Ocean Sci. J. (2019) 54(2):307–315 http://dx.doi.org/10.1007/s12601-019-0011-0

Note

Available online at http://link.springer.com

De novo Assembly and Annotation of the Blood Transcriptome of the Southern Elephant Seal *Mirounga leonina* from the South Shetland Islands, Antarctica

Bo-Mi Kim¹, Do-Hwan Ahn¹, Seunghyun Kang¹, Jihye Jeong¹, Euna Jo¹, Jeong-Hoon Kim², Jae-Sung Rhee^{3,4}, and Hyun Park^{1,5*}

¹Unit of Polar Genomics, Korea Polar Research Institute, KIOST, Incheon 21990, Korea ²Department of Polar Life Science, Korea Polar Research Institute, KIOST, Incheon 21990, Korea ³Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Korea ⁴Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Korea ⁵Polar Sciences, University of Science & Technology, Daejeon 34113, Korea

Received 23 August 2018; Revised 7 January 2019; Accepted 28 January 2019 © KSO, KIOST and Springer 2019

Abstract – The southern elephant seal Mirounga leonina is the largest member of the phocid seals and is a highly sexually dimorphic predator at circumpolar regions. In this study, we generated the first high-quality de novo assembly of the blood transcriptome of M. leonina using the Illumina MiSeq platform. A total of 40.5 million raw reads were obtained and assembled using the Oases assembly platform, resulting in 46,445 contigs with an N50 value of 634 bp. We performed functional gene annotations through pathway analyses of the Gene Ontology (GO), Eukaryotic Orthologous Groups (KOG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Ortholog comparison revealed that a high proportion of the M. *leonina* blood transcriptome had significant sequence homology within pinnipeds. M. leonine, a deep and long-diving seal, is routinely exposed to progressive hypoxia during dives. KEGG analyses detected an intact hypoxia-inducible factor-1 (HIF-1) signaling pathway, which is a key metabolism pathway in the adaptive homeostatic responses to hypoxia. In the blood transcriptome, many essential genes involved in innate immunity were detected, which suggests that the blood serves as a host defense modulator against exogenous infections in M. leonina. This genomic resource will be useful for understanding adaptive metabolism upon repeated breath-hold dives and determining the health status of southern elephant seals without the need to sacrifice them in experiments.

Keywords – southern elephant seal, *Mirounga leonina*, blood, transcriptome, hypoxia

1. Introduction

The southern elephant seal Mirounga leonina is the largest of all pinnipeds; adult males can reach masses of two to four tons and lengths of up to 5.8 m. M. leonine has served as an important model for studying physiology, behavior, reproduction, and population dynamics. M. leonine has a nearly circumpolar distribution in the Southern Ocean with four distinct populations and is found mostly in sub-Antarctic islands (Laws 1994; Campagna 2008). Previously, Mirounga leonina was listed as Vulnerable under the predecessor to the Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act). Although the stability of the *M. leonina* population is a somewhat controversial subject due to the absence of current measurements, its population size was estimated at approximately 650,000 in the 1990s (Laws 1994), and this species was registered as 'least concern' by the International Union for Conservations of Nature (IUCN) Red List of Threatened Species (http:// www.iucnredlist.org) in 2008 (Hofmeyr 2015). Because a recent reexamination suggested that fluctuations in the marine environment were the most obvious factor for previous population declines of *M. leonina* that occurred at key colonies during the 1950s-1970s (McMahon et al. 2005), monitoring and conservation for M. leonina are required.

Most air-breathing vertebrates (e.g., penguins, seals, and whales) routinely suffer from acute hypoxia (a reduction in

^{*}Corresponding author. E-mail: hpark@kopri.re.kr

convective oxygen delivery in blood and tissues), hypercapnia (abnormally elevated CO₂ levels in the blood), or acidosis (an abnormally high level of acidity or a low level of alkalinity in the blood) during deep and long dives (Elsner and Gooden 1983). The diving capacity of seals varies, as northern elephant seals (Mirounga anguistirostris), hooded seals (Cystophora cristata), and Weddell seals (Leptonychotes weddellii) have deep- and long-diving characteristics, while ringed seals (Phoca hispida) and California sea lions (Zalophus californianus) perform short and shallow dives (Zenteno-Savín et al. 2012). Southern elephant seals are also deep-diving and long-ranging predators for squid, octopus, and fish, as they can undertake lengthy dives from 30~45 min to over 2 h and dive more than 2,000 m in depth (Biuw et al. 2007). Although adaptation mechanisms for hypoxia tolerance have continuously been studied in cetaceans, the basis for molecular physiological adaptations has not been well addressed, and several studies recently suggested potential molecular adaptive mechanisms towards low-oxygen conditions in seals (Khudyakov et al. 2015; Crocker et al. 2016; Fabrizius et al. 2016; Hoff et al. 2017).

Since our objective was to collect the gene pool from the blood specimen of the southern elephant seal *M. leonine* for further gene expression application (e.g. health status monitoring), we analyzed the whole blood transcriptome of *M. leonina* using basic bioinformatics tools. To avoid subjecting M. leonine to too much stress and to prevent their unnecessary death, a blood sample was collected from an individual. Although the sample size was very small, we assumed that the analysis of a single sample would be enough to annotate and establish a blood gene set in this species, as the quantity and quality of mammalian genes registered in GenBank are relatively high compared to other animals. Blood is highly sensitive to numerous endogenous and/or exogenous stimulations. Because the integrity of blood can be challenged by circulating parasites or pathogens, analyzing blood status, including transcriptome profiling or the measurement of target gene/pathway-specific expression, can be useful for estimating individual homeostasis, disease resistance, and herd immunity. Among mammals, blood transcriptome profiling has successfully been employed to identify pathological markers in cows, horses, pigs, and sheep (Mohr and Liew 2007; Chaussabel 2015). Although genomic information on blood in marine mammals is still limited, the application of high-throughput transcriptomics has been conducted in the blood tissues of beluga whales, bottlenose dolphins, and Steller sea lions (Spitz et al. 2015; Morey et al. 2016, 2017). Thus, genomic information on M. leonina will

allow future investigations of blood-specific pathways in pinnipeds, with a particular focus on understating the genetic basis for the adaptation of seals to hypoxia and determining the immune status of southern elephant seals without the need to sacrifice them in experiments.

2. Materials and Methods

Sample collection and Illumina sequencing

A blood specimen (ca. 1 mL) was collected from an individual on King George Island, South Shetland Islands, Antarctica (Table 1). The species was identified by reference to morphological characteristics and the mitochondrial cytochrome oxidase subunit 1 (COI) sequence. The blood sample was immediately transferred to an RNAlater vial (OIAGEN, Valencia, CA, USA) and stored at -20°C until RNA extraction. Total RNA was extracted using an RNeasy® Micro Kit (QIAGEN) according to the manufacturer's protocol and stored in RNAstable (Biometrica, San Diego, CA, USA). The quality and quantity of the total RNA were determined using the 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). High-quality mRNA (2 µg) was used to generate a double-stranded cDNA library using poly A selection. A NuGEN Encore Complete RNA-Seq Library System (NuGEN, San Carlos, CA, USA) was used to construct paired-end libraries (PE500) of sheared cDNA (500 bp fragments) that were sequenced on an Illumina MiSeq[®] System platform $(300 \times 2 \text{ paired-end reads})$ (Kim et al. 2018). Index and adaptor sequences were trimmed using Trimmomatic (Bolger et al. 2014), and low-quality reads were removed using the FASTX toolkit (Gordon and Hannon 2010) with parameters set at -t, 20; -l, 70; and -Q, 33.

De novo assembly

Sequencing produced 40.5 million reads. Low-quality reads (average quality score < 10), adapters, linkers, and polymerase chain reaction (PCR) primers were removed via quality filtering. High-quality reads were assembled *de novo* using Oases (ver. 0.2.08; Schulz et al. 2012) with default parameters. TransDecoder was used to identify coding regions. Unclustered transcripts and the longest sequences were considered unigenes. We identified 46,445 contigs of an average length of 672 bp and an N50 length of 634 bp. All unigenes were searched against the National Center for Biotechnology Information (NCBI) nonredundant database using BLASTx with an E-value threshold of 1.00E-04 to identify functional transcripts.

Table 1. Characteristics of the Mirounga leonina blood transcriptome sequencing project in compliance with the MIXS standard

Item	Description	
Investigation type	Eukaryote transcriptome	
Classification	Eukaryota; Opisthokonta; Metazoa; Eumetazoa; Bilateria; Deuterostomia; Chordata; Craniata Vertebrata; Gnathostomata; Teleostomi; Euteleostomi; Sarcopterygii; Dipnotetrapodomorpha; Tetrapoda; Amniota; Mammalia; Theria; Eutheria; Boreoeutheria; Laurasiatheria; Carnivora; Caniformia; Phocidae; Mirounga	
Project name	Mirounga leonina blood transcriptome sequencing	
Geographic location name	King George Island (South Shetland Islands), Antarctica	
Geographic location	62°14'30.8"S, 58°44'47.7"W	
Collection data	13 Jan 2017	
Environment (biome)	OMIT_0002267 (Antarctic region)	
Environment (feature)	ENVO_0000098 (island)	
Environment (material)	ENVO_01000428 (rocky shore)	
Tissue type	Blood	
Developmental stage	Juvenile female	
Sequencing method	Pyrosequencing	
Sequencing platform	Illumina Miseq	
Assembly program	Oases (ver. 0.2.08)	
Assembly method	De novo assembly	
Finishing strategy	Contig	
Bioproject number	PRJNA473905	
Data accessibility	SRR7250895	

Data deposition

The obtained raw RNA-seq data were deposited in the NCBI Sequence Read Archive (SRA; accession number SRR7250895) under bioproject number PRJNA473905. This Transcriptome Shotgun Assembly (TSA) project was deposited at DDBJ/ ENA/GenBank under accession number GGPR00000000 (GGPR01000001-GGPR01046444) (https://www.ncbi.nlm. nih.gov/nuccore/GGPR00000000).

3. Results and Discussion

The principal BLAST hits indicated that approximately 4,991 *M. leonina* contigs exhibited sequence similarities to transcripts of the Weddell seal *Leptonychotes weddellii* and 1,719 exhibited similarities to transcripts of the walrus *Odobenus rosmarus* (Fig. 1A). Of the top hits, 65% and 11% were homologous to transcripts from the classes Carnivora and Primates, respectively (Fig. 1A). At the family level, *M. leonina* contigs showed high similarity to Phocidae (37%), followed by Odobenidae (13%) (Fig. 1A). Thus, we assumed that blood sample preparation and sequencing were successful, as the raw read assembly was undoubtedly seal.

Since a large number of genes were annotated in *M. leonina* blood transcriptome, our next task was to learn how many

genes are specifically associated with those of pinnipeds as M. leonine-specific genes. Ortholog comparison with the M. leonina blood transcriptome showed extensive similarity within pinnipeds (Fig. 1B). Genomic information of four pinniped species was retrieved from published transcriptome data or annotated genes from the following genomes: Antarctic fur seal (Arctocephalus gazelle) (Humble et al. 2016), northern elephant seal (Mirounga angustirostris) (muscle transcriptome; Khudyakov et al. 2015), walrus (Odobenus rosmarus) (Foote et al. 2015), and Weddell seal (Leptonychotes weddellii) (Humble et al. 2016). Most transcripts of *M. leonina* matched at least one of the other pinniped species, as 93% contigs (#10,647) showed similarity, while only 758 contigs (6.6%) remained as unique for M. leonina from a total of 11,405 contigs. In the case of M. leonina, approximately 40% of contigs (#4,511) were commonly matched to those of all pinniped species. This result was quite surprising given the greater evolutionary relatedness and similarity in the genomic sequences among pinniped species. Although the *M. leonina* blood transcriptome contains many genes encoding proteins that carry out blood-specific functions, the high similarity is likely attributed to the high sequencing coverage of pinniped species.

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of all contigs were Kim, B.-M. et al.

Fig. 1. A) Numbers of major BLAST hits matched to *Mirounga leonina* blood transcripts at the phylum and species levels. Each number indicates the number of orthologous gene families shared by the indicated genomic database. B) Five-way Venn diagram of orthologue gene conservation in five species of pinniped: Antarctic fur seal (*Arctocephalus gazelle*), northern elephant seal (*Mirounga angustirostris*), southern elephant seal (*Mirounga leonine*), walrus (*Odobenus rosmarus*), and Weddell seal (*Leptonychotes weddellii*). The diagram was constructed with orthologous genes identified by the best reciprocal hit method with tBLASTx (E-value < 10^{-10}) pair-wise ortholog matches. Numbers represent unique or shared genes between pinniped species

performed using the Blast2GO sequence annotation tool (ver. 4.0; Conesa et al. 2005). The specific GO composition of each category is presented as a Level 2 percentage. After aligning

the contigs, we analyzed three principal categories (i.e., biological processes, cellular components, and molecular function) using default parameters. The BLAST search and functional domain

310

 Table 2. Information on representative genes and their basal mRNA expression levels involved in hypoxia-inducible factor-1 (HIF-1) signaling pathway

Contig ID	Description	Abbreviation	RPKM
Seal contig 15058	interleukin-6 receptor subunit alpha	IL6Ra	32.7789
Seal contig 16785	interleukin-6 receptor subunit beta	IL6Rb	6.7228
Seal contig 23097	toll receptor 4	TLR4	8.9148
Seal contig 34407	interferon gamma receptor 2	IFN-gR	25.7374
Seal contig 14502	solute carrier family facilitated glucose transporter member partial	GLUT	5.5714
Seal contig 6770	signal transducer and activator of transcription 3 isoform 2	STAT3	24.6022
Seal contig 21241	nuclear factor nf-kappa-b p105 subunit isoform 1	NFkB	19.0787
Seal contig 73430	mitogen-activated protein kinase kinase 2	MEK2	2.4987
Seal contig 7343	dual specificity mitogen-activated protein kinase kinase	MEK	37.0250
Seal contig 1355	phosphatidylinositol -bisphosphate 3-kinase catalytic subunit delta	PI3Kd	72.6178
Seal contig 2051	phosphatidylinositol -bisphosphate 3-kinase catalytic subunit beta	PI3Kb	9.6813
Seal contig 36184	phosphatidylinositol -bisphosphate 3-kinase catalytic subunit alpha	PI3Ka	5.6887
Seal contig 13553	rac-alpha serine threonine-protein kinase	AKT	58.8076
Seal contig 3246	mitogen-activated protein kinase 3	ERK	30.9468
Seal contig 63892	serine threonine-protein kinase mtor	mTOR	7.1154
Seal contig 6181	map kinase-interacting serine threonine-protein kinase 1	MNK	24.8695
Seal contig 10408	eukaryotic translation initiation factor 4e-binding protein 1	4E-BP1	99.0189
Seal contig 13562	eukaryotic translation initiation factor 4e-binding protein 2	4E-BP2	39.6256
Seal contig 4066	ribosomal protein s6	rpS6	202.5135
Seal contig 66609	protein kinase c alpha type	PKCa	1.6616
Seal contig 22196	protein kinase c beta type isoform x2	РКСЬ	28.8386
Seal contig 11950	protein kinase c delta type	PKCd	24.1520
Seal contig 59227	protein kinase c epsilon type	РКСе	4.4243
Seal contig 23915	protein kinase c eta type	PKCh	11.6518
Seal contig 42826	protein kinase c theta type isoform x2	PKCt	4.9117
Seal contig 12745	hypothetical protein PANDA 016272	РКСЬ	30.2247
Seal contig 6540	1-phosphatidylinositol -bisphosphate phosphodiesterase gamma-1	PLCG1	17.7588
Seal contig 929	1-phosphatidylinositol -bisphosphate phosphodiesterase gamma-2	PLCG2	14.0032
Seal contig 8744	low quality protein: pyruvate dehydrogenase isozyme 1	PDK1	5.6176
Seal contig 2593	cytochrome b-245 heavy chain	NOX2	44.1271
Seal contig 2343	cytochrome b-245 light chain	NOX3	190.8212
Seal contig 17700	pyruvate dehydrogenase e1 component subunit mitochondrial	PDH	10.5498
Seal_contig_25487	eukaryotic translation initiation factor 4e	elf4E	17.8241
Seal_contig_4066	ribosomal protein s6	RPS6	202.5135
Seal_contig_14148	hypoxia inducible factor 2alpha	HIF-1a	3.1288
Seal_contig_33558	hypoxia-inducible factor 1-alpha	HIF-1a	10.1974
Seal_contig_11583	ring-box protein 1	Rbx1	20.0824
Seal_contig_3235	transcription elongation factor b polypeptide 2	elonginB	45.6079
Seal_contig_36551	Cullin-2	CUL2	6.2027
Seal_contig_6403	egl nine homolog 2	PHD2	17.9113
Seal_contig_26036	egl nine homolog 1	PHD1	12.9020
Seal_contig_26801	egl nine homolog 3	PHD3	11.3375
Seal_contig_48164	calcium calmodulin-dependent protein kinase type 1 isoform x2	CamK	16.7698
Seal_contig_26206	histone acetyltransferase p300	EP300	10.2617
Seal_contig_34161	metalloproteinase inhibitor 1	TIMP1	12.8920
Seal_contig_2933	heme oxygenase 1	HMOX1	59.9636
Seal_contig_8744	low quality protein: pyruvate dehydrogenase isozyme 1	PDK1	5.6176
Seal_contig_6137	hexokinase-1	HK	19.4262
Seal_contig_26625	hexokinase-3	HK	17.9796
Seal_contig_79	glyceraldehyde-3-phosphate dehydrogenase isoform x2	GAPDH	452.7474
Seal_contig_983	alpha-enolase isoform x1	ENO	134.0467
Seal_contig_224	cyclin-dependent kinase inhibitor 1 isoform x1	p21	21.2032
Seal_contig_13933	cyclin-dependent kinase inhibitor 1b	p27	33.8961

Description Springer

wide range of cellular metabolisms. The vast majority of

transcripts in the biological processes category were assigned

to cellular processes (16%), metabolic processes (14%), and

single-organism processes (13%; Fig. 2A). Of the GO terms

related to cellular components, many genes were categorized

as cell (28%) and organelle (24%) components (Fig. 2B). In

terms of the molecular function category, many genes were

annotation by InterProScan of the Blast2GO software package assigned 3,528 contigs to at least one GO term. Finally, the assembled data were arranged in terms of read length, gene annotation, GenBank number, E-value, species, and species accession number. The mRNA expression level was calculated using the reads per kilobase of the transcriptome per million mapped reads (RPKM) method (Mortazavi et al. 2008).

The diverse GO assignments analyzed by Blast2GO revealed that blood performs many complex biological functions. Overall, the *M. leonina* blood transcriptome encompasses a

A)

B)

C)

27%

classified as binding (49%), followed by catalytic activity (27%; Fig. 2C). Blood is one of the most dynamic tissues in the mammalian body, as cellular components of blood can be Cellular process Metabolic process Single-organism process 16% **Biological** regulation Response to stimulus 6% Cellular component organization or biogenesis Localization 14% 6% Signaling Multicellular organismal process 6% Developmental process 13% Immune system process Multi-organism process 8% Locomotion Growth Reproductive process **Biological adhesion** Cell Organelle 10% Membrane 28% Macromolecular Complex Membrane-enclosed Lumen Extracellular Region **Cell Junction** Synapse **Extracellular Matrix** 24% Virion Nucleoid Binding Catalytic Activity Nucleic acid binding transcription factor activity Enzyme regulator activity Transporter activity Protein binding transcription factor activity Molecular transducer activity 49% Structural molecule activity Receptor activity

Guanyl-nucleotide exchange factor activity

- Channel regulator activity
- Antioxidant activity Translation regulator activity
- Electron carrier activity
- Fig. 2. Gene Ontology (GO) analyses: A) biological processes, B) cellular components, and C) molecular functions enriched in the blood transcriptome of Mirounga leonina. D) Comparison of the compositions (percentages) of two subcategories: response to stimuli and immune system processes of avian blood transcriptomes

significantly altered in composition by numerous exogenous or endogenous factors, resulting in changes in the global blood transcriptome.

Diving mammals have developed several adaptive metabolisms for breath-holding periods, such as elevated hemoglobin levels and tolerance to hypoxia (Elsner 1999). We confirmed that contigs coding for two hemoglobin genes (hemoglobin subunit alpha [HBA] and beta [HBB]) show high RPKM values (HBA: contig 31798 with 5,286, contig 32923 with 698; HBB: contig 45291 with 14,367, contig 8284 with 7,718) in the *M. leonina* blood transcriptome. High expression values of HBA and HBB may enhance the capacity for oxygen storage and transfer during routine diving. Acute hypoxia is recognized as one of the biggest challenges for diving seals. KEGG pathway analyses revealed that the most vital members involved in the HIF-1 signaling pathway (KEGG pathway number: 04066) are annotated in the transcriptome (Fig. 3; Table 2). HIF-1 proteins are key regulators that coordinate the adaptive homeostatic responses to hypoxia. HIF-1a protein is constitutively

expressed in tissues of ringed seals during nonhypoxic conditions (Johnson et al. 2005). The nuclear content of HIF-1 α significantly increases in the blood of northern elephant seal pups after breath-hold trials (Vázquez-Medina et al. 2011). Thus, the intact HIF-1 signaling pathway of *M. leonina* blood may contribute to its physiological adaptation to regular exposure to hypoxia in its natural environment.

The blood transcriptome can reflect pathological changes as immune cells circulate through the animal body. In the *M. leonina* blood transcriptome, most of the crucial members of innate immune systems were retrieved by KEGG pathway analyses as annotated sequences, although a full complement of the transcripts was not annotated. Since blood is known to be highly sensitive to endogenous and/or exogenous stimulations, transcriptional absences of several components in each pathway would be explained if it were the case that the *M. leonine* used in this study is not highly influenced by environmental factors or infection. However, further studies are very much needed in order to know whether these components can be

Fig. 3. Transcriptional coverage of *Mirounga leonina* transcripts on the vertebrate hypoxia-inducible factor-1 (HIF-1) signaling pathway (#04066). Matched homologues are highlighted with a lighter shade of cyan

transcriptionally induced or reduced by stimulations. Of the innate immune system sequences, four major signaling pathways, nuclear factor kappa B (NF-kB) (#04064), Toll-like receptor (TLR; #04620), Janus kinase/signal transducers and activators of transcription (JAK-STAT; #04630), and tumor necrosis factor (TNF; #04668), corresponded to vertebrate canonical signaling. The transcriptional involvement of immune-related genes on each pathway is highly matched on each pathway. In mammals, the four major innate immunity signaling pathways are important for responding to exogenous pathogens and maintaining homeostasis (Akira et al. 2006). The core members of each pathway revealed that the four innate immune systems are likely expressed to serve as a host defense modulator against exogenous infections in blood. M. leonina is a sentinel species for the circumpolar region of the Southern Ocean; thus, assessing its health status is crucial to estimate the disease resistance ability of seal populations and facilitate or promote their protection. Taken together, blood transcriptome profiling and the analyses of hematological parameters may be a useful indicator for determining health status, susceptibility to disease, and monitoring responses to exposure in pinnipeds.

In this study, we present the first whole-blood transcriptome of the southern elephant seal and analyze the pathways putatively involved in hypoxia regulation and the immune system. Although the small sample size is a weakness in this study, library construction and assembly were successfully conducted with *M. leonine* blood and the transcriptome covers the essential gene repertoire. We believe that this transcriptome information can be applied for understanding the molecular adaptation and immune homeostasis of southern elephant seals and facilitate their protection.

Acknowledgments

This work was supported by the grant Polar Genome 101 Project (PE19080) funded by the Korea Polar Research Institute. This work was also supported by the Basic Science Research Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Education (grant no. NRF-2017R1A6A1A06015181).

References

Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell **124**:783–801

Biuw M, Boehme L, Guinet C, Hindell M, Costa D, Charrassin

JB, Roquet F, Bailleul F, Meredith M, Thorpe S, Tremblay Y, McDonald B, Park YH, Rintoul SR, Bindoff N, Goebel M, Crocker D, Lovell P, Nicholson J, Monks F, Fedak MA (2007) Variations in behavior and condition of a Southern Ocean top predator in relation to *in situ* oceanographic conditions. P Natl Acad Sci USA **104**:13705–13710

- Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics **30**:2114– 2120
- Chaussabel D (2015) Assessment of immune status using blood transcriptomics and potential implications for global health. Semin Immunol **27**:58–66
- Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676
- Crocker DE, Khudyakov JI, Champagne CD (2016) Oxidative stress in northern elephant seals: integration of omics approaches with ecological and experimental studies. Comp Biochem Phys A 200:94–103
- Elsner R, Gooden BA (1983) Diving and Asphyxia. A comparative study of animals and man. Monographs of the physiological society 140, Cambridger University Press, Cambridge, 168 p
- Elsner R (1999) Living in water: solutions to physiological problems. In: Reynolds III JE, Rommel SA (eds) Biology of marine mammals. Smithsonian Institution Press, Washington DC, pp 73–116
- Fabrizius A, Hoff ML, Engler G, Folkow LP, Burmester T (2016) When the brain goes diving: transcriptome analysis reveals a reduced aerobic energy metabolism and increased stress proteins in the seal brain. BMC Genomics **17**:583
- Foote AD, Liu Y, Thomas GW, Vinař T, Alföldi J, Deng J, Dugan S, van Elk CE, Hunter ME, Joshi V, Khan Z, Kovar C, Lee SL, Lindblad-Toh K, Mancia A, Nielsen R, Qin X, Qu J, Raney BJ, Vijay N, Wolf JB, Hahn MW, Muzny DM, Worley KC, Gilbert MT, Gibbs RA (2015) Convergent evolution of the genomes of marine mammals. Nat Genet 47:272–275
- Gordon A, Hannon G (2010) Fastx-toolkit. FASTQ/A short-reads pre-processing tools. http://hannonlab.cshl.edu/fastx_toolkit Accessed 15 Jan 2018
- Hoff ML, Fabrizius A, Czech-Damal NU, Folkow LP, Burmester T (2017) Transcriptome analysis identifies key metabolic changes in the hooded seal (*Cystophora cristata*) brain in response to hypoxia and reoxygenation. PLoS One **12**:e0169366
- Hofmeyr GJG (2015) Mirounga leonina. The IUCN Red List of Threatened Species 2015: e.T13583A45227247. doi:10.2305/ IUCN.UK.2015-4.RLTS.T13583A45227247.en
- Humble E, Martinez-Barrio A, Forcada J, Trathan PN, Thorne MA, Hoffmann M, Wolf JB, Hoffman JI (2016) A draft fur seal genome provides insights into factors affecting SNP validation and how to mitigate them. Mol Ecol Resour 16:909–921

Johnson P, Elsner R, Zenteno-Savín T (2005) Hypoxia inducible factor proteomics and diving adaptations in ringed seal. Free Radical Bio Me **39**:205–212

Khudyakov JI, Preeyanon L, Champagne CD, Ortiz RM, Crocker DE (2015) Transcriptome analysis of northern elephant seal (*Mirounga angustirostris*) muscle tissue provides a novel molecular resource and physiological insights. BMC Genomics 16:64

- Kim B-M, Ahn D-H, Kim J-H, Jung J-W, Rhee J-S, Park H (2018) De novo assembly and annotation of the blood transcriptome of the southern giant petrel Macronectes giganteus from the South Shetland Islands, Antarctica. Mar Genomics 42:63–66
- Laws RM (1994) History and present status of southern elephant seal populations. In: Le boeuf BJ, Laws RM (eds) Elephant seals: population ecology, behavior and physiology. University of California Press, Berkeley, pp 49–65

McMahon CR, Bester MN, Burton HR, Hindell MA, Bradshaw CJ (2005) Population status, trends and a re-examination of the hypotheses explaining the recent declines of the southern elephant seal *Mirounga leonine*. Mammal Rev **35**:82–100

Mohr S, Liew CC (2007) The peripheral-blood transcriptome: new insights into disease and risk assessment. Trends Mol Med **13**:422–432

Morey JS, Neely MG, Lunardi D, Anderson PE, Schwacke LH, Campbell M, Van Dolah FM (2016) RNA-Seq analysis of seasonal and individual variation in blood transcriptomes of healthy managed bottlenose dolphins. BMC Genomics **17**:720

Morey JS, Burek Huntington KA, Campbell M, Clauss TM, Goertz

CE, Hobbs RC, Lunardi D, Moors AJ, Neely MG, Schwacke LH, Van Dolah FM (2017) *De novo* transcriptome assembly and RNA-Seq expression analysis in blood from beluga whales of Bristol Bay, AK. Mar Genomics **35**:77–92

- Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNAseq. Nat Methods 5:621–628
- Schulz MH, Zerbino DR, Vingron M, Birney E (2012) Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics 28:1086–1092
- Spitz J, Becquet V, Rosen DA, Trites AW (2015) A nutrigenomic approach to detect nutritional stress from gene expression in blood samples drawn from Steller sea lions. Comp Biochem Phys A 187:214–223
- Vázquez-Medina JP, Zenteno-Savín T, Tift MS, Forman HJ, Crocker DE, Ortiz RM (2011) Apnea stimulates the adaptive response to oxidative stress in elephant seal pups. J Exp Biol 214:4193– 4200
- Zenteno-Savín T, Vazquez-Medina JP, Cantu-Medellin N, Ponganis PJ, Elsner R (2012) Ischemia/reperfusion in diving birds and mammals: how they avoid oxidative damage. In: Abele D, Vazquez-Medina JP, Zenteno-Savin T (eds) Oxidative stress aquatic ecosystems. Wiley-Blackwell, Oxford, pp 178–190

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.