to-mafic units, while PCA3 and PCA4 include the
independent pixels of intermediate and felsic units.

The RGB color composite was generated for the zone 1 and the surrounding areas after ICA
rotation of PCA2, PCA4 and PCA3 for mapping maximally independent pixels of ultramafic/mafic,
felsic and intermediate lithological units, respectively (Figure 8A). The image map contains red,
magenta, yellow, light yellow and green pixels. Comparison with the geological map indicates that
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red and magenta pixels generally match the Wilson Terrane metamorphic rocks and Ferrar Dolerite,
which are composed of ultramafic-to-mafic lithological units. The yellow and light yellow pixels
match well with exposures of the Granite Harbour Igneous Complex (Figure 8A). The green pixels
match the Beacon Supergroup (arkosic quartz sandstone). The intermediate trend can be expected
with the quartz-rich/feldspar-rich rocks (granite and granitoid), while the felsic trend is correlated with
quartz-rich rocks (quartzose sedimentary rocks) due to the high content of SiO2 and spectral property
of quartz [42,124].

Based on the eigenvector loadings for the spatial subset of zones 2 and 3 (Table A2B), PCA2 shows
strong positive loading of band 12 (0.733503) and strong negative loading of band 14 (−0.567605);
PCA3 contains strong negative contribution of band 10 (−0.739002) and strong positive contribution
of band 12 (0.467340); and PCA4 has strong negative weighting of band 10 (−0.528835) and strong
positive weighting of band 11 (0.806255). Hence, PCA2, PCA3 and PCA4 images comprise maximally
independent pixels related to ultramafic-to-mafic, intermediate and felsic lithological units, respectively.
These PCA images were selected for ICA rotation and a false-color composite image map was generated
by allocating red color to ultramafic-to-mafic rocks (the ICA2 image), green color to felsic rocks (the ICA4
image) and blue color to intermediate rocks (the ICA3 image) (Figure 8B). Green, cyan, yellow and red
color pixels are depicted in the image map. Yellow pixels refer to combined mafic and felsic trends,
while cyan pixels contain felsic in the intermediate signature. With reference to the geological map of
the study area, red pixels are mainly associated with exposures of the Glasgow metavolcanic rocks of
the BT and Ferrar Dolerite; yellow pixels are mostly considered with exposed zones of the Granite
Harbour Igneous Complex and Wilson Terrane metamorphic rocks; green and cyan pixels are generally
represented in the exposures of metasedimentary rocks (the Molar Formation, Mariner Group and
Leap Year Group) of the BT, Robertson Bay Group and Admiralty Intrusives.

Table A2C shows the eigenvector matrix for the spatial subset covering zone 4 and the surrounding
areas. PCA2 has high eigenvector loadings in band 12 (0.734577) and band 14 (−0.594568) with opposite
signs. PCA3 shows a strong negative contribution of band 10 (−0.749770) and strong positive
contribution of band 12 (0.439774). PCA4 contain strong positive loading of band 10 (0.532694)
and high negative loading of band 11 (−0.814304). After ICA rotation, red, green and blue colors
were used to produce a false-color composite image map of the ICA2 (ultramafic-to-mafic rocks),
ICA4 (felsic rocks) and ICA3 (intermediate rocks). Figure 8C shows the resultant image map for zone 4
and the surrounding areas. Green, cyan, blue and red color pixels are observable. The concentration of
red pixels mostly corresponds with the Litell Rocks region (Ferrar Dolerite) and Glasgow metavolcanic
rocks, while green and cyan pixels are likely associated with metasedimentary rocks (Molar Formation,
Mariner Group and Leap Year Group) of the BT. Blue pixels are probably the admixture of the
metavolcanic and metasedimentary rocks in the Bowers Mountains, which show an intermediate trend
in the image map (Figure 8C). The green, red and magenta pixels that appear as long linear/curve
patterns in the central part of the image (corresponding with the Rennick Glacier) seem to be the
Autobahn Moraine [122].

Considering the eigenvector loadings for the spatial subset covering zones 5 and 6 (Table A2D),
PCA2 shows high weighting with a negative sign in band 12 (−0.765517) and great contribution with
a positive sign in band 14 (0.585714). PCA3 has strong loading of band 10 (0.667689) and band 12
(−0.419996) with opposite signs. PCA4 contains a strong contribution of band 10 (0.605752) with
a positive sign and high loading of band 11 (−0.766295) with a negative sign. The ICA rotation
was applied to PCA2, PCA3 and PCA4. Accordingly, the ICA2, ICA4 and ICA3 were assigned to
RGB false-color composite for mapping ultramafic-to-mafic rocks, felsic rocks and intermediate rocks,
respectively. Figure 8D shows the resulting image map of the selected zone. Red and magenta pixels are
mainly associated with the exposure of the Glasgow Volcanics, which are mainly mafic in composition.
Yellow pixels with an intermediate composition likely correspond to the exposed zones of Admiralty
Intrusives and the admixture of the metasedimentary and metavolcanic rocks of the Bowers Mountains.
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Green and cyan pixels reflect felsic lithologies that typically characterize the Molar Formation, Millen
Schist and Robertson Bay Group exposures (Figure 8D).
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Figure 8. ASTER image maps derived from the ICA rotation and subsequent RGB color composite to
TIR bands. (A) Spatial subset covering zone 1 and surrounding areas; (B) Spatial subset covering zones
2 and 3; (C) Spatial subset covering zone 4 and surrounding areas; and (D) Spatial subset covering
zones 5 and 6.

4.3. Detection of Hydrothermal Alteration Minerals and Prospecting Listvenites in the Selected Subset of
Damage Zones

The LSU and CEM algorithms were used for sub-pixel level mapping of alteration mineral
assemblages and prospecting listvenites in the six selected subsets of damage (fault) zones (zones 1–6)
(see Figure 3). A set of unique pixels (corresponding to a pure end-member) was defined using the
n-Dimensional analysis technique for each selected subset. Figure 9 shows end-member (mean) spectra
extracted for each selected subset of the six study zones. Subsequently, end-member spectra extracted
for each selected subset from the apparent reflectance data were used to act as end-members for LSU
spectral mapping. Comparison with selected end-member reflectance spectra of minerals from the
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USGS spectral library that resampled to response functions of ASTER VINR+SWIR bands (see Figure 5)
indicates that the extracted end-members or a subset of the extracted end-members can be considered
for LSU classification.
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Figure 9. End-member (mean) spectra extracted from ASTER VINR+SWIR bands using the
n-Dimensional analysis technique for the six selected subsets of the damage (fault) zones. (A) Zone 1;
(B) Zone 2; (C) Zone 3; (D) Zone 4; (E) Zone 5; and (F) Zone 6. ASTER band center positions are shown
for the selected zones.

The spectral patterns are classified based on the relative absorption intensities. The most
dominant spectral patterns often characterize the most abundant minerals (spectrally dominant
species) in the rock, which could also be influenced by subordinate phases (spectrally less active
or less abundant groups). Generally, in a mineral mixture or association, the identification of
different mineralogical phases is complicated when more than one spectrally active mineral group is
present [126]. As a result, the extracted end-member spectra for the study zones could be classified to
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seven spectrally active groups based on Fe2+, Fe3+, Fe-OH, Al-OH, Mg-OH and CO3 spectral absorption
features, namely (i) goethite/hematite/jarosite group; (ii) kaolinite group; (iii) biotite/muscovite group;
(iv) chlorite/epidote/actinolite group; (v) serpentine/antigorite/talc group; (vi) calcite/dolomite/siderite
group; and (vii) unaltered/unknown mineral group.

Figure 9A shows extracted end-member spectra for the subset zone (1). Some obvious distinctions
between spectral signatures for a variety of minerals are recognizable especially for iron oxide/hydroxide,
kaolinite and biotite/muscovite groups. n-D class #1, n-D class #2, n-D class #8, n-D class #9 and
n-D class #10 typically represent iron oxide/hydroxide absorption characteristics. Goethite, hematite
and jarosite show strong Fe3+ and Fe-OH absorption features at 0.48 µm, 0.83–0.97 µm and 2.27 µm,
coinciding with bands 1, 3 and 7 of ASTER, respectively [6,33]. Thus, n-D class #1, n-D class #8 and
n-D class #10 can be attributed to jarosite (strong 2.27 µm; Fe-OH absorption) and n-D class #2 and n-D
class #9 could be considered for goethite and hematite (0.48 µm and 0.83–0.97 µm; Fe3+ absorption)
(Figure 9A). n-D class #3 and n-D class #7 can be grouped as unaltered/unknown minerals because these
classes do not show any distinctive absorption features related to hydrothermal alteration minerals. n-D
class #4 represents biotite due to major Mg,Fe-OH absorption near 2.30 µm and minor Fe3+ absorption
features at 0.85 µm [108,120], which correspond with bands 3 and 8 of ASTER (see Figure 5D). n-D
class #5 exhibits a distinct Al-OH absorption feature at 2.2 µm attributable to muscovite, coinciding
with band 6 of ASTER [32,119,121]. n-D class #6 contains Al-OH absorption features of kaolinite at
2.17 µm and 2.2 µm that correspond with bands 5 and 6 of ASTER [33,108,120].

The fraction images of end-members resulting from LSU analysis for zone (1) appear as a series
of greyscale rule images, one for each extracted end-member. High digital Number (DN) values
(bright pixels) in the rule image represent the subpixel abundance of the target mineral in each pixel
and map its location. Considering the resultant fraction images and extracted end-member spectra
for zone (1), it is evident that goethite, hematite, jarosite, biotite, muscovite and kaolinite are the
dominant minerals. For post classification of the fraction images, the rule image classifier tool was
applied using a maximum value option. It should be noted that in spectral mixture analysis, a material
with a spectral signature similar, but not identical, to that of an end-member can be modeled along
with that end-member and be mapped in that end-member’s fraction image [127]. For that reason,
the rule image classifier tool is not capable of assigning all end-member minerals into their different
classes. However, spectral signatures different from the background and other minerals can certainly be
discriminated and classified. Thus, the red color class was designated for the goethite/hematite/jarosite
group, the yellow color class was assigned to the biotite/muscovite group and the green color class was
selected for the kaolinite group. The unaltered/unknown mineral group was not considered for post
classification in the present study.

Figure 10A shows the LSU classification mineral map for zone (1). The results indicate that zone (1)
is spectrally governed by the goethite/hematite/jarosite group, while the biotite/muscovite and kaolinite
groups have a smaller contribution to the total mixed spectral characteristics. In zone (1), the Wilson
Terrane metamorphic rocks, Granite Harbour Igneous Complex, Beacon Supergroup and Ferrar Dolerite
are exposed. Therefore, a high surface abundance of iron oxide/hydroxide minerals is related to the
crystal-field transitions of iron ions (Fe+2 and Fe+3) in the primary mafic minerals (olivine, pyroxenes
and plagioclase) and/or the alteration of primary mafic minerals within mafic rock units such as
the Wilson Terrane metamorphic rocks and Ferrar Dolerite. Kaolinite high abundance zones are
mostly associated with the detrital clay minerals of the Beacon Supergroup. The biotite/muscovite
group seems to be a phyllic alteration zone associated with the Granite Harbour Igneous Complex.
Accordingly, the presence of listvenite bodies in zone (1) is slightly feasible.
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groups (concertation more than 10%) are depicted as colored pixels.

Analysis of the extracted end-member spectra for the subset zone (2) (Figure 9B) indicates
several distinguishable spectral signatures for the alteration minerals. Hematite, jarosite, kaolinite,
biotite, muscovite, actinolite, epidote and chlorite are recognizable (Figure 9B). n-D class #1 shows
the spectral characteristics of jarosite and n-D class #2 shows the distinctive absorption features of
kaolinite. n-D class #3 represents actinolite due to the iron absorption features in bands 2 and 3,
and Mg, Fe-OH absorption in bands 7 and 8 of ASTER (see Figure 5J). n-D class #4 and n-D class
#9 lack any distinct spectral features related to the alteration minerals, which can be considered an
unaltered/unknown mineral group in zone (2). n-D class #5 and n-D class #8 represent epidote and
chlorite because they display a slight iron absorption at 0.85–0.97 µm and a major Mg, Fe-OH absorption
at 2.30–2.35 µm [33,108,128], corresponding to bands 2, 3 and 8 of ASTER data, respectively [121].
n-D class #6 and n-D class #7 characterize muscovite and biotite, respectively. n-D class #10 can be
considered as mixed spectral features of goethite, hematite and jarosite.

Fraction images of end-members for zone (2) were classified using the rule image classifier
tool. The blue color class was assigned for chlorite/epidote/actinolite group and added to the
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previous classes for producing the LSU classification mineral map. Figure 10B shows the resultant
classification map for the subset of zone (2). Goethite/hematite/jarosite and chlorite/epidote/actinolite
groups show high surface abundance, whereas kaolinite and biotite/muscovite groups exhibit
moderate to less spectral contribution and spatial distribution in zone (2). The association of
goethite/hematite/jarosite and chlorite/epidote/actinolite groups is observable with exposures of the
Glasgow metavolcanic rocks and metasedimentary rocks (Molar Formation, Mariner Group and Leap
Year Group). Kaolinite, biotite/muscovite and iron oxide/hydroxide assemblages are associated with
the Granite Harbour Igneous Complex. The Wilson Terrane metamorphic rocks and Ferrar Dolerite
exposures are generally dominated by goethite/hematite/jarosite group, while the Beacon Supergroup is
governed by kaolinite group. For that reason, listvenite bodies could be located in a zone that spatially
contains all of the four alteration mineral assemblages. Please note that the large greenish-colored spot
in the area of the Sledgers Glacier is a dense crevasse field, which may contain contamination of clay
mineral groups (Figure 10B). Several prospect zones for listvenite bodies are identifiable in zone (2);
some of them are delimited by yellow rectangles in Figure 10B.

In zone (3), some spectral signatures related to alteration minerals such as goethite, hematite,
jarosite, kaolinite, biotite and muscovite are discernible (Figure 9C). n-D class #1, n-D class #4, n-D class
#8 and n-D class #9 can be considered to be an unaltered/unknown mineral group. They do not illustrate
any significant absorption features related to the target alteration minerals. n-D class #2 and n-D class #3
represent jarosite. Spectral signatures related to kaolinite, biotite and muscovite are apparent in n-D class
#5, n-D class #6 and n-D class #7, respectively. n-D class #10 can be characterized as having mixed spectral
features of hematite and goethite. Figure 10C displays the LSU classification mineral map for zone (3).
The goethite/hematite/jarosite and biotite/muscovite groups are spectrally predominant. The kaolinite
group shows very low surface abundance. Iron oxide/hydroxide and biotite/muscovite mineral groups
are concentrated in the exposures of the Glasgow metavolcanic rocks and metasedimentary rocks in
the Bowers Mountains. Small exposures of the Granite Harbour Igneous Complex and Admiralty
Intrusives contain kaolinite group minerals associated with iron oxide/hydroxide and biotite/muscovite
mineral groups, which can be attributed to the alteration products of argillic and phyllic alteration
zones. Hence, zone (3) has very low potential for containing listvenites.

Typical spectral signatures for a variety of mineral assemblages are decipherable for zone (4)
(Figure 9D). n-D class #1 represents antigorite, which contains Fe3+ absorption features and Mg,Fe-OH
absorption near 2.30 µm [128,129], coinciding with bands 2, 3 and 8 of ASTER (see Figure 5G). n-D class
#2 shows 0.48 µm and 0.83–0.97 µm Fe3+ absorption and seems to be a combined spectral signature
of goethite and hematite. The unaltered/unknown mineral group can be assigned to n-D class #3.
Serpentine shows spectral characteristics related to crystal-field transitions in the Fe2+ near 0.4 and 0.5
µm and Fe3+ near 0.65 µm and a combination of OH-stretching fundamental with the Al-OH-bending
and Fe,Mg-OH-bending modes near 2.20 and 2.30 µm [128,130,131]. Therefore, it seems that n-D class
#4 has a serpentine spectral signature, which displays distinctive absorption features in bands 2, 3, 7
and 8 of ASTER (see Figure 5H). n-D class #5 appears to be a combined spectral signature of muscovite
and biotite. n-D class #6 is characterized by chlorite and epidote spectral features. n-D class #7 can
be considered as a mixed spectral signature for calcite and dolomite. Broad Fe2+ absorption features
occur in calcite and dolomite spectra near 0.9–1.2 µm and vibrational processes of CO3 radical cause
absorption properties near 2.30–2.35 µm [132,133], which are equivalent to bands 4, 7 and 8 of ASTER.
n-D class #8 exhibits siderite due to absorption characteristics related to Fe2+, Fe3+ and CO3 in bands 2,
3, 7 and 8 of ASTER (see Figure 5P). n-D class #9 exhibits the kaolinite spectral signature, and n-D class
#10 can be considered to be a mixed spectral signature of hematite and jarosite.

Figure 10D shows the LSU classification mineral map for zone (4). Biotite/muscovite,
goethite/hematite/jarosite and chlorite/epidote/actinolite mineral groups are spectrally significant
and have high surface abundance. However, kaolinite, serpentine/antigorite/talc (cyan color class)
and calcite/dolomite/siderite (purple color class) mineral assemblages are weakly distributed in the
exposed zones. Since zone (4) covers the Bowers Mountains, biotite/muscovite mineral assemblages
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(yellow pixels) are likely associated with the Molar Formation and the Mariner Group metasedimentary
sequences that contain high contents of detrital clay minerals. Glasgow Metavolcanic rocks contain
goethite/hematite/jarosite and chlorite/epidote/actinolite mineral groups because of the alteration of
primary mafic mineral within basalts, spilites, volcanic breccia and tuffs. The Autobahn Moraine in
the Rennick Glacier [122] is mapped as green pixels in the southwestern part of zone (4) (Figure 4D).
Erratic metasedimentary or sedimentary rocks and detritus delivered to this moraine from the Bowers
Mountains and/or the Lanterman Range could possibly contain large amounts of kaolinite mineral
groups. Zone (4) is a highly likely prospective area for listvenites, where the most of the alteration
mineral groups are specifically concentrated and are associated particularly with the Glasgow Volcanics.
Some of the prospects in zone (4) are shown by yellow rectangles and circles in Figure 10D.

Deciphering the extracted end-member spectra for zone (5) reveals several distinct spectral
signatures for the alteration minerals (Figure 9E). n-D class #1 and n-D class #2 obviously represent
chlorite and epidote, respectively. n-D class #3 seems to be the combination of antigorite and talc spectral
signatures. Mixed spectra of biotite and muscovite can be seen in n-D class #4. Diagnostic absorption
features related to alteration minerals could not be realized in n-D class #5 (unaltered/unknown
mineral group). n-D class #6 characterizes actinolite spectral properties. n-D class #7 has the combined
spectra of hematite and jarosite. It seems that the spectral signatures of kaolinite are exhibited in
n-D class #8. Serpentine, antigorite and talc might display mixed spectral properties in n-D class
#9. n-D class #10 represents serpentine. Figure 10E shows the LSU classification mineral map for
zone (5). The goethite/hematite/jarosite, kaolinite and serpentine/antigorite/talc mineral groups are
considerably predominant. Conversely, biotite/muscovite and chlorite/epidote/actinolite mineral
assemblages show low spatial distributions and abundances in this zone. The association of iron
oxide/hydroxide, serpentine/antigorite/talc, chlorite/epidote/actinolite mineral assemblages are mostly
concentrated in the exposures of Glasgow Volcanics due to the alteration of mafic minerals within
meta-basalts, spilites, volcanic breccia and tuffs. Kaolinite is mostly associated with the Molar
Formation because of the high content of conglomerate and mudstone. Zone (5) may comprises several
listvenite occurrences especially associated with Glasgow Volcanics, where a high surface distribution
of serpentine/antigorite/talc group is detected with biotite/muscovite and iron oxide/hydroxide mineral
groups. Yellow rectangles and circles show some of the prospective zones (Figure 10E).

Analyzing the spectral signatures related to alteration minerals for zone (6) indicates the presence
of goethite, hematite, jarosite, biotite, muscovite, chlorite, actinolite, serpentine and talc (Figure 9F).
n-D class #1 shows chlorite. n-D class #2 and n-D class #4 may have mixed spectral signatures
related to goethite, hematite and jarosite. n-D class #3 and n-D class #8 do not have any indicative
absorption features related to alteration minerals and can be considered an unaltered/unknown mineral
group. Biotite and muscovite spectral characteristics can be found in n-D class #5 and n-D class
#6, respectively. n-D class #7 represents actinolite. n-D class #9 and n-D class #10 characterize
serpentine and talc. The LSU classification mineral map for zone (6) is shown in Figure 10F.
Iron oxide/hydroxides (goethite, hematite and jarosite) and chlorite/epidote/actinolite mineral
assemblages are spectrally major components, while biotite/muscovite and serpentine/antigorite/talc
mineral groups are minor components in this zone. The Glasgow Volcanics show high content
of iron oxide/hydroxides minerals, which are locally associated with chlorite/epidote/actinolite,
biotite/muscovite and serpentine/antigorite/talc mineral groups. Listvenite bodies could be found in
the local association of these mineral assemblages within Glasgow Volcanics exposures in the Bowers
Mountains. Several locations could be taken into consideration for listvenite occurrences, some of
which are demarcated by yellow rectangles and circles in Figure 10F.

The CEM algorithm was implemented to produce fraction images of selected end-member spectra
from the USGS spectral library, including goethite, hematite, jarosite, biotite, kaolinite, muscovite,
antigorite, serpentine, talc, actinolite, chlorite, epidote, calcite, dolomite, siderite and chalcedony
(see Figure 5). The subset of the zones (2), (4) and (5) was selected for running the CEM because they
exhibit a variation of mineral assemblages and several highly likely prospective zones for listvenite
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occurrences in the LSU classification mineral maps (see Figure 10B,D,E). The spatial subset of zone (2)
covering the Lanterman Range and surrounding areas was selected to present in this paper. Fraction
images of sixteen selected end-member minerals were produced using the CEM algorithm. Fractional
abundance of target end-member minerals appears as a series of greyscale rule images, one for each
selected mineral. Pseudo-color ramp of greyscale rule images was generated to illustrate high fractional
abundance (high DN value pixels) of the target minerals in zone (2) (Figure 11). This comfortably
distinguishes the contrast between subpixel targets and surrounding areas. This contrast expresses the
fractional abundance of the target mineral present in the rule image.

Remote Sens. 2019, 11, x FOR PEER  24 of 40 

 

some parts of zone (2) (Figure 11). Examination of the end-member spectra extracted from ASTER 
VINR+SWIR bands using n-Dimensional analysis for zone (2) indicates the presence of jarosite 
spectral characteristics as n-D class #1 and mixed spectral features of goethite, hematite and jarosite 
in n-D class #10 (see Figure 9B). Comparison of the fraction images of biotite and muscovite shows 
different spatial abundances and low combinations (Figure 11). Looking at the n-Dimensional 
analysis results for zone (2) shows the identification of spectral signatures for muscovite and biotite 
in n-D class #6 and n-D class #7, respectively (see Figure 9B). 

Fractional abundance of kaolinite exhibits comparable manifestation with the spatial abundance 
of muscovite in many parts (Figure 11). n-D class #2 derived from n-Dimensional analysis for zone 
(2) is considered to be kaolinite (see Figure 9B); however, the CEM results indicate that this n-D class 
can be a mixture of kaolinite and muscovite. Antigorite, serpentine and talc display fractional 
abundance analogous to actinolite (Figure 11). n-D class #3 extracted from n-Dimensional analysis 
for zone (2) represents actinolite due to some distinctive spectral signatures (see Figure 9B), which 
are very similar to spectral features of serpentine/antigorite/talc group (see Figure 5G–J). Hence, there 
may be some confusion between these minerals when using VINR+SWIR bands of ASTER, and their 
spectral signatures could appear in only one n-D class (n-D class #3) (see Figure 9B). Fractional 
abundances of chlorite and epidote show some small spatial differences and high combination. 
Considering n-D classes for zone (2) (see Figure 9B), n-D class #5 and n-D class #8 are determined to 
be epidote and chlorite, respectively. Fraction images of calcite, dolomite, siderite and chalcedony 
exhibit similar spatial abundance and high mixtures with each other, although siderite has a lower 
distribution in some places (Figure 11). With respect to n-D classes for zone (2) (see Figure 9B), there 
is a high probability that n-D class #4 can be considered to be the mixed spectral signatures of the 
calcite/dolomite/siderite group, which was previously considered an unaltered/unknown mineral 
group in zone (2). Please note that a high degree of spectral contrast is required to distinguish the 
end-member mineral from the background materials [127]. n-D class #9 (see Figure 9B) might have 
mixed spectral signatures of chalcedony with other minerals, which was formerly assigned to the 
unaltered/unknown mineral group in zone (2). This is due to the fact that all mixed-pixel spectra 
always lie on the line that connects the component spectra [111]. 

 
Figure 11. Fraction images of the selected end-member minerals derived from CEM algorithm for 
zone (2) covering the Lanterman Range and surrounding areas. Pseudo-color ramp was applied to 
greyscale rule images. 

Figure 11. Fraction images of the selected end-member minerals derived from CEM algorithm for zone
(2) covering the Lanterman Range and surrounding areas. Pseudo-color ramp was applied to greyscale
rule images.

Considering Fe2+, Fe3+, Fe-OH, Al-OH, Mg-OH, Si-OH and CO3 spectral absorption characteristics
of target minerals and the limitations of VNIR+SWIR ASTER spectral bands, seven groups of mineral
assemblages could also be discernible here. There might be some confusion for distinctive separation of
the absorption features (electronic transitions and molecular vibrational overtones) present in alteration
minerals using VNIR+SWIR spectral bands of ASTER, particularly when mixtures occur [134,135].
Therefore, some of the target alteration minerals may have a similar manifestation of the fractional
abundances in the CEM rule images. For iron oxide/hydroxide mineral group, fractional abundances
of goethite and hematite show almost similar appearance and high mixtures, while jarosite shows low
mixtures with them and different spatial fractional abundance in some parts of zone (2) (Figure 11).
Examination of the end-member spectra extracted from ASTER VINR+SWIR bands using n-Dimensional
analysis for zone (2) indicates the presence of jarosite spectral characteristics as n-D class #1 and mixed
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spectral features of goethite, hematite and jarosite in n-D class #10 (see Figure 9B). Comparison of the
fraction images of biotite and muscovite shows different spatial abundances and low combinations
(Figure 11). Looking at the n-Dimensional analysis results for zone (2) shows the identification of
spectral signatures for muscovite and biotite in n-D class #6 and n-D class #7, respectively (see Figure 9B).

Fractional abundance of kaolinite exhibits comparable manifestation with the spatial abundance
of muscovite in many parts (Figure 11). n-D class #2 derived from n-Dimensional analysis for zone (2)
is considered to be kaolinite (see Figure 9B); however, the CEM results indicate that this n-D class can
be a mixture of kaolinite and muscovite. Antigorite, serpentine and talc display fractional abundance
analogous to actinolite (Figure 11). n-D class #3 extracted from n-Dimensional analysis for zone
(2) represents actinolite due to some distinctive spectral signatures (see Figure 9B), which are very
similar to spectral features of serpentine/antigorite/talc group (see Figure 5G–J). Hence, there may be
some confusion between these minerals when using VINR+SWIR bands of ASTER, and their spectral
signatures could appear in only one n-D class (n-D class #3) (see Figure 9B). Fractional abundances
of chlorite and epidote show some small spatial differences and high combination. Considering n-D
classes for zone (2) (see Figure 9B), n-D class #5 and n-D class #8 are determined to be epidote and
chlorite, respectively. Fraction images of calcite, dolomite, siderite and chalcedony exhibit similar
spatial abundance and high mixtures with each other, although siderite has a lower distribution in some
places (Figure 11). With respect to n-D classes for zone (2) (see Figure 9B), there is a high probability
that n-D class #4 can be considered to be the mixed spectral signatures of the calcite/dolomite/siderite
group, which was previously considered an unaltered/unknown mineral group in zone (2). Please note
that a high degree of spectral contrast is required to distinguish the end-member mineral from the
background materials [127]. n-D class #9 (see Figure 9B) might have mixed spectral signatures of
chalcedony with other minerals, which was formerly assigned to the unaltered/unknown mineral
group in zone (2). This is due to the fact that all mixed-pixel spectra always lie on the line that connects
the component spectra [111].

4.4. Petrography and Mineralogy of Hydrothermal Alteration Minerals and Listvenites

Petrographic studies were carried out on samples of hydrothermally altered rocks from the
major damage zones of the terrane boundaries and along intra-terrane faults or shear zones.
The country rocks comprise low-grade metamorphic basalts and volcaniclastic rocks, low- high-grade
metamorphic ultramafic and mafic igneous rocks and granitoids. The observed types of alteration
can be divided into the following main groups: (i) Mg-Ca-Fe carbonation and/or silicification of
metavolcanic rocks associated with syntectonic carbonate coatings on fault planes, hydraulic brecciation,
and quartz-carbonate veining occurring along intra-BT faults and shear zones in the Bowers Mountains
and along the BT-RBT boundary damage zone; (ii) epidote-bearing slickensides, epidote veining
and epidotization occurring in low-grade metabasalts and in amphibolites in the Lanterman Range
and the Bowers Mountains; (iii) epidote-chlorite-prehnite-bearing cataclastites, ultracataclastites,
and indurated gouges in fault cores, as well as saussuritization of K-feldspar in the wallrock of
granitoid rocks in the western Lanterman Range [136]; (iv) foliated listvenites with Mg-Ca carbonates,
quartz, Cr-phengite, Cr-chlorite, magnesite, and talc derived from carbonation of mafic and ultramafic
rocks along brittle-ductile shear zones within the WT-BT boundary damage zone and within the
BT [1,137] (see Table A3). Figure 12A–H shows some exposures of typical altered rocks and listvenites.
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Figure 12. Field photographs of the typical altered rocks and listvenites. (A) Helicopter view of the fault
zone characterized by epidote–prehnite–quartz coatings, and epidotization in Glasgow Volcanics country
rocks, Mt Gow, Bowers Mountains; (B) Helicopter view of the reddish (iron oxide/hydroxide minerals)
to greenish (chlorite-epidote minerals) alterations of Glasgow Volcanics along fault zones, NE slopes of
Mt Gow, Bowers Mountains; (C) Helicopter view of the metasomatic alteration (carbonate dominated)
of Glasgow Volcanics around a quartz–carbonate fault vein system (Dorn Glacier, for details see [1];
(D) Close view of reddish alteration (iron oxide/hydroxide minerals dominated) along fault zones
in Glasgow Volcanics, NE slopes of Mt Gow, Bowers Mountains; (E) Close view of shear zone with
magnesite-talc-quartz mylonite derived from mafic and ultramafic rocks at the WT-BT boundary,
Lanterman Range; (F) View of layers of alternating foliated ultramafite and amphibolite within
mylonitic shear zone characterised by listvenite and magnesite-talc-quartz rich mylonite, WT-BT
boundary, Lanterman Range; (G) Close view of listvenites from a shear zone at the WT-BT boundary,
Lanterman Range. The foliated green rock is rich in Cr-muscovite and chlorite, the light brown part is
rich in Fe-Mg carbonates; (H) Close view of a damage zone with intense epidotization (greenish to
pinkish color) and silicification of the host Glasgow Volcanics Mt Gow, Bowers Mountains.
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Petrographic studies of the upper Dorn Glacier at the eastern side of the northern Bowers
Mountains indicated the transformation of primary mafic minerals such as pyroxene (augite), olivine,
plagioclase, ilmenite and amphibole to secondary altered minerals such as muscovite, Mg,Fe-chlorite,
titanite, calcite, epidote-prehnite, hematite/limonite and siderite/ankerite in the hydrothermal alteration
zones [1]. Figure 13A–D shows thin sections of epidote+prehnite+chlorite alteration on a fault in
Glasgow Volcanics (A), carbonated basalt (B) and foliated listvenites (C and D). Primary mafic minerals
in fine-grained green metabasalt (Glasgow Volcanics) replaced by epidote-chlorite-prehnite-bearing
cataclastites in the fault zone. The phenocrysts of epidote and prehnite display a cataclastic fabric,
while chlorite forms thin veinlets in the backgmass (Figure 13A). Mg-Ca-Fe carbonation has completely
replaced the primary mafic minerals of the metabasalt. Some of the carbonates are phenocrystalline and
anhedral (Figure 13B). Muscovite, Mg-Ca carbonates, quartz in foliated listvenites are characterized
by very fine-grained brittle-ductile deformation along microfractures, and also disseminated in the
background (Figure 13C–D). The mineral contents of some selected samples were also examined
using XRD analysis (Figure 14A–E). The XRD analysis demonstrated that the predominant minerals in
the altered rocks and listvenites were ankerite, muscovite, magnesite, kaolinite, hematite, dolomite,
epidote, spinel, talc, clinochlore and quartz.Remote Sens. 2019, 11, x FOR PEER  27 of 40 
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Figure 13. Different types of alteration mineralogy in hydrothermally altered rocks. Microphotographs
of (A) epidote+prehnite+chlorite-dominated alteration in the damage zone of a fault in Glasgow
Volcanics (plane-polarized light; #09.12.03GL 9); (B) carbonated basalt in the damage zone of a
shear zone (Dorn Glacier—plane-polarized light; #08.12.05GL6); and (C,D) foliated listvenites from
two brittle-ductile shear zones at the WT-BT boundary (C: crossed-polarized light, #23.12.96 GL 6;
D: plane-polarized light, #19.12.96 GL 6). Abbreviation: Ep = epidote, Prh = prehnite, Chl = chlorite,
Cb = carbonate, Wmica = white mica, Qtz = quartz.
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Figure 14. Representative XRD analysis of samples collected from listvenites (A–C) and altered Glasgow
volcanics (reddish to greenish alterations) at Mt Gow, Bowers Mountains (D–E).

5. Discussion

Terrane boundaries are major tectonic discontinuities that often display a complex and polyphase
structural evolution, and a variety of ore mineralizations were reported in these boundaries [2,3].
Listvenite, a carbonate-silica-dominated rock that forms as a result of CO2- and K-metasomatism of
ultramafic/mafic rocks, represents a key indicator for the occurrence of ore mineralizations along shear
zones or major tectonic boundaries [20–23,138–140]. The ability to map hydrothermal alteration mineral
and listvenites using spectral bands of ASTER satellite remote sensing data has been successfully
established in many parts of the world [6–12,27–29,31,43]. Features in the spectra of lithological units
are dependent upon their constituent minerals and intensities. The intensities are a function of the
concentration, absorption coefficient and accessibility to the recording radiation of each constituent
mineral [128]. Thus, the extraction of mineralogical information of interest from the remote sensing
imagery required standardized/specialized image processing techniques to detect spectrally active
minerals and revealing hidden key end-member spectra.

In this study, implementation of robust and standardized/specialized image processing techniques
consisting of PCA/ICA fusion, LSU and CEM analysis to ASTER VNIR+SWIR and TIR bands provides
a consistent way to detect spectrally active alteration mineral assemblages and lithological units
at both pixel and sub-pixel levels in the poorly exposed damage zones of the WT-BT and BT-RBT
boundaries and along intra-terrane faults and shear zones in NVL of Antarctica. Fusion technique
of PCA and ICA was used to extract the image spectra at the pixel level for mapping alteration
mineral assemblages and lithological units. The resultant image maps derived from PCA/ICA fusion
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identified the pixels containing the spectral signature of the alteration minerals or mineral groups
that are maximally independent of each other using VNIR+SWIR and TIR bands of ASTER. PCA
images contain high eigenvector loadings and opposite signs in the indicative bands (in the VNIR
and SWIR regions) for oxide/hydroxide minerals, Al-OH minerals and Fe,Mg-O-H and CO3 minerals
were identified and used for ICA rotation to extract maximally independent pixels of the minerals.
Maximally independent pixels related to ultramafic-to-mafic, intermediate and felsic lithological units
(in the TIR region) particularly detected using PCA/ICA analysis. Sub-pixel abundances of spectrally
pure pixels (end-members) related to alteration minerals were mapped using ASH technique and
LSU classification, which directly derived from ASTER image reference spectra (in the VNIR+SWIR
bands). Fraction images of end-members (extracted from the USGS library) obtained by CEM analysis
were similar to LSU classification mineral maps, though some spectral mixing and confusion between
minerals contain absorption features with subtle differences are undoubted.

Considering image maps of alteration minerals (Figure 7A–D), iron oxide/hydroxides minerals
are spectrally dominated in the study zones. The exposures of Granite Harbour Igneous Complex,
Glasgow metavolcanic rocks, Admiralty Intrusives and Ferrar Dolerite contain a high surface abundance
of iron oxide/hydroxides minerals. Iron oxide spectral signatures are produced due to crystal-field
transitions of iron ions (Fe+2 and Fe+3) in the primary mafic minerals (olivine, pyroxenes and plagioclase)
or caused by the alteration of the primary minerals to iron oxide/hydroxide mineral (hematite, goethite,
jarosite and limonite) [126,128]. Therefore, the iron spectral signature can be mapped in both altered
and unaltered exposures. The (meta-)sedimentary sequences of the Wilson Terrane metamorphic rocks,
Molar Formation, Mariner Group, Leap Year Group, Robertson Bay Group and Beacon Supergroup
predominantly show vibrational processes of fundamental absorptions of Al-OH, Fe,Mg-O-H and
CO3 modes. These groups of spectral features appear to be quite diagnostic of detrital clay minerals
in the (meta-)sedimentary units. Furthermore, some of the alteration minerals are the products of
regional metamorphic processes in the WT, BT and RBT. However, these mineral assemblages could
also be weathering products of rocks taking into account the paleo-latitude of the rocks at the time of
deposition, e.g., in the case of the redbeds of the Leap Year Group. Also, other metasedimentary rocks
deposited in the accretionary environment (like the Robertson Bay Group) would have received detritus
rich in Fe- or Al-rich oxides/hydroxides in a particular weathering environment as for these rocks in the
early Ordovician (deep-reaching, intensive weathering in equatorial latitudes). Accordingly, only the
exposures contain a strong combination of absorption features and intensities for iron oxide/hydroxide,
Al-OH and Fe,Mg-O-H and CO3 modes can be considered as hydrothermal/metasomatic alteration
mineral zones, specifically in the Bowers Mountains and Lanterman Range (Figure 7A–D).

The stretching vibration of Si–O–Si tetrahedra in TIR regions was determined to discriminate
silicate rocks by applying PCA/ICA fusion (Figure 8A–D). An ultramafic/mafic trend was mapped mostly
in the exposures of the Glasgow Volcanics and Ferrar Supergroup (Ferrar Dolerite/Kirkpatrick Basalts).
The Wilson Terrane metamorphic rocks, the Granite Harbour Igneous Complex and the Admiralty
Intrusives show an intermediate trend. The (meta-)sedimentary rocks of the Molar Formation, Mariner
Group, Leap Year Group, Robertson Bay Group and Beacon Supergroup were classified in the felsic
trend (Figure 8A–D). Spatial distributions of spectrally active minerals containing Fe2+, Fe3+, Fe-OH,
Al-OH, Mg-OH and CO3 spectral absorption features, including goethite/hematite/jarosite, kaolinite,
biotite/muscovite, chlorite/epidote/actinolite, serpentine/antigorite/talc and calcite/dolomite/siderite,
were detected using n-Dimensional analysis technique and LSU classification in the six selected
subsets of damage zones (Figure 10A–F). Goethite, hematite, jarosite, biotite, muscovite, kaolinite,
actinolite, epidote and chlorite were the predominating minerals, while serpentine, antigorite, talc,
calcite, dolomite and siderite were in a minority in the selected subsets. The results derived from LSU
(Figure 10A–F) show good agreement with the PCA/ICA mapping results (Figure 7A–D). However,
alteration minerals were detected systematically in the fraction images of end-members for the selected
subsets. Several prospective zones for listvenite occurrences were identified in zones (2), (4), (5) and (6)
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(Figure 10B,D–F), which were mostly concentrated and associated with the Glasgow Volcanics in the
Bowers Mountains.

The fraction images derived from the CEM algorithm for detecting alteration minerals using the
end-member spectra from the USGS spectral library confirmed the capability of ASTER VNIR+SWIR
spectral bands to identify some important alteration minerals for prospecting listvenite occurrences.
However, some confusion between the alteration minerals may occur due to spectral and spatial
limitations of the ASTER multispectral bands, especially when mineral spectral signatures are mixed
and/or contain subtle differences. Confusion between minerals with similar absorption bands near
0.9 µm, 2.2 µm and 2.30 µm, such as goethite, hematite, kaolinite, muscovite, chalcedony, serpentine,
chlorite, epidote and calcite, is high. As a consequence, CEM fraction images of the alteration
minerals show comparable surface abundances in zone (2) (Figure 11). Comprehensive fieldwork
data, microscopy-based petrographic studies and XRD analysis in the major fault zones of the terrane
boundaries and along the intra-terrane fault or shear zones verified the occurrence of Mg-Ca-Fe
carbonation, epidotization and listvenites, especially in Glasgow Volcanics in the Bowers Mountains
and Lanterman Range. Comparison of the LSU classification mineral maps with field data using a
confusion matrix approach and Kappa Coefficient shows a very good match, which indicates the
overall accuracy of 71.42% and the Kappa Coefficient of 0.57, respectively (Table A4, see Appendix A).
Consequently, the remote sensing approach developed in this study is explicitly applicable for mapping
alteration minerals and lithological units associated with ore mineralizations in remote and inaccessible
areas such the Antarctic and Arctic regions, where access to field data is challenging.

6. Conclusions

Application of ASTER multispectral remote sensing data for detecting hydrothermal alteration
mineral assemblages, and particularly listvenites, in the poorly exposed damage zones of the WT-BT
boundary, the BT-RBT boundary and within the BT and in the eastern WT (NVL, Antarctica) confirmed
alteration mineral patterns at several locations, including the predominance of iron oxide/hydroxide,
biotite/muscovite, chlorite/epidote/actinolite, Mg-Ca-Fe carbonates and listvenites. The PCA/ICA
fusion successfully helped to map and discriminated alteration minerals containing Fe2+, Fe3+, Fe-OH,
Al-OH, Mg-OH and CO3 spectral absorption features in the VNIR+SWIR bands, and silicate lithological
units contained different characteristics of emissivity spectra derived from stretching vibration of
Si–O–Si tetrahedra in TIR bands. n-Dimensional analysis technique confirmed the presence of
several end-member alteration minerals such as goethite/hematite/jarosite, kaolinite, biotite/muscovite,
chlorite/epidote/actinolite, serpentine/antigorite/talc, calcite/dolomite/siderite in the selected damage
zones, the fraction abundances and spatial distributions of which were subsequently mapped by
the LSU classification. The results showed that listvenite occurrences are mostly associated with
metavolcanic rocks of Glasgow Volcanics in zones (2), (4), (5) and (6) in the Bowers Mountains,
while the association of alteration minerals is generally associated with other sedimentary and igneous
lithological units in the study zones. The CEM results verified the identification of some important
alteration minerals for detecting listvenite occurrences, although some confusion between the alteration
minerals may present using ASTER VNIR+SWIR spectral bands. Furthermore, geological fieldwork
and laboratory investigations proved essential implications of the remote sensing data analysis for
detecting alteration minerals in remote and inaccessible (Antarctic) environments. The mapping results
indicate that ASTER data processing using the pixel/sub-pixel algorithms can provide an efficient
approach to map hydrothermal alteration minerals, lithological units (ultramafic, mafic, intermediate
and felsic) and listvenite occurrences in inaccessible parts of the NVL and can be broadly applicable in
other tectonic boundaries or major tectonic fault zones around the world.
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Appendix A

PCA computing equation (Equation (A1)):

RKP =
aKP ×

√
λP

√
VarK

(A1)

where, akp = eigenvector for band k and component p; λP = Pth eigenvalue; and VarK = variance of Kth

band in the covariance matrix [86]. This computation results in a new n × n matrix filled with factor
loadings. This data is typically represented in quantitative terms, which is a very small fraction of the
total information content of the original bands. It is expected that the loaded information is indicated
in the spectral signature of the desired mineral or mineral group [91].

Table A1. Eigenvector matrix for VNIR+SWIR bands of ASTER. (A): Spatial subset covering zone 1
and surrounding areas; (B): Spatial subset covering zones 2 and 3; (C): Spatial subset covering zone 4
and surrounding areas; and (D): Spatial subset covering zones 5 and 6.

(A)

Eigenvector Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Band 8 Band 9

PCA 1 0.467805 0.509694 0.512981 0.217468 0.176799 0.246614 0.248711 0.197151 0.134638
PCA 2 −0.300431 −0.288970 −0.263316 0.338230 0.386615 0.342808 0.283244 0.363021 0.404354
PCA 3 0.157609 0.161323 −0.103135 0.006767 0.226125 −0.358278 −0.615519 0.073713 0.612094
PCA 4 0.044681 0.011848 −0.069971 0.090291 −0.633560 −0.438259 0.344247 0.463711 0.240442
PCA 5 0.571038 0.143893 −0.731120 −0.148991 0.161062 0.025766 0.172102 0.073443 −0.186704
PCA 6 0.085901 −0.004662 −0.067071 −0.301431 −0.281197 0.308307 0.264687 −0.553969 0.588366
PCA 7 −0.076892 −0.036997 0.134514 −0.155125 0.497821 −0.618179 0.507327 −0.246778 0.048065
PCA 8 0.068572 0.059992 −0.169358 0.829896 −0.117622 −0.150630 0.013344 −0.485437 −0.044016
PCA 9 0.565673 −0.777720 0.257238 0.065265 0.008201 −0.026038 −0.057528 0.007880 0.024873

(B)

Eigenvector Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Band 8 Band 9

PCA 1 −0.479262 −0.517939 −0.509952 −0.225048 −0.160278 −0.238705 −0.238099 −0.191397 −0.123923
PCA 2 0.288066 0.267422 0.266615 −0.388911 −0.371102 −0.336818 −0.273033 −0.365435 −0.404865
PCA 3 −0.470308 −0.335548 0.711152 −0.063002 −0.061806 0.155815 0.278307 −0.089651 −0.207174
PCA 4 0.089149 0.081563 −0.378102 0.066965 −0.262842 0.327757 0.541766 0.014714 −0.606397
PCA 5 0.005198 −0.011714 0.013230 −0.289525 −0.571447 −0.297938 0.372870 0.457705 0.389860
PCA 6 −0.143194 0.033396 0.100700 0.637725 −0.213061 −0.346181 −0.285287 0.440341 −0.347880
PCA 7 0.048756 −0.037063 −0.000810 −0.381573 0.612809 −0.398723 0.186662 0.403665 −0.344018
PCA 8 0.019200 −0.050602 0.037382 −0.368910 −0.118495 0.574367 −0.492425 0.505200 −0.133907
PCA 9 −0.659478 0.731979 −0.091948 −0.132052 0.046537 0.019598 −0.007121 −0.002060 0.028260

(C)

Eigenvector Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Band 8 Band 9

PCA 1 0.436596 0.474941 0.478323 0.259162 0.202467 0.288422 0.293737 0.233995 0.150469
PCA 2 −0.361523 −0.339702 −0.304584 0.341346 0.339529 0.323638 0.270272 0.338853 0.369764
PCA 3 −0.113406 −0.131491 0.013472 −0.038953 −0.199768 0.301020 0.615036 −0.041133 −0.676513
PCA 4 0.646205 0.069871 −0.741104 0.063857 0.083737 0.043079 0.029404 0.011287 −0.119854
PCA 5 −0.081856 0.003684 0.073346 0.258757 0.617458 0.257579 −0.353971 −0.466145 −0.361612
PCA 6 −0.081361 0.054497 0.026637 0.134626 0.188319 −0.340347 −0.252269 0.722429 −0.484494
PCA 7 −0.038421 0.062948 0.062948 0.128723 −0.501280 0.651852 −0.509411 0.194283 −0.050948
PCA 8 0.065332 −0.071443 0.035478 −0.833862 0.356670 0.335182 −0.066825 0.222638 0.021186
PCA 9 −0.478726 0.790450 −0.345997 −0.117250 0.039925 0.012703 0.092941 −0.045796 0.007618
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Table A1. Cont.

(D)

Eigenvector Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Band 8 Band 9

PCA 1 0.457469 0.496121 0.484720 0.241961 0.190767 0.264428 0.267634 0.222557 0.153665
PCA 2 −0.318221 −0.311611 −0.309208 0.348166 0.377922 0.352360 0.263388 0.321127 0.381217
PCA 3 0.050573 0.100867 0.065376 −0.074127 0.348897 −0.190996 −0.603883 −0.184339 0.648564
PCA 4 −0.576526 −0.199530 0.760114 −0.121149 −0.074678 −0.014245 0.117300 −0.037045 0.120188
PCA 5 0.062048 0.065969 −0.120679 −0.198503 −0.582283 −0.293206 0.201001 0.452767 0.517116
PCA 6 0.076383 0.014735 −0.110901 −0.152342 −0.282329 0.477741 0.275588 −0.676196 0.342499
PCA 7 0.082735 −0.021608 −0.059222 −0.230230 0.454540 −0.555810 0.600908 −0.236367 0.060691
PCA 8 0.018744 0.033687 −0.043334 −0.827212 0.260085 0.381570 −0.039539 0.303178 −0.075067
PCA 9 −0.581066 0.774987 −0.234825 0.012884 0.021499 −0.022616 0.039495 −0.044352 −0.044133

Table A2. Eigenvector matrix for TIR bands of ASTER. (A): Spatial subset covering zone 1 and
surrounding areas; (B): Spatial subset covering zones 2 and 3; (C): Spatial subset covering zone 4 and
surrounding areas; and (D): Spatial subset covering zones 5 and 6.

(A)

Eigenvector Band 10 Band 11 Band 12 Band 13 Band 14

PCA 1 −0.387065 −0.400716 −0.418903 −0.501105 −0.512857
PCA 2 0.124757 −0.148619 −0.793719 0.106037 0.566669
PCA 3 −0.639764 −0.511314 0.328506 0.186276 0.432023
PCA 4 0.630731 −0.744700 0.169973 0.079875 −0.111041
PCA 5 0.165821 0.036321 0.240257 −0.834608 0.465714

(B)

Eigenvector Band 10 Band 11 Band 12 Band 13 Band 14

PCA 1 −0.393525 −0.404088 −0.412766 −0.496019 −0.515209
PCA 2 0.068174 0.244757 0.733503 −0.274307 −0.567605
PCA 3 −0.739002 −0.349952 0.467340 0.209083 0.263226
PCA 4 −0.528835 0.806255 −0.213160 −0.138353 0.075548
PCA 5 0.121244 −0.065522 0.166595 −0.784770 0.580852

(C)

Eigenvector Band 10 Band 11 Band 12 Band 13 Band 14

PCA 1 −0.387916 −0.409696 −0.430823 −0.491519 −0.504450
PCA 2 0.059723 0.202526 0.734577 −0.249602 −0.594568
PCA 3 −0.749770 −0.351003 0.439774 0.248107 0.244302
PCA 4 0.532694 −0.814304 0.224886 0.010234 0.049680
PCA 5 −0.006039 0.069557 0.175536 −0.796521 0.574340

(D)

Eigenvector Band 10 Band 11 Band 12 Band 13 Band 14

PCA 1 −0.386572 −0.407245 −0.432094 −0.491312 −0.506577
PCA 2 0.007595 −0.170349 −0.765517 0.204563 0.585714
PCA 3 0.667689 0.466491 −0.419996 −0.168193 −0.363168
PCA 4 0.605752 −0.766295 0.140070 0.132069 −0.093781
PCA 5 0.194321 -0.017612 0.176809 −0.819167 0.509541

LSU mathematical equation (Equation (A2)):

Ri =
N∑

i=1

FeRe + Ei (A2)

where, Ri = Surface reflectance in band i of the sensor; Fe = Fraction of end-member e; Re = Reflectance
of end-member e in the sensor wave band i; N = Number of spectral end-members; and Ei = Error in
the sensor band i for the fit of N end-members [100].
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Table A3. Locations of alteration zones and listvenites recorded by Global Positioning System
(GPS) readings.

Altered Rock Types Coordinates

Listvenites 71◦36.026′S–163◦16.302′E
Listvenites 71◦36.011′S–163◦16.364′E

Carbonitization 70◦47.459′S–162◦39.438′E
Carbonitization 70◦47.349′S–162◦38.688′E

Listvenites + sulfides+ albitites 71◦33.638′S–163◦11.716′E
Epidotization + fault zone 71◦23.702′S–162◦47.968′E

Reddish to greenish alteration zone 71◦19.056′S–162◦35.167′E
Epidotization + chlorite in granitoids 71◦31.135′S–162◦59.086′E

Epidotization + prehnite in granite 71◦49.569′S–161◦18.145′E
Epidotization + prehnite in granite 71◦29.123′S–162◦38.567′E

Epidotization in granite 71◦44.753′S–162◦59.358′E
Epidote + serpentine + talc in high grade mafic-ultramafic rocks 71◦27.635′S–162◦53.098′E

Listvenite + serpentine in ultramafic rocks 71◦34.546′S–163◦11.185′E
Listvenite + carbonates in volcanoclastic rocks 71◦32.738′S–163◦31.602′E

Listvenite + carbonates + talc 71◦36.768′S–163◦16.407′E
Carbonitization + silica in volcanoclastic rocks 71◦33.075′S–163◦ 31.949′E

Epidotization in Glasgow Volcanics 71◦11.159′S–163◦00.378′E
Epidote + prehnite + quartz in volcanoclastic rocks 71◦23.048′S–162◦48.796′E

Listvenite + quartz + hydraulic breccia in Glasgow Volcanics 71◦27.078′S–163◦26.689′E
Epidote coating fault in Glasgow Volcanics 71◦11.292′S–162◦35.369′E

Listvenites in ultramafic rocks 71◦38.525′S–162◦24.458′E

Table A4. Confusion matrix for LSU classification mineral maps versus field data.

Class Listvenites Carbonitization Epidotization Totals
(Field data)

User’s
Accuracy

Listvenites 5 0 1 6 83.33%
Carbonitization 1 5 1 7 71.42%
Epidotization 1 2 5 8 62.50%

Totals (LSU maps) 7 7 7 21
Producer’s Accuracy 71.42% 71.42% 71.42%

Overall accuracy = 71.42%, Kappa Coefficient = 0.57
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