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Microbial Fe(III) reduction as a potential iron
source from Holocene sediments beneath
Larsen Ice Shelf
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Chung Yeon Hwang 2, Kiho Yang 1, Christina Subt3 & Jinwook Kim1*

Recent recession of the Larsen Ice Shelf C has revealed microbial alterations of illite in marine

sediments, a process typically thought to occur during low-grade metamorphism. In situ

breakdown of illite provides a previously-unobserved pathway for the release of dissolved

Fe2+ to porewaters, thus enhancing clay-rich Antarctic sub-ice shelf sediments as an

important source of Fe to Fe-limited surface Southern Ocean waters during ice shelf retreat

after the Last Glacial Maximum. When sediments are underneath the ice shelf, Fe2+ from

microbial reductive dissolution of illite/Fe-oxides may be exported to the water column.

However, the initiation of an oxygenated, bioturbated sediment under receding ice shelves

may oxidize Fe within surface porewaters, decreasing dissolved Fe2+ export to the ocean.

Thus, we identify another ice-sheet feedback intimately tied to iron biogeochemistry during

climate transitions. Further constraints on the geographical extent of this process will impact

our understanding of iron-carbon feedbacks during major deglaciations.
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The limited availability of iron (Fe) in the surface Southern
Ocean, compared to major nutrients such as nitrate and
phosphate, leads to underutilization and thus outgassing of

upwelled CO2 in some areas of the modern Southern Ocean1,2.
Relief of this Fe limitation, and sequestration of carbon into the
deep ocean, is thought to enhance the Southern Ocean’s ability to
act as a mediator of global climate over millennial to ice-age
timescales3,4. However, the source, transport, and fate of Fe in the
Southern Ocean has been widely debated, with sources ranging
from dust, ice sheets, iceberg-rafted debris (IRD) to sub-ice shelf,
and other continental shelf sediments5. With evidence supporting
spatially variable contributions of Fe from numerous sources
to the Southern Ocean, consideration of the configuration of
ice shelves and their dynamics is vital for understanding
how changes in Fe supply help to drive carbon uptake in the
Southern Ocean.

The Antarctic Peninsula, one of the fastest-warming regions on
the Earth6, acts as a sentinel for changes in Antarctic ice
dynamics. Since the short period of satellite observations, rapid
disintegration of ice shelves and retreat of continental glaciers has
been observed on the Antarctic Peninsula and linked to potential
increases in sea level rise7. Larsen ice shelves A and B (LIS-A and
LIS-B) disintegrated catastrophically in 1995 and 2002, respec-
tively, whereas the largest of the peninsular ice shelves, LIS-C, has
persisted, decreasing in the size, and thinning through the
Holocene to the present8 (Fig. 1). Similar to many other places in
Antarctica9, grounding line retreat for LIS-C has been observed to
be faster than the average rate since the Last Glacial Maximum9

(LGM) of 25 m/year, particularly between 2010 and 2016.
Environmental change on the Antarctic Peninsula also sig-

nificantly impacts the redox conditions of surface sediments
during the retreat of ice shelves, driven by the overlying bottom
waters changing from relatively stagnant to open-ocean oxyge-
nated conditions10,11. These redox changes in the sediments may
cause a variation in clay mineral alteration12,13. Around 50%
of the clay minerals of Antarctic sub-ice shelf sediments are

composed of illite14, which contains redox-sensitive Fe in its
crystal structure, and is thus potentially sensitive to changes in
sediment redox conditions. Traditionally, however, alteration of
illite crystallinity (IC) has been assumed to require temperature
and pressure, and thus be restricted to low-grade metamorphic
settings15,16. Recently, although, in situ alteration of illite has
been identified beyond such metamorphic settings, and used to
reconstruct paleoclimate conditions such as the Holocene mon-
soonal weathering, for example, Yangtze River17, and Southwest
Indian continental shelf18. In these studies, chemical weathering
in organic-rich sediments is thought to drive the IC alteration,
accelerated by wet and warm monsoonal conditions. However,
none of these studies have considered the possibility of microbial
alteration of illite at low temperatures. Microbially induced geo-
chemical reactions can modify both mineral structure and
chemistry13, properties that are sensitive to redox conditions12,
and microbes are present in cold but diverse glacio-marine
environments19 associated with ice sheets20, introducing the
possibility that microbes may play a role in biogeochemical
weathering and mineral alteration, even at very low tempera-
tures21. Whereas a range of iron minerals are known to be sources
of dissolved Fe upon breakdown by iron-reducing or -oxidizing
bacteria22,23, adding illite to this group, and at low temperatures,
provides a potential new broadly distributed mechanism of dis-
solved Fe2+ to sediment porewaters from the microbial alteration
of clay minerals24,25. This process is distinct from reductive Fe
production by microbial respiration of Fe hydroxides26.

Here we demonstrate that microbe–illite interactions can be
significant at low temperatures and pressures, affecting dissolved
Fe2+ release to porewaters and the overlying water column and
thus productivity and carbon cycling in the Southern Ocean. As
such, we present a broadly applicable alternative pathway for
dissolved Fe2+ production in sediment porewaters through
microbial alteration of clay minerals, in addition to Fe(III) oxides,
the strength of which will change corresponding to the deposi-
tional conditions during the expansion and retreat of ice shelves.

Results and discussion
Lithological setting. To address the possibility of IC changes
sourcing Fe to the water column beneath an ice shelf, we collected
a 2.38-m-long marine sediment core (EAP13-GC16B) on the
northwestern part of the LIS-C embayment (Fig. 1) aboard the
icebreaker R/V Araon in 2013 (ANA03C Cruise). This core from
the continental shelf provides us with information on changes in
sedimentary environments during deglaciation, such as the
proximity and stability of ice shelves and the influx of meltwater
and terrigenous sediments27. The sedimentary sequence unveiled
adjacent to LIS-C preserved a depositional record through the
Holocene at shallow core depths (<3 m), below the temperatures
and pressures of metamorphic modifications28. As such, our core
represents an excellent test for the capability of biogeochemical
reactions to alter the mineralogical characteristics of the subsur-
face Antarctic shelf sediments during the Holocene. Core EAP13-
GC16B is defined by four distinct lithological units (U1–4)
(Fig. 2a), with the upper unit U1 being characterized by sandy
clay and IRD, foraminifera and diatoms, U2 and U3 by well-
laminated silty clays, and U4 by sandy diamicton with cobbles,
with a sharp boundary between U3 and U4 (Fig. 2b). These
sedimentary sequences span the transitions from glacial through
sub-ice shelf (6000 ± 420, 8000 ± 410, and 11,500 ± 470 cal. years
BP at 85, 95, and 192 cm; U2–3) to occasionally open marine
conditions (1660 ± 70, and 4140 ± 70 cal. years BP at 0 and 14 cm;
U1) since the LGM (Fig. 2c–e), based on calibrated dates derived
from application of Ramped PyrOx 14C29. The dark gray sandy
diamicton present in U4 is interpreted as being rapidly deposited
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Fig. 1 Location map of study area in Antarctica. a Study area (yellow box)
along the northern Antarctic Peninsula. b EAP13-GC16B sediment core
collected from Larsen ice shelf C (LIS-C) embayment. Ice core drilling site7,
James Ross Island is north of Larsen ice shelves A (LIS-A) and B (LIS-B).
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proximal to the grounding zone of ice shelf during the LGM30,
whereas the overlying characteristic laminations of U2–3,
for example, yellowish brown sandy mud (21–40 cm) and
rhythmic couplets (~6 couplets/cm) of laminated silt and clay
(120–180 cm) are typical of sedimentary facies when an ice shelf
retreats and undergoes ice-thinning process during the Holocene
climate optimum31. Finally, the presence of IRD and foraminifera
in the bioturbated sediment of U1 support oxic and seasonally
opened marine conditions10. X-ray diffraction (XRD) profiles
show that the major mineral compositions for the clay size
sediments throughout the core are smectite, chlorite, kaolinite,
and illite and lepidocrocite (Supplementary Figs. 1 and 2). Depth
profiles of clay minerals throughout the core show that illite is
dominant (50–60%) compared with smectite (~10 %), chlorite
(~20%), and kaolinite (~15%). There is a clear separation of
chlorite (14 Å) and smectite (17.5 Å) for glycolated samples
(Supplementary Figs. 1 and 2).

Negative values of δ15N within U4 (Fig. 2c) suggest that no
organic matter was supplied from the marine environment to
these sediments, more typical of a glacial till. In contrast, abrupt
increase of δ15N within U3, coupled with consistently lighter
values of δ13C through U4 and U3 and a complete lack of diatom
frustule or fragments29, suggest a stable sub-ice shelf environment
apparently controlled by proximity to the grounding line of LIS32.
Similar values of δ13C between U4 and U3 likely reflect the

contribution of the suspended particles transported from the
grounding line. Higher in the core, the increase in both δ13C and
δ15N up to the values observed in U2 and U1 (U1: −25.7‰ and
3.8‰; U2: −25.9‰ and 3.2 ‰; see Supplementary Table 1) is
likely to be the result of gradually increasing supply of the marine
organic matter from open water column as reflected in grain-size
distribution of illite and the presence of diatom frustule fragments
in U124.

Evidence for alteration of illite. Alteration of illite minerals can
be expressed in terms of IC (°Δ2θ)16. The average values of IC in
Core EAP13-GC15B show variation with depth in the core
(Fig. 2d, f). Importantly, an abrupt decrease in IC values from
~1.0 (U3) to <0.8 (U2–1) was observed during U2 (at ~4000 BP)
(Fig. 2e), suggesting less-altered illite close to the surface. Overall,
alteration of the illite between U3 and U1 is also supported by the
modification of the illite structure from randomly ordered/
diffused Bragg’s reflections in U3 to a discrete ordered pattern in
U1 (Fig. 3), and variation in the Fe-oxidation state of the illite
particles, with more Fe(III) present at shallower depths (35% in
U1 and 17% in U3; Fig. 4a).

Such variability in IC might be caused by changes in the
composition or supply of illite to the core. Histograms of the
grain-size distribution of illite within the core do flatten, broaden,
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Fig. 2 Downcore variations of EAP13-GC16B. a Sedimentary facies (four distinct lithological units from top (U1) to bottom (U4)) with X-ray core image,
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(S: smectite; I: illite; C: chlorite; K: kaolinite).
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Fig. 3 Transmission electron microscopy micrographs with selected area diffraction patterns and grain-size distribution. Samples with depths of
a 0–5 cm (U1), b 60–65 cm (U2), c 120–125 cm (U3), and d 215–220 cm (U4) of the core EAP13-GC16B (dashed lines show the boundary of illite (I)
packets). The inset histograms of the grain-size distribution of illite (U4–1) flatten, broaden, and shift to larger size with a high standard deviation. The inset
selected area electron diffractions of illite (d001= 1.0 nm) shows modification of illite structure of randomly ordered/diffused Bragg’s reflections (U3) to
discrete ordered pattern (U1).
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and shift to a slightly larger grain size with a high standard
deviation (SD= 5.4) within U1 compare to U2–4 (Fig. 3).
However, a similar elemental composition of illite is observed
throughout U1–3 with a higher content of Fe (9–14 wt%)
compared to U4 (6 wt%) and an Al/Si ratio of illite of
0.41–0.44 during U1–3, compared with 0.48 for U4 (Fig. 4b).
There is no discernible appearance of detrital muscovite (Al/Si ≈
1), biotite (Al/Si ≈ 0.3), or paragonite (Al/Si ≈ 1)33 that could
affect the values of IC34 (Fig. 4b). Moreover, measured values of
ICair (median) – ICgly (median) at each depth (0.14–0.52) correspond
to the maximum 3% difference in smectite contents in illite/
smectite mixed layers (I/S)34,35 (Supplementary Table 2). The
variation in IC for the air-dried and ethylene-glycolated samples
showed a similar trend with increasing depth, suggesting that the
effect of smectite contents in I/S on IC is minimal in this study
(Supplementary Fig. 3). Also, rare-earth element composition
indicates that Holocene sediments (U1–3) are of the same source,
which is different from the source at the LGM (U4) (Supple-
mentary Fig. 4). These observations suggest that variations in IC
during the Holocene cannot be explained simply by different
sources of illite minerals or mineralogical variation, but rather by
in situ alteration.

Previous observations of such diagenetic mineral alteration
generally are reported in high temperature and pressure
environments36, far from the conditions observed in sub-ice
shelf sediments. Thus, we suggest here that biogeochemical
redox-sensitive reactions, possibly by iron-reducing bacteria
rather than high temperature and pressure, are the likely cause
of the modification of the illite structure observed in U3.
Microbial Fe reduction in 2:1 layered phyllosilicate structure
results in the alteration of net negative charge, crystal lattice
energy, cation exchange capacity, and distribution of Fe(II)–Fe
(III) in the octahedral sheet37–39 that could modify the crystal
domain size and structure39 responding in the IC16. Transmission
electron microscopy (TEM) measurements on the bioreduced
illite confirmed the alteration of illite structure through reductive
dissolution and decrease in illite crystalline size24. Indeed, smaller
illite domain packet size displayed where reducing condition is
favored (Fig. 3), measuring a high value of half-height width of
illite (high values in IC) (Fig. 2d). Other clay minerals may also
undergo microbially induced changes that involve release of
reduced iron; however, illite is the only clay mineral for which we
can currently measure the crystallinity responding to alteration of
crystal structure in various redox conditions25,40. Furthermore,
the consequences of sediment oxygenation with the onset of full
open marine conditions in U1 are clearly revealed by the decrease
of IC and a change in selected area electron diffraction (SAED)
patterns of diffused, randomly ordered (U3) to discrete reflections
(U1) (Fig. 3a, c), as illite alteration reactions cease.

Evidence for microbial alteration and implications. Significant
positive correlations between the distribution/abundance of
putative Fe-reducing bacteria and IC were observed in the core
(r= 0.90 and 0.69, p < 0.05, Fig. 5). The major groups of bacteria
present were identified as members of Comamonadaceae sp.
(class Betaproteobacteria) and Desulfobacteraceaet sp. (class Del-
taproteobacteria)22,23, comprising only minor components of the
microbial community in the top of the core, but becoming
abundant below 50 cm (mid-U2) (Fig. 5a). The genomic sig-
natures (e.g., gene contents) supporting the presence of iron-
reducing metabolisms in the family Comamonadaceae in our
samples were not found from the microbial genome database
in the GenBank (https://www.ncbi.nlm.nih.gov/genome), indi-
cating the occurrence of novel member with not-yet-known
functions in those families. Nonetheless, the previous study22

suggested that the family Comamonadaceae is capable of redu-
cing Fe in sediments (Fig. 5b). Furthermore, a recent study41

showed a possibility of anaerobic ammonium oxidation coupled
to ferric Fe reduction by this family. The correlation between
Desulfobacteraceae and illite alteration (Fig. 5c) may reflect either
direct microbial Fe reduction42 or microbially influenced reduc-
tive dissolution of Fe-bearing minerals by hydrogen sulfide
formed by sulfate-reducing bacteria43,44. Moreover, it was
reported that Fe can be an electron acceptor during the reox-
idation of H2S43. The distribution of Dehalococcoidetes sp.
(phylum Chloroflexi) may reflect a tight coupling with Fe-
reducing bacteria45; however, they are not considered to be a
direct driver to change IC (Fig. 5d). Given the low temperatures
at these sediment depths compared to where IC is normally
observed, and the observed relationship between the presence of
putative Fe-reducing bacteria and IC, we hypothesize that
microbial activity is responsible for the alteration of illite observed
in these sediments, although the exact mechanism of electron
transfer by which this occurs is not yet constrained46,47. Never-
theless, the biogeochemical data described here indicate a clear
link between microbial Fe respiration, alteration of illite crystal-
linity, and an increase in the Fe(II) content of illite under anoxic
conditions. The relative amount of putative Fe-reducing bacteria
diminishes abruptly in the sediments under occasionally open
marine conditions (U1), where laminated sediment structures
have been destroyed by oxygenation and resultant epibenthic
community development. Although such psychrophilic Fe
reduction of illite results in similar structural and chemical
modification (Figs. 3 and 4) to what has been presented in pre-
vious studies of mesophilic13 and thermophilic reaction48, our
data are the first observations in natural sediments to suggest a
possible pathway for Fe reduction (and release to sediment
porewaters as dissolved Fe) associated with microbial Fe
respiration at low temperature21 in Antarctic regions19.

Sediment-derived Fe in the antarctic. Sediments as an important
or even dominant Fe source for the surface oceans has gained
traction in recent years, challenging the primacy of atmospheric
supply49. This growing consensus of the importance of submarine
sediment-derived Fe sources in fueling surface productivity has
been driven both by models50 and by observations by the Inter-
national GEOTRACES program, which have indicated transport
of sediment-derived iron over 106 km in the open ocean51,
including the Southern Ocean52. In the Antarctic, a number of
recent studies have focused on the local importance of Fe from
shelf sediments around Antarctica, suggesting that Fe sourced
from sediments on the West Antarctic Peninsula is an important
Fe source to coastal waters53–55. Sediment-derived Fe is also
thought to be the dominant Fe source fueling blooms in the Ross
and Amundsen Seas56,57, and near Antarctic island chains58.

The isotope signature of Fe is generally lighter at the depths of
the Antarctic Intermediate Water in the Atlantic Sector of the
Southern Ocean and S. Atlantic59,60, consistent with the
possibility of long-distance transport of sediment-derived Fe of
a reductive origin61,62 on the Antarctic Peninsula. Such an
observation adds weight to the idea that microbial Fe(III)
reduction in Fe-rich sediments on the Antarctic margins could
play an important role in driving primary productivity in the
Southern Ocean, especially near Antarctica. However, dissim-
ilatory reductive dissolution of sediment release isotopically light
Fe2+ is typically thought to involve Fe(III) minerals such as
goethite, hematite, and ferrihydrite63,64. Here, we propose that
illite may provide an additional substrate for microbial reduction
that was previously thought to be largely inaccessible. This study
opens the door for iron isotope studies in the future aiming to
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constrain the proportion of iron release from Fe(III) oxides as
well as illite by this process if there is a signature isotope
composition for this process. This may be especially important in
the Antarctic, because illite (and clay minerals more generally)
appears so prominently on the continental shelf around
Antarctica14, and because redox dynamics are likely to be so
intrinsically linked to ice shelf dynamics. Clay minerals comprise
10–30% of bulk Antarctic sediment14, and our experimental data
suggest that ~4% of Fe may be released by psychrophilic
microbial reduction of the clay mineral smectite (Supplementary
Fig. 5). Together, these observations suggest that microbial
alteration of Fe-bearing clay minerals corresponding to redox
conditions in deglacial sediments may also play a role in
generating Fe(II) in sediment porewaters, which could potentially
be released to the water column. The strength of this flux is likely
to change with ice shelf conditions.

Conceptual model for microbially enhanced Fe release from
illite. Given the potential importance of the amount of Fe(II) that
can be sourced from the microbe–mineral interactions, we have
observed that it is important to consider this as a changing source
of Fe(II) to the Southern Ocean as ice shelves retreat4. Our
opportunistic core indicates that changes in ice shelf position and
oxygenation of the core top can create a boundary to diffusive/
advective export of sedimentary Fe(II) that forms from micro-
bially driven IC downcore (Fig. 6). This process can also switch
the flux of porewaters from the sediment from mainly diffusive
to advective as the sediment is disturbed. Thus, the observed
bioturbation at the surface of the core (Fig. 6a), although inde-
pendent from continued microbially driven IC changes (Fig. 6b,
c), will likely decrease the amount of Fe(II) sourced from the
sediment. However, oxygenation of the surface sediments by
bioturbation and bioirrigation as the ice shelf recedes or collapses

might increase the advective or resuspended flux of iron from the
sediments65,66. Thus, any feedback between ice shelf retreat and
CO2 in the atmosphere would have to consider changes in both
the form and quantity of iron coming from sub-ice shelf sedi-
ments. Between 2010 and 2016, the continent of Antarctica lost
between 672 and 2254 km2 of grounded ice area9. Given the
prominence of illite in Antarctic sediments, coupled with
the likely decrease in Fe(II) diffusion to the water column, as
these sediments are oxygenated and exposed to more vigorous
open-ocean exchange (Fig. 6a), such accelerated loss of ice shelf-
covered seafloor is likely to dramatically alter both the flux and
speciation of dissolved Fe reaching the ocean, providing a new
possible feedback between ice-shelf dynamics (Fig. 6b–e) and
primary productivity in the Southern Ocean.

Methods
Geological location and sediment sampling. Sediment cores from the LIS-C
embayment are exceedingly rare. The region is often inaccessible to ocean-going
and ice-breaking research vessels, and as a result, has not been explored geo-
logically to the extent of the lower latitude embayments of LIS-A and LIS-B.
A marine geological expedition (ANA03C Cruise Expedition by the Korea Polar
Research Institute (KOPRI)) was conducted in the LIS-A, LIS-B, and LIS-C
embayments of northwestern Weddell Sea in 2013 (Fig. 1). LIS-C, the largest ice
shelf in the Antarctic Peninsula (AP), has persisted since the LGM, but it has
been thinning since the recent regional warming of AP8. A whole round core
sample (238 cm below the seafloor) of marine sediment (EAP13-GC16B) was
collected on the northwestern part of LIS-C embayment (66° 3.898′S, 60° 27.692′
W, Fig. 1). The sediments underneath the sea ice in front of the LIS-C had not
been exposed until a recent retreat of the calving front67. This core is unique
because it contains a record of the complete depositional features during the
Holocene without modifications. For these reasons, our core represents an
excellent test for the capability of biogeochemical reactions to alter mineralogical
characteristics through the Holocene. The Larsen Ice Shelf system is a climate-
sensitive glacial system; the loss of other Larsen ice shelves (LIS-A, 1995; LIS-B,
2002) along the AP is one of the most dramatic environmental changes directly
observed anywhere on Earth68.
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Petrophysical properties. A half slab of 238 cm whole round core was examined
by X-ray radiograph to investigate the sedimentary structures. The working half of
the core was sampled every 4-cm depth interval for measurement of size fractions
of clay (<2 μm), silt (>2 to <62.5 μm), and sand (>62.5 μm) following a conven-
tional particle separation procedure69. Briefly, particles larger than 62.5 μm (gravel
and sand) were separated from bulk sediment by wet sieving. For the fine fractions
smaller than 62.5 μm (silt and clay), particles were settled down in a 1 L graduated
cylinder for 3 days, and then the grain size was determined using Micrometrics

Sedigraph 5100. Qualitative ordinal color scale (Munsell color chart) was used to
define bedding distinct color variations in the core.

Isotopic composition. Forty-four subsamples (~50 mg of each sample) were col-
lected into tin capsules to analyze isotopic composition of δ13C and δ15N in
sediment with depths. Each sample was pretreated with 1M of hydrochloric acid
three times in order to completely remove carbonates, and then isotopic
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compositions with a precision of 0.2‰ were measured at the Stable Isotope
Laboratory, GNS Science, Lower Hutt, New Zealand, using an Isoprime isotope
ratio mass spectrometer, interfaced to an EuroEA elemental analyzer in
continuous-flow mode (EA-IRMS).

Electron microscopy. TEM micrographs for the sediment with depths were
recorded using JEOL JEM-2100F at Ewha Women’s University, Seoul. The TEM
samples were prepared following the impregnation procedure for LR White
resin70 to minimize the confusion of selecting 10 Å illite packets from the col-
lapsed hydrous clay minerals, such as smectite, displaying the same spacings
under the high-energy TEM beam. Illite layers were confirmed by SAED patterns
with the strongest Bragg reflections of 1.0, 0.5, and 0.33 nm. The TEM specimens
were then sectioned with 700 Å in thickness using a diamond knife microtome
(ULTRACUT TCT; Leica, installed at the Korea Basic Science Institute, KBSI).
Transmission electron microscopy-electron energy loss spectroscopy (TEM-
EELS) was also applied to quantify the oxidation states of Fe in illite structure as
a function of the integral ratio of Fe L3/L271 using a TECHNAI F30 ST TEM at
the KBSI, Seoul. The operational conditions for EELS acquisition were an energy
dispersion of 0.1 eV/channel, entrance aperture of 2.0 mm, and the full-width at
half-maximum to 1.0 eV for the zero-loss peak calibration. The statistical opti-
mum signal-window parameters for the integral ratio of Fe-L2,3 edges were
calculated using the Gatan Inc.’s Digital MicrographTM software. The back-
grounds were removed from EELS spectra by Double arctan functions and
Standard power law71.

X-ray diffractometer. XRD analyses were performed on air-dried clay sam-
ple (<2 μm) with each depth at a scan speed of 1°/min with a Rigaku Miniflex II
automated diffractometer utilizing Cu-Kα radiation at Yonsei University, Seoul.
Clay size fraction samples were dispersed in distilled water (0.7 mg/mL) and
put in an ultrasonic water bath for 30 s to prevent flocculation of particles.
Then, air-dried samples were made by pipetting sediment dispersions onto slide
glasses for XRD analysis72. IC, also known as Kübler index, comprises of the
half-height width of illite 10-Å peak from XRD profiles73 utilizing the Search-
Match and OriginPro8 software after the background was removed by Cheby-
shev polynomial with ≤20 coefficients, and the pseudo-Voigt profile function
proposed by Thompson et al. 74. IC was originally referred to as the Weaver
index75 that reflects the X-ray scattering domain size and structural distor-
tions16, measuring the crystal alterations76. Three independent sets of XRD
profiles were collected in order to reduce the errors in the measurements. Semi-
quantitative evaluations of clay minerals were measured after the glycolation
treatment. The relative percentage of each clay mineral was calculated using
weighting factors77.

DNA extraction, microbial community composition. Genomic DNA was
extracted from sediment samples every 2 cm from top to 20 cm and every 5 cm
below 20 cm (~0.5 g of each sample) using the FastDNA Spin Kit for soil
(MP Biomedicals). The quantity of genomic DNAs was measured by Picogreen
fluorometry. Polymerase chain reactions (PCRs) for the 16S ribosomal RNA
(rRNA) genes of prokaryote (Bacteria and Archaea) were performed using
primers Uni787F and Uni1391R78. We adopted the PCR cycling conditions
according to Jorgensen et al. 78, except for applying the nested PCR, in order to
minimize PCR bias. PCR amplicon pyrosequencing sequences were processed
using the QIIME software package, ver. 1.879. First, raw flowgram data were
filtered and denoized by the AmpliconNoise software, version 1.2980, using the
platform option for FLX titanium sequence data implemented in QIIME.
Sequences were clustered based on operational taxonomic units at 97% similarity
using UCLUST81 and classified using the 16S rRNA gene sequence reference
database GreenGenes 13_882. To avoid effects of different sample sizes for
estimating diversity comparisons among prokaryotic communities, sequences
were resampled to the smallest library83.

Bacterial culture and experimental procedure. Psychrophilic bacteria (Shewa-
nella vesiculosa 21939, 21996 and Shewanella frigidimarina 21881) known as cold-
tolerant and cold-adapted facultative FeRB46,84 were isolated from King George
Island in western Antarctica by KOPRI. Psychrophilic bacteria were cultured in
Luria–Bertani broth (LB) liquid medium aerobically for 7 days at 15 °C to increase
cell concentration and activity. The culture was then washed three times with
0.1 mM NaCl solution to remove the residual LB medium, and the washed cells
were re-incubated anaerobically for 7 days in liquid M1 medium85 with Fe(III)-
citrate (34.5 mM) as an electron acceptor and Na-lactate (20 mM) as an electron
donor in order to adapt Fe respiration. The solution was buffered by MOPS (3-(N-
morpholino)propanesulfonic acid) to maintain a pH of 7. The incubated cells were
finally washed three times with 0.1 mM NaCl solution to remove residual Fe(III)-
citrate and M1 medium. Cells were then inoculated in the liquid M1 medium with
nontronite (5 g/L) in each set as an electron acceptor and Na-lactate (20 mM) as an
electron donor. Control samples were treated identically to experimental ones,
except no bacteria to compare the microbial effect on Fe reduction. A sample of
100 mL of this suspension in each serum bottle was placed in the incubator at 4 °C
for up to 4 months.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The source data underlying figures and Supplementary Material are provided as a
Supplementary Data file. Any other information that supports data interpretation is
available from the corresponding authors upon reasonable request.
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