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A B S T R A C T

This study applies deep learning (DL) to retrieve Arctic sea ice concentration (SIC) from AMSR2 data. MODIS-
derived SICs are calculated based on spectral unmixing with a new ice/water endmember extraction algorithm
that exploits global/local representatives, and then used to train a DL network with AMSR2 data. The resulting
SIC maps outperform popular SIC products both regionally and globally. The RMSE of the proposed DL model is
5.19, whereas those of the widely used Bootstrap and ASI-based SIC images are 6.54 and 7.38, respectively, with
respect to MODIS-derived SICs at global scale. In particular, our proposed method better describes regions of
low-SIC and melting ice in summer, which are generally difficult-to-estimate. As the DL-based model consistently
generates accurate SIC values that are not time- or region-dependent, it is considered to be an operational
system. Additionally, our SICs can be used to generate initial conditions facilitating development of more ac-
curate climate models.

1. Introduction

Sea ice plays a vital role in the global climate system as the high
albedo of ice and snow make them the biggest reflectors of solar ra-
diation. Moreover, sea ice reduces heat transfer between the ocean and
the atmosphere (Vinnikov et al., 1999; Liu et al., 2004; Spreen et al.,
2008). Thinning ice in polar regions accelerates global warming, which
is one of the most serious issues currently facing our planet (Stroeve
et al., 2012; Ivanova et al., 2014). However, the high variability and
uncertainty of sea ice over both time and space limit the accurate re-
trieval of sea ice parameters for climate research and data assimilation
in prediction models (Cho and Naoki, 2015; Karvonen, 2017).

In 1972, information about the distribution of sea ice was first re-
trieved by a passive microwave (PMW) sensor, the ESMR (Electrically
Scanning Microwave Radiometer) on the Nimbus-5. Since the launch of
the SMMR (Scanning Multichannel Microwave Radiometer) on board
Nimbus-7 in 1978, global sea ice observations have been continuously
acquired from various PMW radiometers such as the SSM/Is (Special
Sensor Microwave/Imagers) and SSMIS (Special Sensor Microwave
Imager/Sounder) on the DMSP (Defense Meteorological Satellite
Program) satellites, AMSR (Advanced Microwave Scanning
Radiometer) on the ADEOS (Advanced Earth Observing Satellite) II,
AMSR-E on Aqua, and AMSR2 on the GCOM-W1 (Global Change
Observation Mission 1st-Water) (Spreen et al., 2008; Ivanova et al.,

2014; Cho and Naoki, 2015; Cavalieri et al., 1996; Comiso, 1995). The
sea ice concentration (SIC), which is the fraction of a given area covered
with sea ice, is one of the most important polar ocean parameters, and
is often generated from PMW data (Comiso, 1995). Because of the
importance of SIC information in both industry and research, many
retrieval algorithms for estimating more accurate SIC values have been
proposed in recent decades (Ivanova et al., 2014; Andersen et al.,
2006). The SIC values generated using frequencies around 19 and
37 GHz have a grid size of 25 km, but recent advances in sensor tech-
nology and new retrieval algorithms using high-frequency channels
have improved the grid size of 3.125 km (Spreen et al., 2008).

Because of the large emissivity differences between water and ice,
most SIC retrieval algorithms employ linear combinations of brightness
temperatures (TBs) at different frequencies and polarizations to dis-
tinguish open water from first- and multi-year ice (Cho and Naoki,
2015; Svendsen et al., 1983; Cavalieri et al., 1984; Swift and Cavalieri,
1985). Cavalieri et al. (1984) developed the first SIC retrieval algorithm
from Nimbus-7 SMMR data, and this technique was later applied by the
NASA Sea Ice Algorithm Working Group to SSM/I data. The NASA
Team (NT) algorithm uses three SSM/I channels (19.4 GHz horizontal
and vertical polarizations, and 37 GHz vertical polarization) and com-
prises three parts: 1) calculation of the polarization and spectral gra-
dient ratios; 2) estimation of first- and multi-year ice concentrations
using coefficients derived from tie-points over known areas; and 3) use
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of weather filters to remove anomalous SIC values over the open ocean
caused by weather effects (Cavalieri et al., 1996; Swift and Cavalieri,
1985; Cavalieri, 1994; Gloersen and Cavalieri, 1986). Although the NT
algorithm is widely used, it often underestimates the SIC values because
of layering in the snow and young/thin ice types (Andersen et al.,
2007). The NT algorithm was extended to develop the NT2 algorithm
using high-frequency channels (85 GHz for SSM/Is; 89 GHz for AMSR),
which allowed for atmospheric effects over open water to be in-
vestigated (Markus and Cavalieri, 2000; Markus and Cavalieri, 2009).
Another popular algorithm is the Bootstrap (BT) developed by Comiso
(Comiso, 1986) for SMMR data, and then enhanced for new sensors
such as SSM/I and AMSR (Cho and Naoki, 2015; Comiso, 1995). The BT
algorithm assumes that there are two surface types: consolidated ice
regions (where the SIC is near 100%) and ice-free regions. It exploits
the distribution of unique clusters of TB in multichannel data, and tends
to be seasonally stable because it is less sensitive to thin ice and layering
effects with polarization (Comiso, 1995; Andersen et al., 2007; Comiso,
1986). Svendsen et al. (1987) proposed taking advantage of the high-
spatial resolution of the 85 GHz channels of SSM/I. It was later ex-
tended by Kaleschke et al. (2001) into the ARTIST (Arctic Radiation and
Turbulence Interaction Study) Sea Ice (ASI) algorithm. The ASI algo-
rithm combines the model for SIC retrieval from high-frequency chan-
nels (85 GHz for SSM/I; 89 GHz for AMSR) proposed by Svendsen et al.
(1987) with an ocean mask derived from low-frequency channels (19,
22, and 37 GHz for SSM/I; 18, 23, and 37 GHz for AMSR) using the NT
algorithm and weather filters (Spreen et al., 2008; Kern et al., 2003).
Although high-frequency data are sensitive to atmospheric influences,
they result in higher spatial resolution products.

Comparative studies to quantify the differences between the various
SIC retrieval algorithms have been conducted by Emery et al. (1994),
Comiso et al. (1997), Andersen et al. (2006), Ivanova et al. (2014,
2015), Kern et al. (2016), and Han and Kim (2018). In particular,
Ivanova et al. (2015) compared 13 SIC retrieval algorithms over low
and high SICs. Their study showed that there is no one superior algo-
rithm, and a combination of algorithms takes advantages of each al-
gorithm. Additionally, implementations of dynamic tie-points and at-
mospheric correction of input TBs reduced systematic bias and seasonal
variability in SIC. In Han and Kim (2018), they addressed the fact that
SIC retrieval algorithms exhibit regional variations and are inaccurate
in summer using high-resolution KOMPSAT (Korea Multipurpose Sa-
tellite)-5 SAR (Synthetic Aperture Radar) images. Despite many com-
parisons and assessments, concluding which algorithms are superior is
difficult because of their different characteristics and the inherent dif-
ficulties in obtaining true SICs. The differences among retrieval algo-
rithms are attributed to the selection of different frequency and polar-
ization modes, tie-points, weather filters, and land–ocean spillover
masks (Ivanova et al., 2014; Andersen et al., 2006; Emery et al., 1994;
Comiso et al., 1997; Ivanova et al., 2015; Kern et al., 2016; Han and
Kim, 2018). The absolute error of such algorithms is mainly due to
sensitivities to changes in the emissivity and temperature of the surface,
effect of atmospheric constituents, and melt ponds on Arctic summer
sea ice (Ivanova et al., 2015). Thus, although SIC estimates from PMW
data contain significant uncertainties, satellite-based SIC data remain
the best means of providing invaluable and continuous information for
many commercial, navigational, and operational applications over ex-
tended areas.

In recent years, interest in deep learning (DL) methodologies has
increased dramatically in the machine learning community, helped by
advances in computer hardware, algorithmic techniques, and the era of
big data. DL hierarchically learns representative features from large,
complex datasets. Compared to the shallow architectures employed by
artificial neural networks (ANNs) in the 1980s, the ability of DL to use
larger and deeper networks has promoted rapid growth in its use across
diverse fields of study (Zhang et al., 2016; LeCun et al., 2015). With
increasing quantities of remote sensing (RS) data available from mul-
tiple sources, deep architectures have also led to a proliferation of

promising results in classification, regression, and feature extraction
tasks (Hinton and Salakhutdinov, 2006; Zuo and Wang, 2014; Zou
et al., 2015; Chen et al., 2014; Hu et al., 2015a; Hu et al., 2015b; Chi
and Kim, 2017). Chen et al. (Chen et al., 2014) proposed a new clas-
sification approach for hyperspectral data using autoencoders (AEs). In
this study, single-layer and multi-layer stacked AEs were exploited to
extract shallow (abstract) and deep (complex) features, resulting in
improved accuracy compared to traditional methods. Hu et al. (2015a)
employed deep convolutional neural networks (CNNs) to classify hy-
perspectral RS data directly in the spectral domain, and investigated
how to transfer features for classification tasks with high-resolution RS
data using CNNs (Hu et al., 2015b). In a technical tutorial by Zhang
et al. (2016), various DL studies in RS data analysis were extensively
reviewed from the perspectives of image preprocessing, pixel-based
classification, target recognition, and scene understanding, and the
nature of future challenges was discussed. Several DL studies related to
Arctic sea ice have recently been conducted. Chi and Kim (2017) pro-
posed a DL-based SIC prediction method using long-term SIC time
series. While traditional SIC predictions have been performed using
environmental parameters from complex numerical, statistical, or en-
semble models, Chi and Kim used SIC data without incorporating any
physical data, and obtained comparable results to other prediction
models. Regional SIC estimation using a DL approach was considered
by Karvonen (2017), who successfully trained a multilayer perceptron
DL model using a combination of Sentinel-1 SAR and AMSR2 data in the
Baltic Sea. Although the Karvonen's study applied a DL architecture to
calculate SICs and yielded better estimates, it is not a global method for
multi-temporal datasets over the entire Arctic ocean.

In this paper, we propose an accurate and robust DL-based Arctic
SIC retrieval algorithm incorporating the TB data from the AMSR2
PMW sensor and high-resolution MODIS (Moderate Resolution Imaging
Spectroradiometer) images for practical, operational use. To develop
more accurate supervised models, obtaining sufficient true labeled data
of suitable quality for use as a reference is critical. This study is com-
posed of two phases: 1) the development of an accurate labeled dataset;
and 2) construction of a DL architecture for pan-Arctic SIC retrieval.
The first part of this study constructs reference labels by calculating
accurate SIC values from MODIS images corresponding to the area of a
pixel in low-resolution AMSR2 data. The retrieval of SIC values from
high-resolution images is often used to evaluate low-resolution SIC data
using a threshold method from single- or multi-band images and clas-
sification. However, determining the appropriate threshold value is
problematic for multi-temporal images because of the subtle spectral
differences inherent in multi-temporal images; classification methods
that determine the class membership of each pixel may result in the
overestimation or underestimation of continuous SIC values. To com-
pute more accurate, continuous, and quantitative SIC values at the sub-
pixel level of MODIS data, we propose a SIC retrieval approach based
on spectral mixture analysis with a new endmember extraction algo-
rithm appropriate for the identification of pure sea ice and water
components in multispectral data. We then show that the proposed
method outperforms pixel classification-based SIC retrieval approaches.
In the second part of this study, we develop the network topology of a
DL model for pan-Arctic SIC retrievals for operational purposes, and
conduct quantitative and qualitative comparisons with popular BT and
ASI-based SIC products at global and local scales, as well as for long-
term evaluations.

2. Datasets

The primary goal of this study is to develop a DL-based pan-Arctic
SIC retrieval model using AMSR2 TB data. Obtaining accurate reference
SIC labels, which is the most critical task in successful model devel-
opment, can be accomplished from field observations, ice charts, and
high-resolution images. Field observations generally have the most
accurate references, but are limited and costly over large regions such
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as Arctic oceans. The ice charts provided by the Russian Arctic and
Antarctic Research Institute (AARI) may provide useful sea ice in-
formation over extended areas periodically, but low-spatial/temporal
resolutions and high levels of uncertainty limit their use as true labels.
For these reasons, satellite RS data are commonly used to obtain re-
ference SIC data and evaluate SIC retrieval algorithms because of their
extensive coverage. In this study, we use 500 m MODIS surface re-
flectance images, which are collected daily over the Arctic region, ex-
cept in winter, to compute accurate SIC values for the reference labels.

2.1. AMSR2 sensor data

Following the AMSR-E on the Aqua satellite launched in 2002,
AMSR2 was successfully placed in orbit by the Japan Aerospace
Exploration Agency (JAXA) in May 2012 aboard the GCOM-W1 sa-
tellite, and began its operational observations in July. GCOM-W1's sun-
synchronous, near-polar circular orbit is timed to cross the equator from
north to south (descending node) at approximately 01:30 local time,
and from south to north (ascending node) at approximately 13:30 local
time. AMSR2 acquires measurements at seven different frequencies
(6.9, 7.3, 10.6, 18.7, 23.8, 36.5, and 89 GHz) with both horizontal (H)
and vertical (V) polarization (Okuyama and Imaoka, 2015). Compared
to the past-generation SSM/I sensor, AMSR2 offers a significant im-
provement in spatial resolution because of its large antenna size, with a
spatial resolution at 89 GHz of approximately 3 × 5 km2 compared with
approximately 14 × 16 km2 for SSM/I at 85 GHz. This enhanced spatial
resolution allows AMSR2-based SIC products to observe more detailed
sea ice distributions than SSM/I. The spatial resolution of SIC products
depends on the channel frequency, but AMSR2 generally offers higher
resolution products than SSM/I (Cho and Naoki, 2015; Karvonen, 2017;
Han and Kim, 2018; Okuyama and Imaoka, 2015).

Most SIC retrieval algorithms for AMSR2 use a subset of PMW
channel frequencies and polarizations. For example, the NT algorithm
uses 18.7 V, 18.7 H, and 36.5 V channels (with NT2 additionally using
85 V and 85 H); the BT algorithm uses 18.7 V, 36.5 H, and 36.5 V; the
ASI algorithm uses 89 H and 89 V. The 23.8 GHz channel is often used
for weather filters. In this study, all channels of the AMSR2 level 3 TB
product provided by JAXA, which is daily gridded data at a 10 km
spatial resolution in the polar stereographic projection, are used as
input data for a DL-based SIC retrieval model. It is unclear whether
exploiting other low-frequency channels that are not currently used in
existing SIC retrieval algorithms could significantly contribute to SIC
estimations. However, the use of more attributes and properties (e.g.,
frequency and polarization in our data) generally yields better out-
comes in DL studies, as novel topologies, coupled with computational
advances enable more complex and abstract decisions than in the past
(LeCun et al., 2015; Chi and Kim, 2017). As baseline SIC maps, BT and
ASI-based SIC images provided by the University of Bremen (available
at seaice.uni-bremen.de) are used. Both products include weather filters
(Spreen et al., 2008).

2.2. MODIS sensor data

MODIS is designed to provide measurements of large-scale global
dynamics in oceans, on land, and in the atmosphere. Its wide swath
(approximately 2330 km) and high-temporal/spectral resolution are
useful for many products and applications in diverse fields. The images
from the two MODIS instruments on the Terra and Aqua satellites ob-
serve the same regions three hours apart and both have sun-synchro-
nous, near-polar circular orbits. Terra's orbit is timed to cross the
equator from north to south at approximately 10:30 local time, Aqua is
timed to cross the equator from south to north at approximately 13:30
local time. In particular, Aqua passes the same orbital track 4 min after
the observation by GCOM-W1. Unfortunately, due to the failure of 70%
of the band-6 detectors on MODIS Aqua, which is the important band
for discriminating sea ice and clouds (Gladkova et al., 2012), this study

uses MODIS Terra data to create reference SIC values for DL model
training and evaluation of AMSR2-retrieved SIC values. Although SAR
has the advantage of acquiring images regardless of weather and
season, MODIS can observe the entire Earth every 1–2 days, except in
winter, resulting in spatially well-distributed labeled data. Seven 500 m
surface reflectance (MOD09GA) bands centered at 648, 858, 470, 555,
1240, 1640, and 2130 nm (bands 1–7, respectively) are used to com-
pute the reference SIC values for model training and evaluation. This
product is an estimate of the surface spectral reflectance that is cor-
rected for the effects of atmospheric gases and aerosols at ground level
based on the assumption that there is no atmospheric scattering or
absorption (Vermote et al., 2011). The data are downloaded from the
Level-1 and Atmosphere Archive & Distribution System (LAADS) Dis-
tributed Active Archive Center (DAAC), and processed using the MODIS
Reprojection Tool to create daily mosaic images (Vermote and Wolfe,
2015).

3. Methodology

3.1. Limitations of classification for SIC estimates and ice mixtures at sub-
pixel level

SIC is defined as the proportion of sea ice over a given area of the
ocean. The popular data analysis technique of classification aims to
categorize all pixels in an image into discrete, non-overlapping the-
matic categories according to algorithm specific rules.

As shown in Fig. 1, for example, let S be the corresponding SIC value
over an area of 4 × 4 km2. Assuming that eight sea ice patches of
0.8 × 0.8 km2 are located in an image with 1 km spatial resolution, as
shown in Fig. 1(a), S is 32% (i.e., (0.8 km × 0.8 km × 8)/
(4 km × 4 km) = 0.32). Applying a simple classifier, which determines
the class membership based on the proportion of sea ice area in a given
1 km × 1 km pixel, to this image to classify it as sea ice or water and
then compute S for the true SIC labels in the 4 km × 4 km area. For
example, in Fig. 1(b), S is 50% (i.e., eight sea ice pixels out of 16 total
pixels). Assume that the same sea ice patches moved to different loca-
tions in the same 16 km2 area, as shown in Fig. 1(c). The S is still 32%,
but the classification for S would be 0% as no pixels are classified as sea
ice, as shown in Fig. 1(d). Although this is a schematic example that
demonstrates the extreme cases, similar misclassifications can be found
in real images, as shown in Fig. 2.

Fig. 2 is composed of a MODIS color composite image (R/G/B:
bands 1/6/7) over the Fram Strait on August 1, 2017 and a classifica-
tion result map using a CNN. To generate the classification map, we first
remove land areas using a Land/Water Mask (MOD44W) Version 6 data
product (Carroll et al., 2017), and then remove clouds using a very
strict threshold (ρi ≥ 0.1; ∀ ρi : i= 1, ⋯, 7, where ρi is the spectral re-
flectance of the i-th MODIS band). Identifying the pure water and ice
pixels is generally simple because of the high spectral differences of
these classes in visible and near-infrared wavelengths. However, de-
termining the class membership of thin ice such as first-year ice or nilas,
and melt ponds is often difficult due to the mixtures of water and ice
signals. The classification results often depend on the classifier being
used; in this study, a CNN is used as it is a well-suited DL strategy for
the image classification tasks (Zhang et al., 2016). In Fig. 2(b), the
pixels associated with land, cloud, water, and sea ice are shown in dark
gray, light gray, dark blue, and dark red, respectively. As shown in
Fig. 2, many pixels that may be associated with low-concentration ice
or melting ice (rectangles) are classified as water, resulting in sig-
nificant underestimations when computing the reference SIC labels. In
other cases, some pixels in low-ice concentration zones, for which the
SIC values are obviously different from old (multi-year) or consolidated
ice pixels, are classified into the same class as the old ice (circles). These
overestimations degrade SIC estimates derived from high-resolution
images. Such under- and overestimates may be transferred to the DL
model training associated with AMSR2 TB data, eventually affecting the
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accuracy of SIC estimates.
In medium-spatial-resolution RS imagery, most pixels are a mixture

of more than one spectral signature owing to insufficient spatial re-
solution, the existence of intimate mixtures at a microscopic scale, and
multiple interference factors by atmospheric attenuation (Chi and
Crawford, 2014; Keshava and Mustard, 2002). In sea ice images, low-
spatial resolution implies that real mixtures of ice and water can be
found in one pixel area, and melting or low-concentration ice, as shown
in Fig. 2, may be related to intimate mixtures. This problem is difficult
to resolve by simply increasing the spatial resolution. Therefore, as
shown in Fig. 3, quantification of the ice and water signals associated
with each pixel is necessary for calculating more accurate SIC labels
than classification-based calculations, which can then be used as
training data for the DL model.

3.2. Spectral mixture analysis

Spectral mixture analysis (SMA), also known as spectral unmixing,
has been widely studied as a hyperspectral RS data analysis technique

for addressing the mixed-pixel issue. SMA decomposes a mixed pixel
into a collection of individual spectral signals at sub-pixel levels
(Keshava and Mustard, 2002), and usually comprises two steps. 1)
Finding the spectrally pure or extreme signatures, referred to as “end-
members,” that can be used to “unmix” the remaining mixed pixels. 2)
Expressing each pixel in the image as linear combinations of the end-
members, and computing the corresponding fractional abundances re-
lated to the “physical” quantity of the endmembers. Endmembers nor-
mally correspond to familiar spectrally homogeneous objects in the
scene.

In this study, linear unmixing is employed because it is robust and
easy to implement, where solving mixing problems for ice and water is
relatively simple. Based on the assumption that endmembers are line-
arly independent and the pixels in the image lie in linear spaces, let x be
a D-dimensional vector of spectral reflectance. Then, x can be modeled
in terms of a linear combination of q endmember vectors [e1,e2,⋯,eq]
using = = ax eq

ii 1 , where a is a fractional abundance of the end-
member vector ej. Two constraints are imposed to estimate physically
meaningful abundances (Heinz and Chang, 2001): 1) nonnegativity

Fig. 1. Diagrams showing the differences in calculations of sea ice concentration between practical and classification results. (a) Case 1: Distributions of sea ice
patches in a 4 × 4 km2 area. (b) Classification result of Case 1 for a 1 km spatial resolution image with area proportion-based classifier. (c) Case 2: Distributions of sea
ice patches in the 4 × 4 km2 area. (d) Classification result of Case 2 for a 1 km spatial resolution image with area proportion-based classifier. The dark blue and cyan
pixels represent ocean and sea ice pixels, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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(ai ≥ 0;∀ai : 1 ≤ i≤ q) and 2) sum-to-one =a( 1)i
q

i .
As the identification of an appropriate set of endmembers for the

modeling of mixed pixel spectra is the most critical task in linear SMA,
endmember extraction (EE) algorithms have been extensively in-
vestigated in the SMA community (Plaza et al., 2004). The EE algorithm
used in this study is unsupervised (fully automated) and robust to
anomalous pixels. Though the MODIS images used to form the SIC la-
bels in this study are acquired daily, the number of available pixels is
limited because of frequent high cloud cover. As the labels from MODIS
images must be spatially and temporally well distributed, and there
should be sufficient labels to develop a robust and operational model,

the collection of SIC labels from many optical images should be fully
automated. Although seeking representative pixels that may be asso-
ciated with extreme signals is often acceptable in a hyperspectral
image, in our case of solving the ice/water endmember problem in
multispectral data, selecting extreme signals can result in significant
underestimations of the SIC.

Among the various EE algorithms, the popular N-finder algorithm
(N-FINDR) exploits convex geometry, which is a straightforward con-
cept in nature (Winter, 1999). Because of its popularity, there are many
variations of N-FINDR. The goal of N-FINDR is to find the simplex with
the maximal volume spanned by q endmembers embedded in a data
space of lower dimension. First, the original data points are mapped
into a lower (q-1)-dimensional space using a feature extraction method;
then, the simplex volume formed by randomly selected seed points is

computed based on the matrix =M e e e
1 1 1

q1 2
. The volume of the

resulting simplex spanned by the endmembers [e1,e2,⋯,eq] is pro-
portional to the determinant of VM: M = M( ) abs(det( ))q

1
( 1) ! . The

volume of the simplex is computed for every pixel in each endmember
position by replacing the pixel and recalculating the volume when a
larger simplex is found. Typically, N-FINDR does not determine the
global maximum in general unmixing problems by iteratively testing
different sets of initial endmembers. In our case of solving a simple EE
problem with multispectral data, the effect of extreme pixels may not be
mitigated. This is discussed further in the next section.

3.3. Global and local landmark endmember extraction algorithm

A new EE algorithm is proposed using the global and local landmark
(GLL) approach to mitigate the impact of the global and local maxima
by selecting the representative pixels as landmarks. The landmarks are
a small number of points that are spectrally and spatially distinguish-
able pixels and are used as endmember candidates. The GLL algorithm
is composed of three steps: 1) performing singular value decomposition
(SVD) to determine a set of eigenvectors of image subsets; 2) de-
termining endmember candidates (landmarks) by projecting the image
data onto the eigenvectors; and 3) averaging the landmarks according
to their spectral similarity. The proposed algorithm starts with a full
image, and then successively divides it into smaller subsets to detect
pixels that contribute to local spectral variability. The details are as
follows.

SVD is a very efficient projection technique commonly used in RS to
obtain a set of eigenvectors that explain most of the spectral variability
of the data. The SVD of X can be defined by X=USVT, where VT

contains the unit row eigenvectors of XTX sorted in order of descending

significances, S is of the form ( )C 0
0 0 , C is diagonal, the square roots of

the eigenvalues of XTX are sorted in descending value, and U denotes a

Fig. 2. (a) Enhanced MODIS 1/6/7 band composite of the Fram Strait on
August 1, 2017, (b) Classification result (land: dark gray; cloud: light gray; sea
ice: dark red; water: dark blue). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Examples of ice and water mixtures at the sub-pixel level (SIC: sea ice
concentration).
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matrix containing the unit column eigenvectors of XXT (Danaher and
Omongain, 1992).

The proposed GLL algorithm uses sequential, non-overlapping,
equally sized subsets of the image (see Fig. 4). The eigenvectors ac-
counting for 99% of the total spectral variance are retained from each
image subset and compiled into a single eigenvector matrix M. These
vectors represent high-spectral-variability landmarks in the local spatial
subsets. In the case of larger subsets, landmarks might have relatively
high spectral variability, indicating that they are useful for identifying
strong signals. The use of smaller subsets may lead to more re-
presentative landmarks for local areas that cannot be detected from the
global image, although a large number of eigenvectors is ultimately

retained.
The projection P of the entire set of data points onto one of the

eigenvectors M is expressed by P=MTX. The pixels lying at either
extreme of the projection are more likely to be good landmarks, and
these are identified from each subset. As the number of pixels of the
subsets decreases (i.e., the number of the subsets increases), the number
of landmark pixels increases, indicating that the spectral redundancy
will also increase (see Fig. 4).

In the final combining step, this large number of redundant data
points in the local images may play a role in mitigating the impact of
the extreme signals detected in the global images by averaging land-
marks depending on their spectral similarity.

Fig. 4. Examples of spectrally and spatially meaningful pixels, referred to as landmarks (yellow dots) from different subset-sizes: (a) 1 × 1, (b) 2 × 2, (c) 3 × 3, (d)
4 × 4, (e) 5 × 5, and (f) 6 × 6 from an enhanced MODIS 1/6/7 band composite image of the Fram Strait on August 1, 2017. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Architectures of a multilayer perceptron deep learning model. (a) Simple model architecture with two hidden layers. (b) Tuned model topology for Arctic sea
ice concentration retrieval.
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3.4. Deep learning model

Deep learning is a fast-growing subfield of machine learning based
on artificial neural network, and its application in various fields has
been enabled by the growing availability of big data and solutions to
the problems of overfitting and high computational demand. While
traditional ANN has only one hidden layer, DL may have more than two
hidden layers in the network. The first hidden layer of the DL archi-
tecture makes simple decisions, such as the weighting of the input
variables, while the deeper hidden layers engage in more complicated
decision-making (LeCun et al., 2015). Among the many types of DL
models, in this study, a multilayer perceptron (MLP), also known as a

“feedforward neural network”, is used to develop a DL-based regression
model for SIC retrievals from PMW data. The differences between the
outputs of an MLP and the desired values are used to iteratively update
the weights in the network, and then the MLP eventually estimates the
optimal results.

Fig. 5(a) illustrates the architecture of a simple MLP network with
two hidden layers for learning a mapping function using the hier-
archical or multilayered structure of the networks. A neuron is a com-
putational unit that has weighted input signals and produces output
signals using an activation function. The neurons are then arranged into
a network topology. A simple neural network comprises input (visible),
hidden, and output layers. The input layer is the bottom layer that is
exposed to the network (x in Fig. 5(a)). After the input layer, several
hidden layers that are not directly exposed to the network play a role in
solving problems, such as using the weight (w) and activation function
(f) in Fig. 5(a). The final layer, called the output layer, provides the
prediction values of the resulting variables (y in Fig. 5(a)). To learn the
representation in datasets and predict the output variable, developing
an appropriate DL network topology through suitable parameter con-
figurations is critical. Although there are many options, some preferred
configurations, such as small random numbers for weight initialization,
a rectified linear unit (relu) activation function, and an Adam (Adaptive
Moment Estimation) gradient descent optimizer are typically used. A
dropout layer is one of the most effective and commonly used reg-
ularization techniques for ANNs where arbitrarily selected neurons are
ignored during training, and is often added after each hidden layer to
prevent overfitting (Srivastava et al., 2014). However, the numbers of
hidden layers and neurons should be tuned for each dataset, because it
is important to determine the optimal network topology for the dataset
(Bashiri and Geranmayeh, 2011). To select the optimal parameters that
maximize the model scores, a grid search is used (Bergstra and Bengio,
2012). The final network topology for the DL-based SIC retrieval model
is described in Fig. 5(b). The first five hidden layers of the developed
network use the relu activation function, meaning zero out negative
values, and have dropout layers with a rate of 0.2, i.e., one in five inputs
are randomly excluded from each update cycle. Moreover, a saturation
threshold value of the relu function in the last hidden layer is set to one
as the output variable is the SIC. Therefore, the output values predicted
by training the proposed network have a range of 0 to 1, which are then
scaled from 0 to 100.

To create high-resolution-based SIC labels for DL-MLP model
training and testing, we generate daily mosaics of MODIS surface re-
flectance images in the polar stereographic projection. Seventy-two
images from April to September for each of the years 2016 and 2017 are
used for model training and evaluation, respectively. Each week's data
are composed of three consecutive images (e.g., 4/10, 11, 12; 9/11, 12,
13). First, ice/water classification or fractional abundance maps from
each MODIS image are generated using CNN-classification and SMA-
based approaches. To generate label datasets composed of MODIS SIC
values (ys, t) and AMSR2 TB values (xs, t), we then find the pixel in the
500 m MODIS image nearest to the center coordinate (s, t) of each
10 km AMSR2 pixel using a Euclidean distance calculation. Because of
the significant resolution difference between the two sensors, MODIS
pixels with > 500 m distance from the center of the AMSR2 pixel are
removed from the label sets. Let xs, t be a 14 × 1 vector of TBs recorded
at the 6.9, 7.3, 10.6, 18.7, 23.8, 36.5, and 89 GHz channels with hor-
izontal and vertical polarization. Using all MODIS pixels within 10 km
of the IFOV (Instantaneous field of view) of AMSR2, we calculate ys,
t =Aice/AIFOV, where Aice and AIFOV are the areas of MODIS sea ice
pixels and total MODIS pixels in the AMSR2's IFOV, respectively. The
training process runs for a number of iterations in which the entire
training dataset is exposed to the network until the loss function
reaches its minimum error. The model score converges to the maximum
after approximately 10,000 iterations and trains for around 14 h on an
Intel Xeon (2.20 GHz, 22 cores) with a NVIDIA Titan X (3584 CUDA
cores).

Fig. 6. Identified endmembers and sea ice concentration maps derived from
fractional abundance maps using (a) N-FINDR (N-finder) and (b) GLL (global
and local landmark) endmember extraction algorithms.
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4. Experimental results and discussion

We conduct experiments to test the performance of our proposed
approaches, and to address and discuss issues in existing SIC products.
This section describes the following experiments: 1) Test of the pro-
posed GLL algorithm to select the best ice/water endmembers; 2)
Comparison of classification using CNN and SMA to determine SIC es-
timates from MODIS; 3) Quantitative validations of the DL-based SIC
retrieval model; 4) Feature importance test; 5) In-depth regional com-
parisons; and 6) Long-term cross-validations for an operational system.

4.1. Evaluation of GLL endmember extraction algorithm

We evaluate the proposed EE algorithm using a subset of MODIS
images from over the Fram Strait acquired on August 1, 2017
(Fig. 2(a)). Using the SMA approach, SIC is calculated as SICMODIS/

SMA = (1/n) =i
n

1aice, i × 100, i= 1, ⋯, n, where aice, i is the fractional
abundance of the sea ice endmember at the i-th MODIS pixel and n is
the number of MODIS pixels in the IFOV of AMSR2. Based on the as-
sumption that, after removing land and cloud pixels, there are only ice
and water pixels in the image, we first find ice and water endmembers
using the well-known N-FINDR algorithm, and then compute the frac-
tional abundances of the ice endmember to retrieve the SIC values, as

illustrated in Fig. 6(a). As mentioned in Section 3.2, because N-FINDR
seeks extreme pixels as endmembers, the ice endmember identified by
N-FINDR has high reflectance values in the visible and near-infrared
wavelengths (bands 1–4), which may be associated with anomalous
pixels in the image. If we use this anomalous signal as the ice end-
member, the fractional abundance of the sea ice could be under-
estimated. In our test image, most sea ice pixels that are obviously
consolidated ice show SIC values of 50%–60%. However, the proposed
GLL algorithm finds a more representative ice endmember than N-
FINDR, although both methods find similar water endmembers. As
shown in Fig. 6(b), the resulting fractional map of the ice component is
in better agreement with the MODIS reflectance image (see Fig. 2(a)),
and captures more detailed sea ice characteristics than N-FINDR. Note
that water and ice endmembers in SMA are similar to tie-points for low
and high SIC in sea ice community, respectively, but they are not ne-
cessarily identical.

Fig. 7 compares SMA-based SICs using the N-FINDR (SICMODIS/SMA-

NFINDR) and GLL (SICMODIS/SMA-GLL) EE algorithms, and the SICs from
the BT (SICAMSR2/BT) and ASI (SICAMSR2/ASI)-based products. It is
worthwhile to include results of such baseline SIC products for this
experiment to evaluate the performance of the EE algorithms, as they
are widely used and the SICs in the consolidated ice and ice-free regions
are generally in good agreement, unlike in marginal ice zones. As

(a) (b)

(c) (d)

Fig. 7. Comparison of the performance of endmember extraction algorithms for SMA (spectral mixture analysis)-based SIC (sea ice concentration) calculations: (a)
SICMODIS/SMA-NFINDR vs SICAMSR2/BT; (b) SICMODIS/SMA-NFINDR vs SICAMSR2/ASI; (c) SICMODIS/SMA-GLL vs SICAMSR2/BT; (d) SICMODIS/SMA-GLL vs SICAMSR2/ASI (assuming that
the SICAMSR2/BT and SICAMSR2/ASI are the true values; N-FINDR: N-finder; GLL: global and local landmark; BT: Bootstrap; ASI: ARTIST sera ice).
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shown in the scatter plots, the SICMODIS/SMA-NFINDR values are sig-
nificantly underestimated in high-SIC regions when compared with
SICAMSR2/BT and SICAMSR2/ASI values (see Fig. 7(a) and (b)), In contrast,
the SICs given by our proposed GLL method are in reasonable agree-
ment with those from the BT and ASI-based SIC images (see Fig. 7(c)
and (d)), especially in the high-concentration ranges. As the proposed
GLL algorithm mitigates extreme signals through the spectral averaging
of globally and locally representative signals, it selects more robust and
insensitive signals as endmembers than N-FINDR, resulting in more
accurate fractional abundances (SICs) than N-FINDR. Therefore, in this
study, the GLL algorithm is used to retrieve SMA-based SIC estimates
from MODIS (SICMODIS/SMA-GLL) to determine the accurate labels.

4.2. Comparison of SIC calculations based on classification and spectral
mixture analysis

As we address the limitations of classification for estimating high-
resolution SICs in Section 3.1, the experiments described in this section
are intended to evaluate whether SMA-based SIC retrieval is more ac-
curate than the classification approach. A visual inspection of Figs. 2(b)
and 6(b) shows that the classification approach assigned pixels to either

the sea ice or water class, regardless of ice types, conditions, and con-
centrations (see Fig. 2(b)), whereas each pixel identified by the SMA
approach has different and continuous fractions that seem to be highly
related to ice concentrations (see Fig. 6(b)). Quantitative comparisons
are conducted using the 2016 MODIS datasets used for DL model
training. As this experiment aims to determine the SIC retrieval ap-
proach from MODIS images, we assume that the SICAMSR2/BT and SI-
CAMSR2/ASI values are the true SICs in these experiments. For classifi-
cation-based SIC calculations, supervised classification using CNN is
performed to generate classification maps, and the SICs are then com-
puted using classified MODIS pixels in the 10 km IFOV of AMSR2 as
follows: = ×SIC 100MODIS/CLS

number of MODIS ice pixels in AMSR2 s IFOV
total number of MODIS pixels in AMSR2 s IFOV .

Fig. 8 shows scatter plots of the AMSR2-retrieved SICs by popular
algorithms (SICAMSR2/BT, SICAMSR2/ASI; x-axis) and MODIS-retrieved
SICs by classification/SMA (SICMODIS/CLS, SICMODIS/SMA-GLL; y-axis).
Statistical comparisons are conducted using three difference metrics: 1)
root mean square error (RMSE); 2) coefficient of determination (R2);
and 3) bias (mean error). In statistics, the bias is not usually as in-
formative as the RMSE because positive and negative errors cancel each
other out; however, in SIC evaluations, it is often used to determine

Fig. 8. Comparison of the performance of SIC (sea ice concentration) retrieval approaches using 2016 MODIS datasets. (a) SICAMSR2/BT vs SICMODIS/CLS; (b) SICAMSR2/

BT vs SICMODIS/SMA-GLL; (c) SICAMSR2/ASI vs SICMODIS/CLS; (d) SICAMSR2/ASI vs SICMODIS/SMA-GLL (assuming that the SICAMSR2/BT and SICAMSR2/ASI are the true values; CLS:
classification; SMA: spectral mixture analysis; GLL: global and local landmark; BT: Bootstrap; ASI: ARTIST sea ice).
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whether the estimated values are overestimated or underestimated
compared to the observed ones. As shown in Fig. 8(a) and (c), the
distribution of points in the scatter plots and the positive bias values of
SICMODIS/CLS indicate that the CNN classifier identifies more ice pixels
than what actually existed, while the negative values in the comparison
of the SICMODIS/SMA-GLL and SICAMSR2/BT in Fig. 8(b) indicate under-
estimations. Although the bias between SICMODIS/SMA and SICAMSR2/ASI

in Fig. 8(d) also shows positive values, it decreases from 3.51 to 1.60.
Furthermore, the absolute bias values of SICMODIS/SMA-GLL are smaller
than those of SICMODIS/CLS in both comparisons of the BT- and ASI-based
SIC images. Overall, the SICMODIS/SMA-GLL generally shows better sta-
tistical agreement with SICAMSR2/BT and SICAMSR2/ASI than SICMODIS/CLS.
None of the difference metrics significantly improves as there are many
samples in the open sea and consolidated ice regions with quite accu-
rate SIC estimates from most SIC retrieval algorithms, along with in-
herent errors and uncertainties in the retrieval algorithms. However,
this comparison is valuable, as it indicates that SMA-based SIC esti-
mates from high-resolution data outperform the classification approach
in terms of creating reference SIC labels. Therefore, in this study, the
SMA approach is used to estimate SIC values from MODIS images for
use as the ground truth in DL model training.

4.3. Training and validation of AMSR2 SIC retrieval model using MLP DL
model

As described in Section 3.4, independent TB datasets from AMSR2
acquired in 2016 are used to train DL models for ascending and des-
cending paths based on the network topology illustrated in Fig. 5(b).
The SIC values retrieved from the DL models for ascending and des-
cending paths are then averaged to calculate the daily SIC values (SI-
CAMSR2/DL). As the development of an operational DL-based SIC re-
trieval model is the ultimate goal of this study, the retrieval model must
be robust in time. We use 72 independent datasets collected in 2017
that are not used for model training to qualitatively and quantitatively
validate the proposed retrieval model.

First, the overall accuracy of three SIC images retrieved by the BT,
ASI, and DL algorithms are compared using quantitative evaluations, as
shown in Fig. 9. Statistical comparisons are conducted using the
SICMODIS/SMA-GLL values (x-axis) and the corresponding AMSR2-derived
SICs given by the three retrieval algorithms (SICAMSR2/BT, SICAMSR2/ASI,

SICAMSR2/DL; y-axis). For the SICAMSR2/BT values (see Fig. 9(a)), the
distribution of points is mostly above the one-to-one line (white dashed
line) and shows a positive bias, whereas with the SICAMSR2/ASI values
(see Fig. 9(b)), many points are below the white dashed line showing a
negative bias. Note that the SICAMSR2/BT values tend to overestimate the
SIC, whereas the SICAMSR2/ASI values underestimate the SIC compared
to the SICMODIS/SMA-GLL values. Overall, the statistical accuracy of the
BT-based retrievals is slightly better than that of ASI (i.e., smaller RMSE
and larger R2). In statistical terms, the proposed DL-based retrieval
model generally outperforms both BT- and ASI-based retrievals. As
shown in Fig. 9(c), the data points in the scatter plot are located around
the one-to-one line, and the bias is much closer to zero than either BT or
ASI, indicating that the DL model neither underestimates nor over-
estimates the SIC values compared to SICMODIS/SMA-GLL. This direct
comparison without tie-point tuning of the BT and ASI algorithms may

Table 1
Statistical accuracies of SIC (sea ice concentration) products depending on the
SIC ranges.

Bootstrap ARTIST sea ice Deep learning

SIC < 5% & SIC > 95% RMSE 2.83 2.75 1.87
Bias 0.36 −0.99 −0.66

20% < SIC < 80% RMSE 10.83 14.29 8.46
Bias 6.32 −7.84 −0.40

(caption on next page)
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not be adequate as the DL model is trained on SIC labels generated from
MODIS datasets, and all results are relative to SICMODIS/SMA-GLL values.
Although the tie-points in the low and high SIC ranges can mostly be
controlled (Ivanova et al., 2015), as shown in Table 1, at the extremes
of the SIC (< 5% and > 95%), differences in all statistical metrics
among the retrieval algorithms are not significant and the SICAMSR2/BT

values show the smallest bias. The differences and errors probably re-
sult from the marginal ice zones (20% < SIC < 80%) as most SIC
algorithms are developed based on open sea and consolidated ice re-
gions. In particular, the distributions of the SICAMSR2/DL values
(Fig. 9(c)) in the 20%–80% range are smaller and closer to the one-to-
one line than values from other algorithms. However, some pixels are
significantly misestimated compared to the reference SICMODIS/SMA-GLL

values in all retrieval algorithms. For example, there are zero SIC values
estimated by all retrieval algorithms along the x-axis in Fig. 9. These
significant differences may be caused by acquisition time differences
between AMSR2 (01:30 for descending node; 13:30 for ascending node)
and Terra MODIS (10:30) or inherent errors in the SMA-based SIC
calculations from MODIS. Although SICMODIS/SMA-GLL values are quan-
titatively estimated at the sub-pixel level, in some cases, such as clouds
containing ice particles, the pixels can be detected as ice mixtures,
which could be included in training and test datasets. We use a strict
cloud filter (see Section 3.1) to minimize such errors, but this is not
completely effective. However, these inaccurate labels are relatively
few compared to the accurate labels. In addition, the DL model is
trained using sufficient data and learning epochs. Therefore, these er-
rors might be mitigated during the training process, resulting in good

agreement with the SICMODIS/SMA-GLL values for most AMSR2 pixels.
Whereas the previous comparisons consider the overall accuracy for

the test sets, Fig. 10 and Table 2 present statistical comparisons of daily
test data to observe the seasonal performance of each retrieval algo-
rithm. Table 2 shows that the proposed DL retrieval algorithm generally
has better statistical performance with respect to SICMODIS/SMA-GLL va-
lues than SICAMSR2/BT and SICAMSR2/ASI values. Better mean statistics
indicate that the proposed DL algorithm produces more accurate SIC
products, and low-standard deviations in the daily data suggest more
robust SICs in the time domain. Consistent with the previous overall
comparison, SICAMSR2/ASI is statistically less accurate than SICAMSR2/BT

for the data in this study. In the daily comparisons (Fig. 10), ASI-based
SIC images underestimate the overall SIC values, but are exceptionally
accurate compared with the SICAMSR2/BT values in summer (Au-
gust–September) when many melting ice and melt ponds exist. SIC
values can be underestimated in summer as the existing PMW SIC re-
trieval algorithms consider the melt ponds as open water due to their
similar radiometric signatures. Therefore, they often yield the percen-
tage of the ice covered surface excluding the area of melt ponds
(Ivanova et al., 2015; Kern et al., 2016). This is owing to the fact that
the uncertainties and errors in the SIC retrieval algorithms are much
greater in summer than in other seasons (Ivanova et al., 2015; Kern
et al., 2016; Han and Kim, 2018). In optical images, the melt ponds
have similar spectral signatures of open water, and this may result in
mixtures of ice and water signals in a 500 m MODIS pixel. However, the
proposed SMA approach accurately quantifies the amount of ice and
water (either the open water or the melt ponds) fractions in a pixel, and
then estimate accurate ice concentrations that are used for the DL
model training. Although BT-based SIC images outperform ASI overall
in this study, ASI-based retrievals are in better agreement with the DL
results for summer sea ice estimates (Table 2). As the proposed DL re-
trieval model generates SIC outcomes that are statistically more accu-
rate than those of both BT and ASI throughout the validation period of
our data, there is a strong justification for further investigation of DL for
estimating Arctic SIC values from AMSR2 PMW data.

4.4. Feature importance of AMSR2 channels in DL-based SIC retrieval
model

Unlike the BT and ASI algorithms that exploit physical character-
istics of ice and water signals across certain frequency and polarization
channels of PMW data, in neural networks, quantifying the importance
of single channels on the SIC estimations is difficult. This is because
neural networks often solve problems by exploiting nonlinear re-
lationships between multiple input features via hidden layers; hence,
they are often called a “black box”. However, permutation importance
tests can indicate the features having the biggest statistical impact on
the retrievals. The permutation importance tests are performed using a
trained model, where a single feature of the test data is randomly
shuffled, while all other channels are kept constant. This results in less
accurate retrievals as the data no longer corresponds to the fitted
model. The magnitude of the errors as each channel is varied can be
used to indicate its importance.

Fig. 11 shows the increased values of RMSE obtained by the per-
mutation importance tests of the AMSR2 channels, which are calculated
after 100 replications of tests. More important feature has higher in-
creased value of RMSE. The most important feature is the 89 (V)
channel. In this study, although we use resampled 10 km AMSR2 TB
data as inputs, the original resolution of the high-frequency channel is
nearly three times higher than that of the low-frequency channels. This
may be one reason that the 89 (V) channel has the biggest impact on the
retrievals. Four out of the first five most important features are the
channels widely used in other SIC retrieval algorithms. However, the
10.6 (H) channel, which is often used in wind speed retrieval algo-
rithms (Reddy et al., 2018), statistically shows the third-largest con-
tribution to the model. Although current SIC retrieval algorithms do not

Fig. 10. Daily statistical comparisons of BT (blue), ASI (red), and DL (yellow)
algorithms. (a) RMSE; (b) Bias; and (c) R2 (BT: Bootstrap; ASI: ARTIST sea ice;
DL: deep learning). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Table 2
Summary of statistical accuracies according to sea ice concentration retrieval
algorithms on validation datasets from April–September 2017 (note: standard
deviations are in parentheses.)

Bootstrap ARTIST sea ice Deep learning

RMSE 6.39
(1.79)

6.37
(2.14)

5.19
(1.55)

Bias 1.84
(1.19)

−1.52
(1.55)

−0.42
(1.11)

R2 0.95
(0.05)

0.95
(0.05)

0.97
(0.03)

Fig. 11. Increased values of RMSE by feature importance test of AMSR2
channels to statistically analyze which channel contributes most to the sea ice
concentration estimations (i.e., more important feature has higher increased
value of RMSE).
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exploit data from the 10.6 GHz channels, (Zhang et al., 2018) has
shown a negative correlation between wind and SIC. Therefore, such
data could be used to improve sea ice retrievals. The 23.8 GHz channels,
often used in weather filters of the BT and ASI-based SIC products, are
not statistically important, but this may have been due to the small
number of pixels corrected by the weather filters. Overall, the hor-
izontal polarization channels may statistically be more important than
vertical polarizations, but there is no negative feature in the feature
importance tests. It should be noted that all frequency and polarization
channels of AMSR2 play a certain role in improving the accuracy of SIC
retrievals, irrespective of whether they are statistically significant.

4.5. Regional in-depth comparisons

In this section, we investigate selected regions on specific dates to
provide in-depth quantitative and qualitative comparisons of the re-
trieval methods. The comparisons are conducted over Baffin Bay in
spring and the Fram Strait in summer. These data are selected as they
exhibited high local variations in SIC values.

4.5.1. Baffin Bay (May 15, 2017)
Fig. 12 illustrates the MODIS 1/6/7 band composite image and SIC

images generated by the BT, ASI, and DL algorithm for data captured on
May 15, 2017. This experiment is designed to allow in-depth quanti-
tative and qualitative comparisons of Baffin Bay, but several other in-
teresting areas are also identified. In the Kara Sea (R1), the character-
istics of each retrieval algorithm (as described in the previous section
with respect to DL, i.e., BT: overestimate; ASI: underestimate; DL:
neutral) are again observed. Due to insufficient number of pixels for
statistical comparisons by a strict cloud filter (see Section 3.1), only
visual inspections are conducted in this region. As shown in Fig. 13(a),
it is difficult to discriminate ice from cloud pixels, but there are few
low-SIC pixels that may be associated with mixtures of ice and water
pixels. Visual interpretation indicates that SICAMSR2/ASI and SICAMSR2/DL

in this region are similar to the ice distributions in high-resolution
image, whereas the BT-based SIC values overestimate the SIC compared
to the others. In the central Arctic ocean (R2 in Fig. 12), significant
underestimations in the ASI-derived SIC map are observed in a narrow
band running from top to bottom (70%–80% SIC range), unlike the BT
and DL-based retrievals. In the rest of R2 of the ASI results and in the

Fig. 12. Regional comparison on May 15, 2017, over Kara Sea (R1), Central Arctic ocean (R2), and Baffin Bay (R3). (a) Enhanced MODIS 1/6/7 band composite; sea
ice concentration images retrieved by (b) BT (Bootstrap), (c) ASI (ARTIST sea ice), and (d) DL (deep learning).
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complete BT and DL results in R2, the SIC is homogeneously high or
higher than that observed in the MODIS image (Fig. 12(a)). From an
overall analysis using adjacent areas and dates, and high-resolution
images, we additionally confirm that this region is definitely covered by
consolidated ice. This type of obviously incorrect estimation may be
attributable to weather events. The ASI algorithm uses high-frequency
channels to provide high-resolution SIC products, but contributing
factors from other frequencies and polarizations cannot be discerned.
However, the proposed DL-based retrieval algorithm exploits all fre-
quencies and polarizations for SIC estimates. Although it is difficult to
physically explain how each channel contributes to the SIC estimations
in the DL model, these inaccurate estimates in other retrieval algo-
rithms are properly handled by the DL approach.

Fig. 14 illustrates in-depth comparisons over Baffin Bay (R3 in
Fig. 12) and is composed of SIC images and scatter plots of considered
true (x-axis) and estimated (y-axis) SICs retrieved by the BT, ASI, and
DL algorithms. As shown in the visual comparisons of the resulting
images (areas indicated by solid and dotted rectangles in
Fig. 14(a)–(c)), the BT-retrieved image overestimates SIC values in re-
gions where sea ice is not observed or covered only very small portions
of the MODIS image. In contrast, the ASI-based SIC image neglects low-
concentration or melting ice, and yields relatively large areas of ice-free
pixels (see the dotted rectangle in Fig. 14(e)). However, the SIC image
generated by our DL approach is in better agreement with the spatial
distributions of sea ice in the MODIS SIC image. The SIC image by the
ASI algorithm seems exhibiting greater SIC variability and capturing
more detailed characteristics of the sea ice than other retrieval algo-
rithms, but it underestimates high-concentration pixels in the visual
inspection (see circles in Fig. 14(a)–(c), (e), (g)). In statistical com-
parisons based on the scatter plots, the SICAMSR2/BT data show a large

positive bias of 9.47, whereas SICAMSR2/ASI data have a large negative
bias of −9.73, compared to the SICMODIS/SMA-GLL values. It exhibits si-
milar incorrect estimation patterns as those using the entire validation
dataset (see Fig. 14(d) and (f)). The DL-based retrieval model achieves a
higher R2 value for the linear regression model between the reference
and estimated values, and a lower RMSE value than the BT and ASI-
based products. As shown in Fig. 14(h), the samples are mainly dis-
tributed near the one-to-one line. A small bias also indicates that there
are no systematic over-/underestimation, unlike the BT and ASI-based
retrievals. In addition, pixels in the difficult-to-estimate range
(20%–80% SIC) exhibit higher accuracy outcomes in the scatter plot.

4.5.2. Fram Strait (August 1, 2017)
Fig. 15 shows another MODIS 1/6/7 band composite alongside SIC

products generated by the BT, ASI, and DL algorithms for data recorded
on August 1, 2017. Similar to the previous validations, we first examine
several local areas with visual inspections, and then conduct in-depth
visual and statistical investigations over the Fram Strait (R4). Unlike the
ASI and DL-retrieved images, BT generates a wide spread of low-SIC in
the ice-free Kara Sea (R1). These errors may be dominated by TB
changes caused by weather influences. Although weather filters are
usually applied to SIC retrieval algorithms, as in this case, the artifacts
are not always properly removed. An advantage of the proposed DL
model is that it does not use any weather filters. As our proposed
method uses all frequency and polarization channels to train the DL
model, the channels used in the weather filters are inherently exploited
as input attributes for the DL model training (see Section 4.4 and
Fig. 11). In the Bering Sea (R2), small ice patches are reported by the BT
and ASI-based SIC maps, unlike DL. Although the ice patches are not
observed in the MODIS images because of high cloud cover, the

Fig. 13. Enlarged sea ice concentration images over Kara Sea (R1 in Fig. 12) retrieved by (a) SMA (spectral mixture analysis) from MODIS; (b) BT (bootstrap), (c) ASI
(ARTIST sea ice), and (d) DL (deep learning)-based approach from AMSR2.
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presence of sea ice in the Bering Sea (~60° latitude) in summer is un-
likely and these patches are not observed on adjacent dates. The BT-
based SIC image also produces large overestimations along the coastline
of Baffin Island (R3) compared with the ASI and DL-based SIC values,
although quantitative comparisons could not be conducted due to cloud
cover. Overall, the BT-based SIC image visually overestimates the SICs
compared with the ASI and DL-based SIC values in the summer season.

In Fig. 16, the SICs generated by the BT, ASI, and DL algorithms
over the Fram Strait (R4 in Fig. 15) are qualitatively and quantitatively
compared. As indicated by the solid and dotted rectangles in Fig. 16,
both SICAMSR2/BT and SICAMSR2/DL exhibit good agreement with
SICMODIS/SMA-GLL values, whereas SICAMSR2/ASI does not locate most of
the low-concentration pixels, resulting in underestimations. Overall, the
extents of the ice patches identified by BT better match those in the
MODIS images compared to the DL-based result, but BT does not cap-
ture the small ice-free areas indicated by the solid rectangles. In

addition, as illustrated by the circles in Fig. 16, both BT and DL indicate
a similar SIC variability to the high-resolution images, unlike ASI.
However, the sea ice extents identified from the BT and ASI images
seem to be overestimations and underestimations, respectively, com-
pared to MODIS-derived and DL-based SIC images, although the DL
result misses some low-concentration pixels that are captured by the
BT-based retrieval. As seen in the scatter of plots and generated sta-
tistics, the SICAMSR2/DL values agree best with the SICMODIS/SMA-GLL

values that we take as reference (small RMSE and large R2) and the
samples show no significant bias. However, the SICAMSR2BT significantly
overestimates values in the range 0–50% SIC, while the SICAMSR2/ASI

shows large underestimations in the 20%–80% SIC range, similar to the
global comparisons. In general, in the spring data discussed in Section
4.5.1, the BT-based SIC slightly outperforms ASI, while in the summer
data, the ASI generates more accurate SIC values than BT. Note that
ASI-based SIC product shows relatively good estimates during the

Fig. 14. Qualitative and quantitative comparisons over Baffin Bay (R3 in Fig. 12). (a) Enhanced MODIS 1/6/7 band composite; (b) MODIS-derived SIC (sea ice
concentration) image; SIC images retrieved by (c) BT (Bootstrap), (e) ASI (ARTIST sea ice), and (g) DL (deep learning); scatter plots of SICMODIS/SMA values (x-axis)
and estimated SIC values (y-axis) retrieved by (d) BT, (f) ASI, and (h) DL.

Fig. 15. Regional comparison on August 1, 2017, over Kara Sea (R1), Bering Sea (R2), Baffin Island (R3), and Fram Strait (R4). (a) Enhanced MODIS 1/6/7 band
composite; sea ice concentration images retrieved by (b) BT (Bootstrap), (c) ASI (ARTIST sea ice), and (d) DL (deep learning).
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melting season, where this regional result is consistent with the daily
comparisons discussed in Section 4.3 (see Fig. 10).

4.6. Six-year cross-validation for an operational algorithm

Although our SIC calculations from MODIS using the SMA approach
are performed in an unsupervised manner to generate validation data,
the use of all past data for validation is inefficient due to the large
quantity of data and the lack of availability of MODIS images in winter.
In addition, as the goal of this research is to develop an operational SIC

retrieval algorithm, the model should be robust to unseen future data as
well as past data.

In this experiment, we evaluate daily DL-based SIC data in the entire
Arctic ocean using the results generated by operational BT and ASI
algorithms on six-years of historical data collected from July 3, 2012 to
December 31, 2017. This comparison enables us to determine that our
proposed DL-based retrieval algorithm can be used in operational sys-
tems. The cross-validations used the RMSE and bias values between
SICAMSR2/DL and SICAMSR2/BT/SICAMSR2/ASI values. Fig. 17 shows the
daily RMSE and bias changes, while Table 2 summarizes the statistics

(a) (b)

(c) (d)

Fig. 16. Qualitative and quantitative comparisons over the Fram Strait (R4 in Fig. 15). (a) Enhanced MODIS 1/6/7 band composite; (b) MODIS-derived SIC (sea ice
concentration) image; SIC images retrieved by (c) BT (Bootstrap), (e) ASI (ARTIST sea ice), and (g) DL (deep learning); scatter plots of SICMODIS/SMA values (x-axis)
and estimated SIC values (y-axis) retrieved by (d) BT, (f) ASI, and (h) DL.
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for the annual means and standard deviations of RMSE and bias values
from 2012 to 2017. In the previous sections, we indicate that BT gen-
erally outperforms ASI throughout the year, except in summer. As
shown in Fig. 17(a), the RMSE values of DL with respect to ASI are
greater than those with respect to BT, while the RMSE values of ASI in
summer are generally lower than or similar to those of the BT algo-
rithm. For the relative bias changes in Fig. 17(b), overall, the SICAMSR2/

BT values slightly overestimate ice covers compared to the SICAMSR2/DL

values, whereas the SICAMSR2/ASI values are underestimated, except in

summer, as discussed previously. However, these differences are not
statistically significant. As listed in Table 3, the average RMSEs for BT
and ASI in the 2016 datasets used for the DL model training are
2.87 ± 0.41% and 3.85 ± 0.58%, respectively. In the pre-2017 and
2017 data, the annual mean RMSEs range from 2.61 to 2.99 for BT and
3.52–3.89 for ASI. The long-term means of BT and ASI are 2.85 and
3.68, respectively. In bias comparisons with respect to SICAMSR2/DL, BT
and ASI have positive and negative bias, respectively, from 2012 to
2017, but the annual differences in the bias values are not significant

(e) (f)

(g) (h)

Fig. 16. (continued)
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(see Fig. 17(b) and Table 3). Generally, the comparisons of SICAMSR2/DL

values with respect to those from SICAMSR2/BT and SICAMSR2/ASI do not
deviate considerably from the annual ranges. Note that the TBs from the
AMSR2 PMW sensor are well calibrated, and demonstrate that the DL

model is robust and can be operationally used to generate daily SIC
products without additional model re-training or updating processes
when new data are acquired.

5. Conclusions

In this study, SMA (spectral mixture analysis; see Section 3.2) and a
state-of-the-art DL (deep learning; see Section 3.4) are successfully in-
corporated to develop a new operational SIC (sea ice concentration)
retrieval algorithm for the entire Arctic ocean using AMSR2 passive
microwave data and high-resolution MODIS images. The primary con-
tributions of this study are summarized as follows.

First, high-resolution imagery is commonly used to create reference
SIC values, considered as ground truth. While pixel classification or
thresholding is widely used to discriminate ice and water pixels in these
images, determining robust thresholds is difficult in multi-temporal
images and classification can overestimate or underestimate SICs
compared to the actual amounts of ice due to sub-pixel mixtures of ice
and water. These limitations motivated us to propose an SMA approach,
which resulted in improved high-resolution SIC maps. Second, the

Fig. 17. Long-term (a) RMSE and (b) bias changes using cross-validation between SICAMSR2/DL values and SICAMSR2/BT (red)/SICAMSR2/ASI (blue) values in the entire
Arctic ocean from 2012 to 2017 (SIC: sea ice concentration; BT: bootstrap; ASI: ARTIST sea ice; DL: deep learning). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Table 3
Annual means and standard deviations of RMSE and bias between DL (deep
learning)-based and BT (bootstrap)/ASI (ARTIST sea ice)-based sea ice con-
centration values in the entire Arctic ocean from 2012 to 2017 (note: standard
deviations are in parentheses.)

RMSE 2012 2013 2014 2015 2016 2017 2012–2017

BT – DL 2.79
(0.48)

2.90
(0.44)

2.93
(0.52)

2.61
(0.38)

2.87
(0.41)

2.99
(0.54)

2.85
(0.48)

ASI – DL 3.52
(0.75)

3.55
(0.57)

3.67
(0.66)

3.55
(0.60)

3.85
(0.58)

3.89
(1.07)

3.68
(0.74)

Bias 2012 2013 2014 2015 2016 2017 2012–2017
BT – DL 0.31

(0.14)
0.28

(0.18)
0.30

(0.19)
0.09

(0.28)
0.16

(0.25)
0.27

(0.22)
0.23

(0.23)
ASI – DL 0.07

(0.31)
−0.11
(0.29)

−0.13
(0.30)

−0.12
(0.26)

−0.11
(0.29)

−0.17
(0.38)

−0.11
(0.32)
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selection of proper endmembers (i.e., similar to tie-points in sea ice
community) is critical for a successful SMA application. Solving a two-
endmember (ice and water) problem with multispectral data seems
easy, but extreme pixels or outliers can be selected as the endmembers.
To address this, a new GLL (global and local landmark) algorithm that
exploits both globally and locally representative pixels as endmember
candidates is proposed (see Section 3.3), which resulted in accurate and
continuous reference SIC labels. Third, based on high-resolution SIC
maps given by the SMA approach and GLL method, we develop a DL
architecture using MLP (multilayer perceptron) for pan-Arctic SIC es-
timates. The high-resolution SIC labels are successfully incorporated
into the DL model training with AMSR2 data. Hyperparameters for
determining the network topology for Arctic SIC retrievals are found
through an iterative parameter optimization process that maximizes the
model scores. Quantitative and qualitative evaluations with ice con-
centration map obtained from popular SIC retrieval algorithms are
performed on both global and regional scales. Overall, the proposed DL-
based retrieval model generates visually and statistically accurate SIC
images, unlike the overestimates from BT (Bootstrap) and under-
estimates from ASI (ARTIST sea ice)-generated SIC images with respect
to MODIS-derived SICs. In comparison with high-resolution regional
images, the proposed method shows better agreement than the other
algorithms, especially in the 20%–80% SIC zones. Additionally, there
are some incorrect estimations given by the BT and ASI-retrieved SIC
products (see Figs. 9, 14, 16). These are likely caused by severe weather
conditions, although these products use weather filters to prevent such
errors. However, we presume that the DL model inherently uses all
frequencies and polarizations of AMSR2 data, so these errors are
minimized without using weather filters. Although it is difficult to
physically explain which channel most effectively reduces the errors,
feature importance tests provide this information by calculating the
change of the outcome when permuting channels. As the most im-
portant channel for the DL-based SIC retrieval model, the 89 GHz (V)
channel is found. For a cross-validation, SIC images given by the pro-
posed approach are consistently generated for six-year historical data,
demonstrating sufficient statistical accuracy; thus, our proposed DL-
based model is considered for operational use as a new retrieval method
for providing improved SIC information in the Arctic.

Although the DL framework is successfully integrated into a new SIC
retrieval algorithm, several challenges motivate further research. First,
this study exploits all channels of the passive microwave data, although
some channels and polarizations may be redundant. Efficient band se-
lection or the projection of data onto a transformed domain (i.e., fea-
ture extraction) should be investigated with the aim of increasing the
performance of the retrieval model. Second, combining environmental
or image data acquired from different sensors, such as atmospheric
parameters could enable better results for thin sea ice or for the mar-
ginal ice zones. Third, as the DL model proposed in this research is
designed for the Arctic ocean, and supervised models are often highly
dependent on training data, this retrieval model may not be appropriate
for use with Antarctic data. Thus, development of additional retrieval
models may be required to provide Antarctic SIC maps. Finally, we
demonstrate that the results of the proposed retrieval model are stable
in time because the AMSR2 brightness temperature products are well
calibrated and our model is temporally robust. However, additional
model re-training may be required if AMSR2 processing or calibration
algorithms are updated in the future.
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