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• Antarctic rock is a less studied ecosys-
tem due to poor logistics and accessibil-
ity.

• Relationships between lithic bacteria
and the environment are not well un-
derstood.

• MiSeq and statistical analyseswere con-
ducted for 56 rock samples from
Antarctica.

• Latitude was significantly correlated
with the dominant phyla, pH, and NO3

-.
• The CARTmodel classified the dominant
phylum with 89% accuracy.
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The harsh conditions in Victoria Land, Antarctica have formed a simple ecosystem dominated by microbes that use
rocks as shelters to avoid environmental stressors. The area is composed of basement rocks that illustrate the history
of complex deformation, thus it is highly valuable not only in perspectives of geology but also in biological aspects.
Because this region is inhospitable to higher-level organisms and receives least external influences, it can be an ideal
environment to investigate the relationship between rock-inhabiting bacterial communities and environmental fac-
tors. In such conditions, inorganics dissolved from minerals can be considered as key factors influencing rock-
inhabiting bacterial communities. Thus, the present study attempted to explore rock-inhabiting bacterial communi-
ties throughout Victoria Land, to identify environmental parameters that are more influential on bacterial commu-
nity compositions, and to investigate latitudinal gradients in environmental parameters and rock-inhabiting
bacterial communities. The results suggested that (i) rock-inhabiting bacterial communities in Victoria Land pre-
dominately consisted of either Actinobacteria or Proteobacteria; (ii) latitudinal gradients in rock-inhabiting bacterial
community compositions and some environmental parameterswere observed; (iii) latitude, pH, nitrate, and sulfate
significantly correlated with the dominant phyla; and (iv) the Classification and Regression Tree (CART) analysis
demonstrated that latitude, pH, and sulfate concentrations could explain the dominant phylumwith 89% accuracy.
These findings can provide important insight into the link between environmental factors and rock-inhabiting bac-
terial community compositions in conditions with extremely cold temperatures and high levels of radiation, which
could also be of interest in astrobiology.
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1. Introduction

Antarctica is one of the driest, coldest, and most remote places on
Earth (Selbmann et al., 2008; Cary et al., 2010). While most of the con-
tinent is coveredwith ice and snow, a tiny portion (i.e., 0.32%) is ice-free
and is mostly composed of exposed rocks and oligotrophic mineral soils
(Ugolini and Bockheim, 2008). Victoria Land, located in eastern
Antarctica, is one of the largest ice-free regions on the Antarctic conti-
nent. The region is exposed to severe environmental stressors such as
extremely low temperature, high ultraviolet radiation, and low mois-
ture levels, which are inhospitable to most higher-level organisms
(Cowan and Ah Tow, 2004; Makhalanyane et al., 2014). Northern and
southern Victoria Land have a wide area of rocks exposed to various en-
vironmental conditions (i.e.,mountainous terrains ranging from70° S to
76° S and cold deserts from76° S to 78° S). Sincemost of the area is com-
posed of basement rocks that illustrate the complex deformational his-
tory (Williams et al., 1971; Faure and Mensing, 2010), it is not only
geologically significant but also biologically interesting. Due to the unfa-
vorable living conditions and least external influences, this region has
often been considered as an analogue for the rough characteristics of
the Martian surface (Wynn-Williams and Edwards, 2000; Wierzchos
and Ascaso, 2002; Dartnell et al., 2010). Therefore, investigations of
rock-inhabiting microbes can provide insight into microbial survival in
such harsh conditions including extraterrestrial life.

These geographical and climatic properties have formed a simple
ecosystem dominated bymicrobial communities that use rocks as shel-
ters from these stressors (Cary et al., 2010; de los Ríos et al., 2014). In ad-
dition to the climatic barriers, there is little chance of organic matter
deposited from the surrounding environment, because higher-level or-
ganisms, including plants, cannot survive in this region. Thus, low levels
of organic material have been reported as one of critical environmental
factors that inhibit microbial life in this region (Vishniac, 1993). Under
the harsh conditions, inorganics dissolved from minerals which can be
potentially used by microbes are considered as key factors influencing
bacterial communities (Uroz et al., 2009). Although this simple ecosys-
tem dominated by microbes can be an ideal environment to investigate
the relationship between environmental factors and bacterial commu-
nity composition, there have been limited attempts to understand the
link (Barrett et al., 2006; Van Goethem et al., 2016).

While the link between rock-inhabiting microbial communities and
environmental factors have remained unknown, several studies have
been conducted to understand which environmental factors are locally
or regionally related to the composition of soil bacterial communities in
Antarctica (well summarized in Bottos et al., 2014). For example, Sokol
et al. demonstrated that dominant groups in soil microbial communities
in the McMurdo Dry Valleys were influenced by gradients in pH and
moisture at the Transantarctic scale (Sokol et al., 2013). New Zealand's
Latitudinal Gradient Project (LGP) in Antarctica was also one of extensive
efforts made to understand which environmental factors affect the com-
position of bacterial communities and tofind patterns in ecosystem struc-
ture and function changed by latitude (Howard-Williams et al., 2010).
After a decade of research, the LGP concluded that the effects of the latitu-
dinal gradient on ecosystem structure and function did not overwhelm
local microscale variability. (Howard-Williams et al., 2010; Smith et al.,
2010). However, it is still unclear which environmental factors are influ-
ential to rock-inhabiting bacterial communities throughout northern
and southern Victoria Land or whether latitudinal patterns can be found.

In a recent study, Yung et al. showed that different types of
Cyanobacteria predominated in chasmoendolithicmicrobial communities
dependingonhowmuch sunlight the slope theywere inhabiting received
(Yung et al., 2014). The study provided a clue to link rock-inhabiting bac-
terial communities with environmental factors, but other geographical
(e.g. latitude) and chemical parameters (eg. pH) were not considered.
The majority of previous studies on rock-inhabiting bacteria in
Antarctica have focused on themicrobial communities that inhabit a spe-
cific location of rocks; for example, studies have explored endolithic
microbial communities using microscopy (Omelon, 2008), examined
the predominance of Cyanobacteria in hypolithic microbial communities
(Chan et al., 2012), explored the predominance of different phyla
(i.e., Proteobacteria, Cyanobacteria, and Actinobacteria) in hypolithic bacte-
rial communities in the Dry Valleys (Makhalanyane et al., 2013), and ex-
amined the endolithic microbial diversity in different color layers within
rocks (Archer et al., 2017). Although research focused on niche-specific
bacterial communities has expanded the understanding of microbes
inhabiting Antarctic rocks, the approach is not suitable for conducting
an overall survey of rock-inhabiting bacterial communities in a large area.

The aims of this study were to explore rock-inhabiting bacterial
communities throughout Victoria Land, to identify environmental pa-
rameters that are more influential on bacterial community composi-
tions, and to investigate latitudinal gradients in environmental
parameters and rock-inhabiting bacterial communities. To achieve
these goals, MiSeq 16S rRNA gene sequencing was conducted without
differentiating surface and internal fractions for 56 rock samples col-
lected from northern and southern Victoria Land at latitudes ranging
from 71° S to 77° S. Among various environmental factors, we focused
on inorganics (i.e., cations, anions, and trace elements) together with
geographical and chemical parameters. Classification and Regression
Tree machine learning algorithms were applied to the dataset to rank
the relative importance of influential factors and to see if the algorithm
could discover so far unrecognized patterns between rock-inhabiting
bacterial communities and environmental parameters.

2. Materials and methods

2.1. Sample collection

Rock samples were collected at 56 locations in northern and south-
ern Victoria Land, Antarctica, during the summer season (December
and January) from 2013 to 2015. While traveling on a helicopter for
sampling, geologically representative rocks were randomly collected.
Sampling sites were located at latitudes ranging from 71° 24′ S to 77°
33′ S and longitudes ranging from 159° 4′ E to 167° 27′ E (Fig. 1). Col-
lected samples were contained in sterile Whirl-Pak bags (Nasco, USA)
and stored at −20 °C during transportation. The rock samples were
crushed using a sterile hammer and pestle without differentiating sur-
face and internal fractions, to include all rock-inhabiting microorgan-
isms (Choe et al., 2018). After homogenization, the samples were
stored at −80 °C until use. Rock samples were classified into four
types based on the process of formation: 8 metamorphic, 8 plutonic,
23 volcanic, and 17 sedimentary rocks (Fig. 2, Table S1).

2.2. Geochemical analysis

For the geochemical analysis, 40 g of each powdered sample was
mixed with 40 mL of distilled water and shaken for 6 h using a Thermo
Scientific Vari-Mix™ Test Tube Rocker. After themixturewas centrifuged,
the supernatant was filtered using a 0.45 μmpolypropylene syringe filter.
The filtered supernatant was used to measure anion concentrations and
to determine pH, as previously described (Banerjee et al., 2000). For cat-
ion analysis, the filtered samples were dried and redissolved in 5%
HNO3. Trace elements, cation concentrations, and anion concentrations
eluted from the rock powder samples were determined using an induc-
tively coupled plasma atomic emission spectrometer (ICP-AES; Perkin
Elmer Optima 8300), an inductively coupled plasma mass spectrometer
(ICP-MS; Thermo Fisher iCAP Q), and an ion chromatography system
(ICS; Thermo Fisher Dionex ICS-1100), respectively, that were operated
by the Korea Basic Science Institute (Table S2).

2.3. DNA extraction and MiSeq 16S rRNA gene sequence analysis

Genomic DNAwas extracted from 0.3 g of freeze-dried rock powder
using the FastDNA SPIN Kit for Soil (MP Biomedicals, USA), following



Fig. 1. Sampling locations in Victoria Land, Antarctica at latitudes ranging from 71° 24′ 17″
S to 77° 33′ 57″ S. Of 56 samples, 9 samples were collected in 2013 (blue circles), 32 sam-
ples in 2014 (red triangles), and 15 samples in 2015 (green squares).
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the manufacturer's instructions. From the extracted DNA, the V3-V4 re-
gion of the bacterial 16S rRNA gene was amplified using the 341F and
805R primer set with the dual-index strategy (Illumina, 2013). Purified
amplicons were pooled in equal molar amounts to prepare the library.
The high-throughput sequencing of the library was performed using
theMiSeq platform (Illumina, USA). Generated rawfileswere processed
and analyzed using Mothur v1.39.5 following the MiSeq SOP (Schloss
et al., 2009). The sequences were filtered by read length over 400 bp
and aligned to Silva v128 reference files from Mothur. Chimeric se-
quences were removed using the UCHIME algorithm v4.2 (Edgar et al.,
2011). After screening, the remaining reads were clustered into the Op-
erational Taxonomical Units (OTUs) with a minimum 97% similarity
threshold, and the resulting OTUs were assigned to taxons using the
EzTaxon-e 16S rDNA database v2017.05 (Kim et al., 2012).

2.4. Statistical analysis and data mining

Spearman's rank correlation coefficient (ρ) was calculated to assess
correlations between variables using SPSS Statistics 22 (SPSS Inc.,
USA). Further data analyses and visualizations were conducted in R
v.3.4.1. Nonmetric multidimensional scaling (NMDS) ordinations were
plotted based on Bray-Curtis distances. The significance between
groups was determined through analysis of similarity (ANOSIM) using
vegan package (v2.4–4) (Oksanen et al., 2017). F-tests and two-
sample t-tests were used to examine differences in variables between
Actinobacteria- and Proteobacteria-dominant groups.

Data mining approaches using machine learning algorithms are
promising tools for not only developing predictive models but also
discovering unrecognized trends or patterns in large datasets; thus,
those have been widely used for environmental research (Cortés
et al., 2000; De'ath and Fabricius, 2000; Yoo et al., 2016; Yoo et al.,
2018). In the present study, machine learning-based data mining
was performed using Classification and Regression Tree (CART) algo-
rithm, which uses the Gini impurity as a splitting criterion (Breiman
et al., 1984). Six environmental variables (i.e., pH, Latutude, NO3

−,
SO4

2−, Cd, and Se) which had significant correlations (i.e., p b 0.05)
with relative abundances of Actinobacteria and Proteobacteria were
used as input variables, and the dominant phylum class was used
as the target variable in the data mining analysis. Of 53 samples pre-
dominated by Actinobacteria or Proteobacteria, 70% (i.e., 35 samples)
were randomly chosen as training cases, and the rest were used as
the test set. For coherence test, 10-fold cross-validation was carried
out using 100 randomly shuffled data sets. The performance of
each model was evaluated using the area under the receiver operat-
ing characteristic (ROC) curve (AUC), a scalar value calculated from
the ROC graph (Fawcett, 2006). Based on the performances, a classi-
fication model with the highest AUC value for the training and the
test sets was selected as the representative model (Lee et al.,
2016). The data mining analysis was performed using the SAS Enter-
prise Miner Workstation 14.2 (SAS Inc., USA).

3. Results

3.1. Rock-inhabiting bacterial community compositions

A total of 7,408,605 16S rRNA sequences were clustered at 97% se-
quence similarity, which resulted in 9561 OTUs. The compositions of
rock-inhabiting bacterial communities were distinctly divided into two
groups: Actinobacteria- or Proteobacteria-dominant (Fig. 3). Actinobacteria
were predominant in 28 rock samples, with abundances ranging from
35.0% to 91.2%. In the 25 rock samples predominated by Proteobacteria,
the abundances of Proteobacteria ranged from 28.1% to 85.2%. Most of
the abundant OTUs (i.e., 64 out of the top 100) were classified as either
Actinobacteria or Proteobacteria at the phylum level. However, at the
genus level, most of the OTUs belonging to the two phyla remained un-
classified, although some were classified as Rubrobacter (Actinobacteria),
Commamonas, Pseudomonas, or Sphingomonas (Proteobacteria). Other
phyla, such as Bacteriodetes, Firmicutes, Chloroflexi, and Acidobacteria, con-
sistently existed across all samples. Cyanobacteria was predominant
(i.e., 34% relative abundance) in one sample collected from Little Rocks
(LTR; 71° 24′ S and 162° 0′ E); however, Cyanobacteria abundance was
below 1% for most of the samples.

3.2. Correlations between bacterial communities and environmental factors

Significant differences in bacterial community compositions
between Actinobacteria- and Proteobacteria-dominant samples were
also observed through NMDS ordination plots based on the OTU table
(Fig. 4). Among the 43 geographical and chemical factors, five parame-
ters (i.e., pH, Latitude, Na+, Mn2+, and Co) were significantly correlated
(p b 0.01) with rock-inhabiting bacterial communities in Victoria Land
(Table S3).

Correlations between the dominant phyla and environmental vari-
ables were also calculated using the Spearman's rank correlation coeffi-
cient. Variables that were correlated (i.e., p b 0.05) with the dominant
phyla/classes are shown in Table 1. Latitude, NO3

−, and Se had negative
correlationswith the abundance ofActinobacteria, while they had positive



Fig. 2. Sampling sites in Victoria Land. (a) volcanic rock sample collected fromHaban Spur; (b) plutonic rock from Star Nunatak; (c)metamorphic rock fromKyanite; (d) sedimentary rock
from Beta Peak.
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correlationswith the abundance of Proteobacteria. In contrast, pH showed
a negative correlation with Proteobacteria, whereas it was positively cor-
related with Actinobacteria. For example, relatively high pH was a strong
Fig. 3. Rock-inhabiting bacterial community structures at the phylum/class l
indicator of the dominance of Actinobacteria in rock-inhabiting bacterial
communities. Similarly, relatively high latitude and high nitrate concen-
tration were indicators of the dominance of Proteobacteria (Fig. 5).
evel combined with hierarchical clustering based on Euclidean distance.



Table 1
Spearman's rank correlation coefficients of comparisons between the dominant phyla/classes and the major environmental parameters (N= 53). Environmental factors that had signif-
icant correlations with the dominant phyla are selectively shown.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

(1) Actinobacteria (%) 1.000
(2) Alphaproteobacteria (%) −.696a 1.000
(3) Betaproteobacteria (%) −.730a .417a 1.000
(4) Gammaproteobacteria (%) −.697a .441a .811a 1.000
(5) Firmicutes (%) −.591a .296b .726a .724a 1.000
(6) Latitude (S°) −.397a .274b .252 .380a .318b 1.000
(7) pH .542a −.471a −.453a −.505a −.439a −.458a 1.000
(8) NO3

− (ppm) −.580a .371a .594a .661a .566a .391a −.577a 1.000
(9) SO4

2− (ppm) −.206 .269b .210 .246 .232 .043 −.339b .493a 1.000
(10) Se (ppb) −.470a .355a .370a .389a .380a .383a −.536a .580a .549a 1.000
(11) Cd (ppb) −.215 .306b .250 .216 .314b .325b −.465a .440a .387a .623a 1.000

a p b 0.01.
b p b 0.05.

Fig. 4.NMDS of rock-inhabiting bacterial community compositions (Stress=0.18; ANOSIMR=0.72, p b 0.001) based onOTU abundances of rock samples dominated by Actinobacteria or
Proteobacteria. The arrows indicate environmental parameters which were significantly correlated (p b 0.01) with rock-inhabiting bacterial communities.

Fig. 5. Boxplots indicating the ranges and the median values for latitude, pH, nitrate, and sulfate concentrations for Actinobacteria- and Proteobacteria-dominant samples.
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Table 2
Percentage of acceptable modelsa and the performance indices of the best CART model.

Data partitioning ratio (Training set:Test set) 70:30

Percentage of acceptable trees
(AUC N 0.7)

Training sets 100%
Test sets 72%

AUC of the best CART model Training set 0.88
Test set 0.89

True positive rates of the best CART model Training set Class 1b 86%
Class 2b 93%
Overall 89%

Test set Class 1b 90%
Class 2b 88%
Overall 89%

a Classification models with an Average Area Under the ROC Curve (AUC) above 0.7.
b Class 1: Actinobacteria dominant, Class 2: Proteobacteria dominant.

Table 3
Relative importance values of input variables used to construct the
best classification model.

Input variable Relative importance

SO4
2− 1.0000

Latitude 0.7501
pH 0.7305
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Except for latitude, other measures of geographic parameters
(i.e., longitude, elevation, and distance from the coast) had no signifi-
cant correlations (p N 0.05)with the dominant phylum/classes. Latitude
was significantly correlatedwith other geochemical parameters, such as
pH, NO3

−, Se, and Cd.While pH had a negative correlation with latitude,
NO3

−, Se, and Cd had a positive correlationwith latitude. Although SO4
2−

was not correlated with latitude, it had a negative correlation with pH
and a positive correlation with Alphaproteobacteria and NO3

−.

3.3. The best CART model and classification rules

Six geochemical variables (pH, Latitude, NO3
−, SO4

2−, Cd, and Se) that
were significantly correlated with the dominant phyla were chosen as
input variables for data mining analysis. Of 100 individual classification
trees resulting from the 10-fold cross-validation for 100 randomly shuf-
fled data sets, the best CART model was selected based on the area
under the ROC curve (AUC) value and performance indices (Table 2).
The overall true positive rates of the best CART model were 89% for
both the training set and the test set, which means the model correctly
classifiedwhich phylumwould be dominant using given environmental
factors with 89% accuracy. SO4

2−, latitude, and pH were essential
Fig. 6. The representative classification model classifying the dominant phylum of rock
parameters to construct the best CART model. Relative importance
values calculated by the CART algorithm demonstrated that SO4

2− was
the most useful parameter for the classification, followed by latitude
and pH (Table 3). The best CART model is shown in Fig. 6. The numbers
in the right column of each node are the training cases that meet the
splitting criteria, and a shaded row in a termination node indicates the
dominant phylum determined by the CART algorithm (i.e., Class 1,
Actinobacteria-dominant; Class 2, Proteobacteria-dominant). The first
split was due to SO4

2− concentrations. Seven training cases that had
SO4

2− concentrations exceeding 42.97 ppm belonged to Proteobacteria-
dominant samples. For the 28 cases with SO4

2− concentrations below
42.97 ppm, the next split was latitude. When latitude was lower than
72.88 °S, most of the training cases (92.3%) were Actinobacteria-
dominant. For the 15 cases with a latitude higher than 72.88 °S, pH
was the third split. With a pH below 8.62, the majority of training
cases (85.7%) were Proteobacteria-dominant, while 75% of the training
cases with a pH exceeding 8.62 belonged to Actinobacteria-dominant
samples.

4. Discussion

The present study showed a latitudinal gradient in rock-inhabiting
bacterial community compositions and environmental parameters in
Victoria Land, Antarctica. Latitude was significantly correlated with the
abundances of the dominant phyla and some geochemical parameters,
including pH and NO3

−. Geochemical parameters, such as pH, NO3
−,

SO4
2−, Se, and Cd, also showed significant correlations with the abun-

dances of the dominant phyla. The results showed that the phylum
Actinobacteria tended to be predominant at relatively low latitudes
and high pH. In contrast, Proteobacteriawasmore likely to be dominant
at relatively high latitudes, low pH, and sites withmore inorganic nutri-
ents. The CART algorithmwas applied to the dataset to investigatemost
influential parameters and the synergetic effects ofmultiple parameters
that affect rock-inhabiting bacterial communities in Victoria Land,
Antarctica. The CART algorithm selected SO4

2−, latitude, and pH as es-
sential variables to build a classification tree, which demonstrated that
those variables could explain the dominant phylumwith 89% accuracy.

Unlike themajority of previous studies on rock-inhabitingmicrobial
communities in Antarctica, among 56 rock samples, only one sample
was predominated by Cyanobacteria. Although one previous study
showed a predominance of Protobacteria, Actinobacteria, and
Cyanobacteria in different hypolithic bacterial communities in the
McMurdo Dry Valleys (Makhalanyane et al., 2013), most studies dem-
onstrated the predominance of Cyanobacteria in hypolithic microbial
communities (Chan et al., 2012), in chasmoendolithic communities
(Yung et al., 2014), and in endolithic microbial communities in sand-
stone and granite (Archer et al., 2017). The difference was mainly due
-inhabiting bacterial communities in Victoria Land, Antarctica. See text for details.
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to the sampling and analytical methods. Previous studies focused on vi-
sual evidence (e.g. green or black colored-bands) of life on the rocks
when collecting samples and analyzing bacterial communities. In the
present study, we randomly collected the geologically representative
rocks regardless of visual evidence of life on the rocks. Additionally,
the analytical method without differentiating surface and internal frac-
tions could result in the difference.

New Zealand's Latitudinal Gradient Project (LGP) suggested that the
changes in the environment and biota shownwithin five degrees of lat-
itude are due to other geographical and climatic factors including alti-
tude, distance from the coast, topography, and microclimate (Howard-
Williams et al., 2010). However, we did not observe any significant cor-
relations between rock-inhabiting microbial community structures and
other geographical factors such as longitude, elevation, and distance
from the coast (i.e., p N 0.05). It has been known that pH is one of
major factors controlling lithotrophic microbial populations (Banfield
et al., 1999). Our observations on rock-inhabiting bacterial communities
and environmental parameters in Victoria Land also confirm that dom-
inant phyla and bacterial community compositions are affected by
changes in pH along latitudinal gradients.

Because a rock itself is an oligotrophic environment and the ex-
tremely cold environments receive least external influences, availability
of inorganics can be a key factor for bacterial survival and growth (Uroz
et al., 2009). For example, microbes are required to obtain enzyme co-
factors (eg. Mo, Cu, Zn,MG, Ni, etc.) from dissolution of sulfideminerals.
They also need phosphorus (to construct DNA, RNA, ATP, etc.), which
can be obtained from dissolution of apatite and other secondary phos-
phates (Banfield et al., 1999). Our results showed that inorganic param-
eters (i.e., cations, anions, and trace elements), which had correlation
with bacterial community compositions, were positively correlated
with Proteobacteria-dominant samples. Since many bacterial species in
the phylum Proteobacteria are capable of utilizing NO3

−, Fe3+, or SO4
2−

as electron acceptors, the correlations between the abundance of
Proteobacteria and NO3

− or SO4
2− can be readily understood. However,

explaining the correlations between rock-inhabiting bacterial commu-
nities and trace elements or cations is more challenging. A previous
study showed that K+was the only parameter correlated with bacterial
communities in weathered rocks from a karst ecosystem in China and
Actinobacteria was the only phylum that showed a significant correla-
tionwithK+ content (Yunet al., 2016). Further investigationswill be re-
quired to get better understanding on the relationships between rock-
inhabiting bacterial communities and cations or trace elements.

Interestingly, the SO4
2− concentration was the most useful variable

to construct the classification model, although the correlation analysis
showed that latitude and pH were the strongest indicators for rock-
inhabiting microbial communities and the dominant phyla. One possi-
ble reason can be the principle that the Gini impurity index works.
The Gini impurity adopted as a splitting criterion for the CART algorithm
continues splitting the given data into two subgroups based on various
splitting rules to make the subgroups as homogenous as possible
(De'ath and Fabricius, 2000). Since the threshold SO4

2− concentrations
exceeding 42.97 ppm resulted in a homogeneous group (i.e., all 7
cases were Proteobacteria-dominant), SO4

2− was ranked as the first
split by the algorithm for the current dataset. However, it should be
noted that SO4

2− may not be the most useful variable for other datasets.
Thus, continuous efforts to build a comprehensive database are required
to deeply understand the relationships between rock-inhabiting bacte-
rial communities and environmental factors.

Bacteria have been found even in the most inhospitable environ-
ments on Earth, such as deep subsurfaces, Arctic glaciers, and extremely
cold deserts in Antarctica. The overall survey on rock-inhabiting bacte-
rial communities throughout Victoria Land suggests that even under
such unfavorable conditions towards living organisms, there could be
certain patterns ofmicrobial survival and bacterial community structure
that can be explained based on given environmental factors. Due to the
harsh conditions, such as extremely cold temperatures and high levels
of radiation, the Dry Valleys are often referred to as a Martian surface
analogue. Because rocks are one of the few inhabitable placeswheremi-
crobes can avoid the environmental stresses of such conditions, our
findings can provide insight into which environmental parameters af-
fect microbial survival in Martian-like extreme conditions.
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