다산과학기지 주변 빙하 소멸에 따른 육상 생태계 변화 과정 규명

Investigating terrestrial ecosystem changes in response to deglaciation in the Brøgger peninsular

한 국 해 양 과 학 기 술 원 부 설 극 지 연 구 소

제 출 문

극지연구소장 귀하

본 보고서를 "다산과학기지 주변 빙하 소멸에 따른 육상 생태계 변화 과정 규명"과제의 최종보 고서로 제출합니다.

2018. 05. 15

보고서 초록

과제관리번호	PE17	7280	해당단계 연구기간	2017.0)4.01. ~ 3.03.31	단계 구분	1단	예 / 총 1단계		
어그네이머	중 사	업명	기본연구사업(개인창의)		1				
<u> 연구사업명</u>	세부시	나업명								
പചച്ചിന്	중 과	제 명								
인구파제경	·····································									
연구책임자	이	구 경	해당단계 참여연구원수	총 : 내부 : 외부 :	정부: 기업: 계:	170,000 천원 천원 170,000 천원				
연구기관명 및 소속부서명	극	극지연- 지생명과혁	구소 각연구부	참여기	업명					
국제공동연구	상대국명	:	,	상대국연구	기관명 :					
위탁연구	연구기관	명 :	(연구책임자	:					
요약(연구결과를	를 중심으로	린 개조식	500자이내)				보고서 면수	99		
 이 3 1 양상을 비고 빙하소멸지 블룸스트란 빙하 소멸 7 - 빙하 소멸7 - 빙하 소멸7 - 친하 소멸7 - 히는 것으로 - 하는 것으로 	역에서의 지역의 지역의 퇴 기역의 토 나타남. 으며, 잠재 나타님	며, 빙하 며, 빙하 김 식생고 경우 스 둘 간의 도한, 토 대적 활/	소멸로 노출 아미생물 간역 성관관계가 - 이물 조성은 법 양 유기물 3 성을 보이는	니 상관관 된 지역 군집 건 코지 않은 J하후퇴사 도성은 진 세균 종남	암석의 안계는 지 안에 높은 그것으로 시기, 식식 균 군집 들이 토양	정물학적 풍혁 생물학적 풍혁 · 상관관계기 · 나타남 생지수, 토성역 보다는 세균 · 유기물의	과 요인을 달라질 <i>-</i> 나타난 에 가장 군집과 조성에 1	· · · · · · · · · · · · · · · · · · ·		
- 빙하가 소밀 에 상당한 로 증가하는 편차를 보임	 - 빙하가 소멸함에 따라 대체적으로 토양 pH는 감소하였지만 서로 다른 빙하 후퇴지역 간에 상당한 편차가 존재함. 빙하가 소멸함에 따라 토양의 유기 탄소와 질소량은 대체적으로 증가하는 경향을 보였지만 같은 빙하후퇴 지역 내에서도 사이트 간에 상당한 정도의 편차를 보임 									
- 암석과 미싱 적 풍화에 ·	방물 군집 큰 역할을	십 간의 ∕ 을 하는	상호작용에 띠 것으로 파악 ¹	라른 군집 팀	구성 및	기능 유전지	h 발현 치	아이가 생물학		
색 인 어	한 글	빙하 측	회퇴, 육상 생	태계, 토여	양 유기물	물, 식생 천이	, 미생물	천이		
(각 5개 이상)	영 어	Deglaci microbia	rbon, pla	nt succession,						

요 약 문

I.제 목

다산과학기지 주변 빙하 소멸에 따른 육상 생태계 변화 과정 규명

Ⅱ. 연구개발의 목적 및 필요성

- 연구개발 목적
 - 북극 다산과학기지 주변의 지질학적 특성이 서로 다른 빙하 소멸지역을 대 상으로 육상 식물-토양 미생물-토양 유기물 특성-암석 풍화 간의 상관관계 분석을 통해 빙하 소멸 후 육상 생태계 변화를 종합적으로 이해하고자 함

○ 연구개발의 필요성

- · 빙하 소멸 지역은 시간에 따른 생태계 변화를 볼 수 있는 최적의 연구지이지
 만, 북극해 해빙 소멸에 비하여 상대적으로 연구 미비
- 빙하 소멸 지역 토양 미생물의 변화는 식생의 일차 천이와 토양 발달, 물 질대사의 변화와 깊은 연관성을 가지므로 이들 간의 상호관계를 밝히기 위한 종합적인 연구 필요

Ⅲ. 연구개발의 내용 및 범위

- 연구개발 내용
 - · 빙하 소멸에 따른 토양 유기물 특성 변화와 분해 미생물 간의 상관관계 규
 명
 - 지질학적 특성이 서로 다른 빙하 소멸 지역 간 식물과 토양 미생물의 천이
 양상 비교
 - 빙하 소멸로 노출된 지역 암석의 생물학적 풍화 요인 규명

- 연구개발 범위
 - 2016년에 기확보한 토양 샘플 270점에 대한 토양 미생물 군집, 토양 이화 학적 특성, 유기탄소 조성 분석
 - 2016년에 기확보한 암석 샘플 26점에 대한 암석 미생물 구조와 기능 분석
- Ⅳ. 연구개발결과
 - 세균, 진균의 종 다양성은 빙하 소멸 시기에 따라 계속적으로 증가하는 경 향을 보인 반면 식물의 경우 중간지점에서 종 다양성이 가장 높게 나타나 는 단봉분포(unimodal pattern)를 보임. 블룸스트란 지역의 경우 식생과 미 생물 군집 간에 높은 상관관계가 나타난 반면 동로벤 빙하 소멸 지역의 경우 둘 간의 상관관계가 크지 않은 것으로 나타남.
 - · 빙하 소멸지역의 토양 유기물 조성은 빙하후퇴시기, 식생지수, 토성에 가장
 큰 영향을 받는 것으로 나타남. 또한, 토양 유기물 조성은 진균 군집보다
 는 세균 군집과 더 큰 상관관계를 보였으며, 잠재적 활성을 띈 세균 종들
 이 토양 유기물의 조성에 더 큰 관여를 하는 것으로 나타남.
 - · 빙하가 소멸함에 따라 대체적으로 토양 pH는 감소하였지만 서로 다른 빙 하 후퇴지역 간에 상당한 편차가 존재함. 빙하가 소멸함에 따라 토양의 유 기 탄소와 질소량은 대체적으로 증가하는 경향을 보였지만 같은 빙하후퇴 지역 내에서도 사이트 간에 상당한 정도의 편차를 보임.
 - · 암석과 미생물 군집 간의 상호작용에 따른 군집구성 및 기능 유전자 발현
 차이가 생물학적 풍화에 큰 역할을 하는 것으로 조사됨.
- V. 연구개발결과의 활용계획
 - 다산과학기지 주변 빙하 소멸 지역의 식물 천이, 토양 미생물 천이, 물질대
 사 흐름 간의 종합적인 분석을 통해 북극지역에서 급속히 늘어나고 있는
 빙하 소멸 지역의 육상 생태계 변화규명에 기여
 - 암석에 서식하는 미생물에 의한 생물학적 풍화 과정이 빙하후퇴지역의 토
 양발달에 미치는 영향을 파악하는데 활용

SUMMARY

I. Title

Investigating terrestrial ecosystem changes in response to deglaciation in the Brøgger Peninsular

II. Purpose and Necessity of R&D

 \bigcirc Purpose of the study

- Holistic understanding of terrestial ecosystem changes in recently deglaciated terrain of the Arctic by unrevealing linkage between vegetation and microbial succession, soil organic carbon, and rock weathering

○ Necessity of the study

- Lack of ecological research in deglaciated terrain despite the feasibility of performing ecosystem research along the chronosequence
- Need to have holistic understanding of terrestrial ecosystem changes in deglaciated terrain due to the high degree of connectivity between vegetation and microbial succession, and soil development process

III. Contents and Extent of R&D

- \bigcirc Contents
- Investigating the relationship between organic carbon chemistry and microbial communities following deglaciation
- Unveiling the linkage between plant and microbial succession in forelands of two glaciers differing by their geological characteristics
- Biological weathering process on the exposed rocks in the deglaciated terrain

\bigcirc Scope

- Analyses of microbial community structure, soil physicochemical properties, organic carbon characteristics on 270 soil samples taken in 2016
- Analysis of microbial community and functional structure on 26 rock samples taken in 2016

IV. R&D Results

- Species diversity of bacteria and fungi linearly increased throughout succession, whereas plant species diversity showed unimodal pattern. There was a high correlation between microbial and plant community compositions in the foreland of Blomstrand glacier but it was not the case for Austre Lovenbreen.
- Soil DOC composition in glacier foreland was influenced mainly by deglaciation time, vegetation index, and soil texture. Changes in DOC composition were associated more with shifts in bacterial communities than those of fungal communities. Potentially active bacteria contributed more to the formation of soil DOC species.
- Soil pH overall decreased throughout the succession but its pattern and spatial distribution considerably varied by different glacier forelands. The concentration of soil organic carbon and nitrogen increased with deglaciation but spatial variation was high even within the same gladier foreland.
- Changes in microbial community and functional structure mediated by interactions between rock and microbes play an important role in biological weathering process.

V. Application Plans of R&D Results

- Better understand the terrestrial ecosystem changes after glacial recession by linking primary succession of plants and microbes, and metabolic changes
- Better understand soil development process mediated by biological weathering by rock-inhabiting microbes

CONTENTS

Chapter 1 Introduction
Chapter 2 Current R&D Status in Korea and Other Nations
1. Domestic technological development
2. International technological development10
Chapter 3 R&D Implementation Contents and Results
1. Linkage between plant and microbial succession in deglaciated terrain11
2. Association between soil organic carbon and microbial profiles
in the glacier foreland
3. Shifts in soil physicochemical properties since glacial retreat
4. Weathering process on the exposed rocks in deglaciated terrain
Chapter 4 Degree of R&D Goal Achievement and Degree of Contribution
to Outside Research Institute
1. Research period
2. Research goals and degree of achievement
3. Contribution to other fields
Chapter 5 Application Plans of R&D Results
Chapter 6 Information of Overseas Science Technology
from research development processes
Chapter 7 References
Appendix

제 1 장 서론9
제 2 장 국내외 기술개발 현황
제 3 장 연구개발수행 내용 및 결과
비교 분석
상관관계 규명24
3. 빙하 소멸로 인한 토양의 물리화학적 특성 변화 규명
4. 방아 조멸도 도굴된 지역 업직의 생굴약적 중와과장 규명 40
제 4장 연구개발목표 달성도 및 대외기여도
1. 연구기간
2. 목표 달성도 ···································
5. 내피 기억도
제 5 장 연구개발결과의 활용계획
제 6 장 연구개발과정에서 수집한 해외과학기술정보
제 7 장 참고문헌
부록

목 차

제 1 장 서론

- 빙하 소멸 지역은 시간에 따른 생태계 변화를 볼 수 있는 최적의 연구지이지만, 북극해 해빙
 소멸에 비하여 상대적으로 연구 미비
- 빙하 소멸에 따른 육상 생태계의 생물학적 천이 과정은 토양 미생물의 유입과 성공적인 안 착에서부터 시작되므로, 토양 미생물 군집의 초기 정착과 천이 과정 메커니즘에 대한 이 해 필수
- 빙하 소멸 지역 토양 미생물의 변화는 식생의 일차 천이와 토양 발달, 물질대사의 변화와
 깊은 연관성을 가지므로 이들 간의 상호관계를 밝히기 위한 종합적인 연구 필요
- 스발바르에 수많은 육상 빙하 소멸 지역들이 존재하고, 각 사이트별로 기후, 지질학적 특성들
 이 다름에도 불구하고 선행연구는 중앙로벤빙하에 국한되었음
- 마커유전자를 이용한 토양 세균 군집 변화에만 국한된 연구가 이루어져 토양 미소동물, 육상 식물, 토양 유기물 특성 등과의 상관관계 규명을 통한 종합적인 생태계 변화에 대한 해석이 이루어지지 못함
- 따라서 사이트 별 기후, 지질학적 특성이 다른 빙하 소멸 지역을 대상으로 메타지놈 분석을 통한 종합적인 미생물 군집 분석, 식생 천이, 토양 이화학 및 유기물 특성 변화 연구를 통해 다 양한 생물학적, 환경적 요인들 간의 상관관계를 분석하여 빙하 소멸 지역의 육상 생태계 변화를 종합적으로 이해할 필요가 있음

동로벤빙하 후퇴지역의 항공사진. 빙하 녹은 물이 흘러내리며 일시적인 하천을 형성하고 하천 하구 지역에서 교란이 일어난 것을 볼 수 있다.

제 2 장 국내외 기술개발 현황

1. 국내 현황

- 선행연구(주요사업)를 통해 브뢰기반도에 있는 중앙로벤 빙하와, 동로벤 빙하에서 빙하 소 멸 시기와 지형 및 교란과 관련하여 식물 및 유기탄소 분포도를 작성하고 세균 군집 구조 연구 수행(Kwon et al., 2015, Kim et al., 2017)
- 극지연구소의 PAP 사업으로 중앙로벤빙하에서 빙하 융해로 대기 중으로 배출하는 이산화 탄소 변화 분석(한국기초과학지원연구원 류종식 박사)과 빙하 소멸 시기에 따른 토양 진균 의 종 변화 양상 연구 수행(서울대학교 조나단 아담스 교수, Dong et al., 2016)
- 극지연구소 정책사업 '북극 다산과학기지 기반 연구 활성화를 위한 정책 연구'를 통해 니알슨
 기지 운영 국가의 연구 성과를 분석하고, 다학제 국제공동연구에 전략적으로 참여할 방안 수
 립

2. 국외 현황

- 빙하 소멸지역 식물상의 천이과정에 관한 연구는 많이 이루어진 반면 토양 미생물의 천 이과정에 관한 연구는 상대적으로 덜 이루어짐(Brown and Jumpponen, 2014)
- 10여 년 전 중앙로벤빙하 소멸 지역에서 빙하 소멸 시기, 미세 지형, 교란 등 환경 요인 을 고려하여 식물 분포도를 작성(Moreau et al., 2005)
- 중앙로벤빙하 소멸 지역에서 과거 미국 연구팀에 의해 미생물 천이 연구가 이루어진 바 있으나(Schutte et al., 2009, 2010), 빙하 소멸 지역 전체를 연구 대상으로 하지 않고 일부 지역에 대해 대상법을 통한 샘플링 수행한 뒤 토양 세균 군집만 분석했고 이후 후속연구 는 진행된 바 없음

중앙로벤빙하 후퇴지역의 항공사진. 하천 주변 교란 지역과 호소(湖沼)를 볼 수 있다.

제 3 장 연구개발수행 내용 및 결과

1. 빙하 소멸로 인한 식물과 토양 미생물 군집 간의 천이 양상 비교 분석

2016년 여름기간 동안 다산과학기지 주변에 위치한 동로벤, 블룸스트란 빙하 소멸 지역 의 식물과 토양 미생물 군집 간의 천이 양상을 비교하기 위하여 두 빙하 소멸 지역에서 각 사이트별로 3개씩의 line-transect sampling을 수행하여 동로벤 빙하 31 지점, 블룸스트란 빙하 28 지점, 총 59 지점에서 식생조사와 토양샘플링을 수행함. 각 빙하소멸 지역의 3개 의 transect line에서 상대적인 빙하 소멸 이후 시간의 경과에 따라 초기-후기로 나타내었다 (Early-Later).

가. 동로벤빙하(Austre Lovénbreen)와 블룸스트란(Blomstrand) 빙하 소멸지역 식생 조사

식물상 조사는 프랑스 툴루즈대학의 Dominique Laffly 교수와 Myrille Morea 박사와의 협업을 통해 1 m x 1 m grid 방형구 내부에 10 cm 간격으로 줄을 연결하여 100개의 격 자를 만들고, 그 중 6개의 격자를 임의로 선택하여 6개의 격자 내에 존재하는 식물을 표 시하였다. 그리고 방형구를 오른쪽, 아래, 왼쪽으로 돌리며 동일한 방법으로 총 4회 식물 조사를 하였으며 전체 2 m x 2 m 면적에서 24 × 100 cm² 면적을 조사하여 각 사이트의 지점별 우점종들의 빈도수와 4가지 식생 타입의 피도를 기록하였다.

그림 1. 동로벤 빙하(좌) 와 블룸스트란 빙하(우) 소멸 지역의 토양 샘플링 및 식생 조사 지점

그림 2. 방형구를 설치하고 식생 조사 중인 모습

두 지역에 대한 식생 군집 분석 결과, 빙하 소멸 후 시간이 경과함에 따라 식생 군집 구조가 변화하였으며 이에 가장 큰 영향을 준 요인으로는 동로벤 빙하의 경우 pH, 탄질 비(CN), 총질소(TN)로 확인되었으며 (R²=0.29 pH, R²=0.46 TN, R²=0.44 CN, 모두 P<0.05) 블룸스트란 빙하의 경우, pH, 탄질비(CN), 토양 유기 탄소(SOC), 총질소(TN)로 확인되었 다 (R²=0.37 pH, R²=0.51 SOC, R²=0.51 TN, R²=0.48 CN, 모두 P<0.005). 두 빙하소멸지역 모두 빙하소멸 초기 지역에서는 거의 식생이 존재하지 않았으며 이후 4가지 식생 그룹의 피도와 지역을 대표하는 24가지 우점종들을 대상으로 빈도수를 조사한 결과 빙하소멸 후 시간이 지날수록 두 지역 모두 지의류(lichen, 각 P=0.003, P=0.007)와 관속식물(vascular plant, 모두 P<0.001)그룹과 총 식생의 피도(Total coverage, 각 P=0.004, P<0.001)가 유의하 게 증가하였다. 그러나 동로벤 빙하의 경우 식생 피도와 종 다양성(P<0.001) 모두가 지속 적으로 증가하였으나 블룸스트란 빙하의 경우 식생 피도는 점차 증가하는 반면 종 다양 성(P=0.01)은 증가하다가 후기로 갈수록 감소하는 경향을 나타냈다.

그림 3. 빙하소멸시기에 따른 식생군집분포

그림 4. 빙하소멸시기에 따른 식생 종 다양성

그림 5. 빙하 소멸에 따른 식생그룹 별 피도 변화

나. 동로벤빙하(Austre Lovénbreen), 블룸스트란(Blomstrand) 빙하 소멸지역 토양 미생물 군집 분석

두 빙하 소멸지역의 총 59개 지점에서 3 반복 (L, M, R) 샘플링을 수행하여 얻은 총 174개의 토양시료로부터 DNA를 추출한 후 세균, 진균에 특이적인 마커 유전자(세균 : 16S V4-V5 region; 진균 : ITS2 region)를 증폭시킬 수 있는 primer를 이용하여 PCR 수행 후 Miseq 2x300bp NGS 염기서열 분석을 진행하여 얻은 데이터를 가지고 토양 미생물 군 집 분석을 수행하였다(토양 174점 x 미생물 2 그룹(세균, 진균) = 총 348개 분석 완료).

그림 6. 빙하 소멸 시기에 따른 phylum 수준에서 세균 군집의 상대적 빈도 변화; 동로벤(좌), 블룸스트란(우)

그림 7. 빙하 소멸 시기에 따른 phylum 수준에서 진균 군집의 상대적 빈도 변화; 동로벤(좌), 블룸스트란(우)

그림 8. 빙하 소멸 시기에 따른 phylum 수준에서 우점 세균 그룹의 상대적 빈도 변화

그림 9. 빙하 소멸 시기에 따른 세균 군집 구조 변화

그림 11. 동로벤(상), 블룸스트란(하)지역의 빙하소멸시기에 따른 세균 군집의 다 양성 지수와 종 다양성 변화

그림 12. 동로벤(상), 블룸스트란(하)지역의 빙하소멸시기에 따른 진균 군집의 다 양성지수 변화

빙하소멸시기에 따른 세균 군집의 변화를 문(phylum) 수준에서 분석한 결과 동로벤 빙 하와 블룸스트란 빙하 지역 모두에서 Proteobacteria (각 33.7%, 28.6%), Acidobacteria (각 13.9%, 16.1%), Bacteroidetes (각 14.4%, 14.6%), Planctomycetes (각 12.7%, 12.8%)가 우점하 는 것으로 나타났다. 동로벤 빙하 지역에서는 빙하 소멸 후 시간이 흐를수록 Proteobacteria와 Cyanobacteria의 상대적 빈도는 감소했으나, Acidobacteria와 Planctomycetes 의 상대적 빈도는 증가했다(모두 P<0.001). 반면 블룸스트란 빙하 지역에서는 Acidobacteria의 상대적 빈도가 증가했으며 Bacteriodetes의 상대적 빈도는 감소하였다(모두 P<0.001). 두 지역 모두에서 Acidobacteria의 상대적 빈도가 점차 증가하는 경향을 나타낸 것은 빙하 소멸 이후 토양의 pH가 점차 알칼리성에서 중성에 가깝게 감소한 것이 주요한 요인으로 생각된다.

진균 군집의 경우 두 지역 모두 Ascomycota (각 69.7%, 77.9%), Basidiomycota (각 19.3%, 7.6%), Mortierellomycota (각 8.9%, 13.7%)가 우점하는 것으로 나타났으나, 특정 그 룹의 미생물이 방향성을 가지고 변화하는 경향은 보이지 않았다. 미생물 군집 구조 변화 를 분석한 결과 두 지역에서 세균과 진균 모두 빙하 소멸 후 시간이 지남에 따라 군집구 조가 변화하였다.

세균 군집의 변화에 가장 큰 영향을 미친 요인은 동로벤 빙하의 경우 모래(sand), 미사 (silt), 점토(clay), 총탄소(TC), 총무기탄소(TIC), 토양 유기 탄소(SOC), 총질소(TN), 탄질비 (CN)로 나타났으며 (R²=0.33 sand, R²=0.32 silt, R²=0.20 clay, R²=0.35 TC, R²=0.43 TIC, R²=0.22 SOC, R²=0.30 TN, R²=0.18 CN, 모두 P<0.001), 블룸스트란 빙하의 경우 수분함량 (WC), pH, 전기전도도(conductivity), 총탄소(TC), 토양 유기 탄소(SOC), 총질소(TN), 탄질비 (CN)로 나타났다(R²=0.54 WC, R²=0.69 pH, R²=0.25 conductivity, R²=0.22 TC, R²=0.59 SOC, R²=0.63 TN, R²=0.36 CN, 모두 P<0.001).

진균 군집의 변화에 가장 큰 영향을 준 요인은 동로벤 빙하의 경우, 미사(silt), 토양 유 기 탄소(SOC), 총질소(TN), 탄질비(CN)였으며 (R²=0.15 silt, R²=0.19 SOC, R²=0.46 TN, R²=0.37 CN, 모두 P<0.001), 블룸스트란 빙하의 경우 수분함량(WC), pH, 총탄소(TC), 토양 유기 탄소(SOC), 총질소(TN), 탄질비(CN)로 나타났다(R²=0.46 WC, R²=0.55 pH, R²=0.26 TC, R²=0.52 SOC, R²=0.55 TN, R²=0.44 CN, 모두 P<0.001).

두 지역 모두에서 토양 유기 탄소, 총탄소, 총질소, 탄질비 등 토양에 함유된 유기물과 질소화합물의 함량 변화가 세균과 진균 군집의 변화에 영향을 준 주요한 요인으로 나타 났다. 세균과 진균의 다양성 지수와 종 다양성을 조사한 결과 동로벤 빙하의 경우 세균과 진균 군집 모두 빙하 소멸 이후 경과한 시간에 따라 종 다양성이 유의하게 증가하였다 (모두 P<0.001). 블룸스트란의 경우 세균보다 진균 군집의 종 다양성이 더 유의하게 증가 하였다(R²=0.51, P=0.001).

다. 빙하 소멸지역에서의 식생과 미생물 간의 상관관계 분석

동로벤 빙하의 경우, 빙하 소멸 이후 시간이 경과 할수록 정도의 차이는 있으나 식생과 세균, 진균 모두 군집 구조가 변화하였으며 종 다양성이 증가하는 경향으로 천이가 일어 났다. 블룸스트란의 경우, 식생과 세균, 진균 군집의 구조는 빙하 소멸 시기에 따라 변화 하는 유사한 경향을 보였으나 식생의 종 다양성은 증가했다가 다시 감소했으나 세균과 진균 군집의 종 다양성은 지속적으로 증가하는 경향을 보였다.

식생과 세균, 진균의 각 빙하 소멸 시기 별 지점 간 군집 구조 이질성(distance to median)을 분석한 결과 동로벤 빙하의 경우, 공통적으로 빙하소멸 초기에 식생과 세균, 진균 군집의 지점 간 이질성이 가장 컸으며 이후 시간이 지남에 따라 이질성이 감소하는 경향을 보였다. 블룸스트란 빙하의 경우도 식생과 세균, 진균 군집이 공통적으로 빙하 소 멸 이후 초기에는 이질성이 작게 나타났으나 점차 증가하는, 통로벤 빙하와는 반대되는 경향을 나타냈다.

동로벤 빙하의 경우, 빙하 소멸 직후 드러난 토양에 식생과 미생물이 정착하는 과정에 서 지점 간의 서로 다른 토양구성 성분이 주요한 요인으로 작용하여 식생과 세균, 진균 군집의 지점간 이질성이 크게 나타났다가 이후 양분축척 및 토양 pH 감소 등 다양한 환 경요인의 변화로 인해 특정 종들에 의한 우점현상이 더 큰 요인이 되어 후기에는 지점간 군집 유사성이 커지는 방향으로 천이가 일어난다고 생각된다. 블룸스트란의 경우, 빙하 소멸 후 초기 지역의 식생과 미생물 군집 이질성이 낮은, 서로 유사한 군집 구조를 가진 것으로 나타났으나 후기로 진행됨에 따라 서로 군집 구조가 달라져 이질성이 커지는 방 향으로 천이가 진행되었다.

두 지역의 식생군집과 세균, 진균 군집 간 상관관계를 분석한 결과 동로벤 빙하 지역에 서는 식생과 세균, 진균 군집의 상관관계가 적었으며 (r=0.31 P=0.16 세균, r=0.34 P=0.09 진균), 블룸스트란 지역의 경우 식생과 세균, 진균 군집이 유의한 상관관계를 나타내어 (r=0.68 P=0.001 세균, r=0.57 P=0.001 진균) 상대적으로 동로벤 빙하 지역 보다 블룸스트 란 빙하 지역에서 식생과 세균, 진균 군집이 서로 높은 상관관계를 가지며 천이가 일어남 을 확인하였다.

그림 13. 빙하 소멸 시기에 따른 식생과 세균, 진균 군집의 각 시기별 지점 간 이질성

그림 14. 동로벤(좌), 블룸스트란(우)지역의 식생군집과 세균군집의 상관관계 분석

그림 15. 동로벤(좌), 블룸스트란(우)지역의 식생군집과 진균군집의 상관관계 분석

2. 빙하 소멸로 인한 토양 유기탄소 특성 변화와 분해 미생물 간의 상관관계 규명

그림 16. 중앙로벤 빙하 소별지역 토양 샘플링 지점

지난 2016년 하계 기간 현장조사를 통해 중앙로벤 빙하 소멸지역 3개의 line transect, 총 31지점에서 확보한 토양 샘플들을 대상으로 빙하 소멸 시기에 따른 토양 유기탄소 특성변 화와 분해 미생물 간의 상관관계 규명을 위해 유기물 특성(FT-ICR MS 분석)과 미생물 특 성(RNA/DNA기반 미생물 군집구조, 미생물 생물량(PLFA) 분석을 진행하였다.

가. 중앙로벤(Midtre Lovénbreen) 빙하 소멸지역 대상 토양 유기물 특성 분석

초고해상도 15T FT-ICR MS를 이용하여 토양 DOC 특성 분석을 수행하였다(토양 31점 x 3반복 = 총 93회 분석 완료). 얻어진 Raw FTMS data를 대상으로 DataAnalysis 4.2 (Bruker Daltonics)와 Composer (Sierra Analytics) 소프트웨어를 이용하여 각각의 분자식에 대한 peak 검출 및 정량 계산을 수행하였다(그림 X). 기본적으로 H/C, O/C 비율을 이용한 van Krevelen diagram 분석을 수행하고 lignin, cellulose, hydrocarbon 등 큰 단위에서 DOC 를 화학적 그룹으로 분류하였으며(그림 X), Aromaticity index와 H/C 비율을 이용하여 DOC 분자들을 biodegradability 순으로 분류하였다.

그림 18. 빙하 소멸지역 토양 대상 FTMS spectra 및 van Krevelen diagram 예시

그림 19. 빙하 소멸 시기에 따른 DOC 종 풍부도 변화

총 5,681개의 서로 다른 DOC 분자들이 검출됨. 생태학에서 쓰이는 종 풍부도 지수 중 의 하나인 Chaol index를 DOC 결과에 적용해 본 결과 빙하소멸 초기 (빙하후퇴 20년 전) 와 중후기(빙하후퇴 20년 후)간에 DOC 종 풍부도에 있어 현격한 차이를 관찰할 수 있었 다. 이러한 차이는 빙하후퇴 20년을 전후하여 육상 식물이 안착 유무에 기인한 것으로 판 단된다. 전체적으로는 빙하후퇴 중, 후반 간의 DOC 종 풍부도가 차이 나지 않았지만 각 transect 별로는 다소 패턴 차이를 보였다. Transect 1과 2에서는 빙하후퇴 중기에서 후기 로 갈수록 DOC 종 풍부도가 감소하는 경향을 보인 반면, transect 3에서는 계속 증가하는 패턴을 보였다. 이에 대한 원인을 추측하기는 어렵지만, 하나의 가능성은 해당 지역에 빙 하 용융수에 의한 run-off 발생빈도가 높고 이들의 분포가 시공간적으로 변화해 왔음을 감안할 때, 이러한 급격한 환경변화에서 오는 생태계 교란으로 인해 식생 천이가 퇴행 혹 은 재시작 되었고, 따라서 감소된 식물의 종 풍부도 만큼 식물에서 유래한 DOC의 종 풍 부도 또한 감소했을 가능성이 있다.

그림 21. 빙하 소멸 시기에 따른 DOC의 화학적 조성(chemical class) 변화

DOC를 화학적 조성과 biodegradability에 따라 분류한 뒤 빙하 소멸 시기에 따른 상대빈 도 변화를 살펴본 결과 빙하후퇴 초기에는 lignin 유래 DOC가 빙하 후퇴 중후기에 비해 상대적으로 적게 검출되었고, 지질성분은 상대적으로 많이 검출되어 42-50% 가량을 차지 하는 것으로 나타났다. Biodegradability에 따른 분류 결과에서는 빙하후퇴 초기에 가장 분 해가 잘 되는 group 5가 가장 많은 비율(12-20%)로 나타났고, 반면 분해가 가장 안되는 그룹인 group 1은 가장 적은 비율인 20-23%만 차지하는 것으로 나타났다. 이는 빙하 소 멸 초기에는 미생물 기원의 DOC가 우점한 결과이며, 빙하 소멸 중후기로 갈수록 식물이 안착함으로 인해 식물 유래의 lignin과 polyphenol류가 상대적으로 증가한 때문인 것으로 판단된다.

나. 중앙로벤(Midtre Lovenbreen) 빙하 소멸지역 대상 토양 미생물 특성 분석

토양 샘플로부터 RNA/DNA를 모두 추출하여 잠재적 활성을 가진 토양 미생물에 대한 군집 분석을 수행함(토양 31점 x 미생물 2 그룹(세균, 진균) x RNA/DNA = 총 124개 분 석 완료). 추출된 RNA는 DNase 처리 후 cDNA 합성을 수행했고, cDNA/DNA 모두 세균, 진균 특이적인 마커 유전자(세균 16S V4-V5 region, 진균 ITS2 region)를 이용하여 PCR 수행 후 MiSeq 2x300bp으로 NGS 염기서열분석을 진행하였다.

그림 23. 빙하 소멸 시기에 따른 진균 군집 구조 변화

진균 군집의 경우 RNA 기반, DNA 기반 분석 결과 가에 큰 차이를 보이지 않았다. RNA/DNA 모두에서 빙하소멸시기와 NDVI 지수 즉 식물의 존재가 진균 군집을 결정하는 가장 큰 요인으로 작용하였다('envfit' function in vegan R package, RNA; R²=0.76 빙하소멸 시기, R²=0.29 NDVI, DNA; R²=0.76 빙하소멸시기, R²=0.28 NDVI, all P<0.01). 세균 군집 역시 진균의 경우와 마찬가지로 빙하소멸시기와 NDVI지수 혹은 토양의 유기물 함량 (SOC)이 세균 군집구조를 결정하는 환경요인으로 밝혀졌다(RNA; R²=0.79 빙하소멸시기, R²=0.33 NDVI, DNA; R²=0.59 빙하소멸시기, R²=0.30 SOC, all P<0.01). NDVI 지수와 SOC 와의 높은 상관관계는 빙하소멸지역의 미생물 군집 천이에 있어 식물의 존재가 중요한 요소로 작용함을 알 수 있었다. 세균 군집의 경우 특이하게 토양 pH가 RNA 기반 결과, 즉 잠재적 활성을 가진 세균 군집 구조를 결정짓는 중요한 환경 요소인 것으로 나타났으 며(R²=0.32, P<0.01), DNA 기반 세균 군집의 경우 Fe₂O₃, Na₂O와 같은 지질학적 요소가 세균 군집 구조를 결정짓는 환경요인으로 밝혀졌다(R²=0.26 Fe₂O₃, R²=0.28 Na₂O, all P<0.05). 세균 군집의 천이 패턴과 관련하여 RNA 기반의 세균 군집에서는 DNA기반 경우 와 달리 빙하소멸 초기과정(<20년)에서 빙하후퇴 시기에 따른 극명한 세균 군집 천이 양 상이 드러났다. 이는 빙하후퇴가 일어나는 초기 시점에 활성을 지닌 세균의 종 구성이 빠 르게 변화함을 의미한다. 이러한 활성 세균 종들의 군집 변화는 주변 토양의 물질대사 즉, 생지화학적 변화와 맞닿아 있으므로 후속 연구에서는 이러한 활성 세균들의 생태계 기능과 토양 대사체 변화에 대한 연구가 필요함을 시사한다.

빙하 소멸 시기에 따른 토양 미생물의 생물량 변화를 조사하기 위해 가스 크로마토그 래피를 이용하여 인지질 지방산(PLFA) 분석을 수행하였다(토양 31점 x 3반복 = 총 93회 분석 완료). 전반적으로 빙하후퇴 초기에 비해 중후기에 더 많은 미생물 생물량이 나타났 지만, transect 별로 그 패턴은 상이했다. Transect 1의 경우 초기에서 후기로 갈수록 꾸준 히 증가하는 패턴을 보인 반면 나머지 transect들에서는 중기에 들쭉날쭉한 패턴을 보였 다. ML26의 경우 빙하후퇴초기와 견줄만한 낮은 생물량을 보였는데 이는 빙하용융수로 흘러내린 run-off에 의한 교란 때문인 것으로 판단된다.

	5	빙하 녹은	시간이 오	래된					1	빙하 녹은	시간이	최근
Group					Co	oncentrat	ion (mg/	'kg soil)				2009-001 IS
Microbial PLFA compo	nents	ML-1	ML-2	ML-	3 N	/L-4	ML-5	ML-6	ML	-7 N	AL-8	ML-9
Total (mg/kg soil)		1.6587	0.9761	1.569	9 0.	4850	0.4199	0.4043	0.32	76 0	2348	0.2638
Bacteria		0.2032	0.0928	0.168	30 0	0000	0.0000	0.0000	0.00	00 00	0000	0.0000
G+		0 1426	0.0589	0.050	0 0	0000	0 0000	0 0000	0.00	00 00	0000	0 0000
6-		0.0606	0.0330	0.070	06 0	0000	0.0000	0.0000	0.00	000 0	0000	0.0000
Europi		0.0051	0.0933	0.102		0152	0.0000	0.0100	0.00	156 0	0000	0.0000
Fully		1.0500	0.0027	0.192		4450	0.0090	0.0109	0.00	0.00	2240	0.0000
Eukaryote		1.2528	0.7651	1.150	19 U.	4452	0.4110	0.3934	0.52	21 0	2348	0.2638
Protozoa		0.0000	0.0000	0.000	0 0.	0000	0.0000	0.0000	0.00	00 0.	0000	0.0000
Actinomycete		0.1076	0.0355	0.058	32 0.	0245	0.0000	0.0000	0.00	00 0	0000	0.0000
Fungi/Bacteria		0.4681	0.8916	1.147	75 0.	0000	0.0000	0.0000	0.00	00 00	0000	0.0000
Microbial stress indicat	tor											
Sat/Monosat		0.8365	1.0954	0.654	7 1.	3004	1.7786	2.0021	2.52	78 0	0000	0.0000
Iso/Anteiso		1.4842	0.6022	1.896	6 0.	0000	0.0000	0.0000	0.00	000 0	0000	0.0000
	빙하 녹은	시간이 오	래된							빙하	녹은 시간	이 최근
Group					Co	ncentration	n (mg/kg se	oil)				
Microbial PLFA components	ML-10	ML-11	ML-12	ML-13	ML-14	ML-15	ML-16	ML-17	ML-18	ML-19	ML-20	ML-21
fotal (mg/kg soil)	1,1876	1.3238	1.1865	1.0046	2.0057	3.1798	0.9709	1.5000	2.8452	0.8425	0.4950	0.7797
Bacteria	0.0639	0.1433	0.1140	0.1059	0.2416	0.3717	0.0807	0.0964	0.3170	0.0847	0.0000	0.0000
3+	0.0251	0.1007	0.0726	0.0592	0.1684	0.2017	0.0356	0.0687	0.1991	0.0480	0.0000	0.0000
3-	0.0388	0.0426	0.0414	0.0467	0.0732	0.1081	0.0452	0.0277	0.1180	0.0367	0.0000	0.0000
lungi	0.1065	0.0549	0.0274	0.0317	0.1132	0.3784	0.0273	0.1369	0.4240	0.0572	0.0308	0.0376
lukaryote	0.9744	1.0811	0.9825	0.8219	1.5805	2.3190	0.8211	1.2351	2.0298	0.6446	0.4642	0.7420
Protozoa	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Actinomycete	0.0427	0.0445	0.0626	0.0451	0.0704	0.1107	0.0417	0.0316	0.0743	0.0560	0.0000	0.0000
ungi/Bacteria	1.6667	0.3834	0.2401	0.2996	0.4684	1.0182	0.3383	1.4201	1.3375	0.6752	0.0000	0.0000
Microbial stress indicator	0.6312	0.0701	0.0174	1 2440	0.7700	0.0051	1 1706	0.6570	0.71.76	2 2 2 2 5 5	1 4600	1 0020
sat/Monosat so/Anteiso	0.0313	0.6112	1.0513	0.8436	1 2087	1.1107	0.4262	0.0579	1 2268	0 3819	0.0000	0.0000
	HIT	140 11	2101 0 315	0.0100	1.2007			0.0470	1.02.00	HIXL 4	0 11710	+1-2
Group	34	1300	안에 포네는	5	c	oncentrat	ion (mg/k	g soil)		391-	15 450	1 -41
Microbial PLFA componen	nts N	AL-22	ML-23	ML-24	ML-25	ML-20	5 ML-2	7 ML	-28	ML-29	ML-30	ML-31
Total (mg/kg soil)	1	.1806	1.3541	1.5674	3.3200	0.334	1.745	4 1.4	077	1.9190	1.2259	0.3773
Bacteria	C	1185	0.1590	0.1750	0.3939	0.000	0.187	0 0.1	199 (0.1664	0.1335	0.0000
G+	0	0700	0.0944	0.1082	0.2991	0.000	0.132	3 0.0	926	0.1079	0.0737	0.0000
G-	0	0485	0.0646	0.0668	0.0948	0.000	0.054	7 0.0	273	0.0585	0.0598	0.0000
Fundi	0	0474	0.0338	0.0558	0 2185	0.000	0.094	9 01	309	0 1437	0.0462	0.0000
Fukaniote		9508	1 0753	1 2102	2 5005	0.224	1 1/11	1 11	031	1 5500	0.9750	0.377
Drotozoa		0000	0.0000	0.0000	2.3330	0.000	0.000	0 00	000	0,0000	0.0000	0.000
Antina municipal	-	00000	0.0000	0.0000	0.0000	0.0000	0.000		500 0	0.0000	0.0000	0.0000
Actinomycete	0	0688	0.0860	0.1264	0.10/9	0.0000	0.052	5 0.0	558 0	0.0589	0.0712	0.0000
Fungi/Bacteria	C	.35/9	0.2122	0.3188	0.5546	0.000	0.507	4 1.0	920 (0.8636	0.3463	0.0000
Microbial stress indicator	1.											

1.1243 그림 24. 빙하 소멸지역 토양 대상 PLFA 분석 결과

0.7164

0.7214

0.6566

2.3635

0.0000

0.7666

0.9548

0.6921

0.6791

1.2148

0.5417

0.0000

0.0000

1.0975

0.5769

Sat/Monosat

Iso/Anteiso

1.1040

0.8256

1.1263

1.0320

그림 26. 빙하 소멸 시기에 따른 토양 DOC의 조성 변화

토양 DOC의 종 조성 분석 결과 빙하후퇴 초기(<20년)와 중/후기(<90년)간에 확연한 종 조성의 차이를 보임. NDVI 지수가 NMDS1 축과 높은 상관관계를 보이는 것으로 보아 식 물의 존재 유무가 빙하후퇴 초기와 중/후기 간의 DOC 종 조성을 결정짓는 가장 큰 요인 인 것으로 판단됨. 노란색으로 표시된 ML26 지점은 빙하후퇴 중기에 속하는 지점임에도 빙하 용융수로 인해 교란이 일어나 초기 DOC 조성과 유사한 패턴을 보였으며 이는 RNA 에 기반한 활성 미생물 군집 결과에서도 유사한 패턴이 관찰됨. NMDS2 축 방향으로는 토성(sand, clay), 지질(SiO2, MnO, MgO), 총 탄소량(TC) 순으로 DOC 종 조성에 큰 영향 을 미치는 것으로 나타남.

토양 DOC의 종 조성과 세균, 진균 군집 간의 상관관계 분석결과 RNA 기반 세균 군집 과의 상관성이 가장 높은 것으로 나타났다(PROTEST, r=0.78, P<0.001). 진균 군집과 DNA 기반 세균 군집의 경우 DOC 종 조성과 상대적으로 상관관계가 높지 않은 것으로 나타났 다(r=0.67 DNA 기반 세균 군집, r=0.52 RNA 기반 진균 군집, r=0.48 DNA기반 진균 군집, P<0.001). 이는 진균보다는 세균 종들이 빙하소멸지역의 생물학적 물질대사와 생지화학적 프로세스에 더 크게 기여함을 나타내는 결과라 할 수 있다. 앞서 NDVI 지수와 DOC 종 조성간의 높은 상관관계에서 드러났듯이 빙하후퇴 중후기로 갈수록 육상 식물에 의한 DOC 종 조성 변화가 컸다. 따라서 식물 천이가 일어나기 전, 즉 DOC의 기원이 주로 미 생물에 의한 것일 가능성이 큰 빙하후퇴 초기단계 샘플들로 DOC와 RNA 기반 세균 군집 간의 상관관계 분석을 추가로 수행한 결과 전체 샘플을 대상으로 했을 때보다 더 높은 상관관계가 도출되었다(r=0.91, P<0.001). 이는 식물의 천이가 이루어지기 전 단계에 이미 미생물에 의한 천이과정이 진행되고 있음을 나타내며, 빙하후퇴 초기단계의 토양 DOC 종 조성은 주로 활발한 세균 군집의 활동에 의해 결정됨을 나타낸다.

그림 27. DOC 종 조성과 RNA 기반 세균 군집 간의 Procrustres 분석 결과

3. 빙하 소멸로 인한 토양의 물리화학적 특성 변화 규명

가. 동로벤(Austre Lovenbreen), 중앙로벤(Midtre Lovenbreen), 블룸스트란 (Blomstrand) 빙하 소멸지역에서의 토양 물리화학적 특성 조사

토성 분석의 경우 산세척을 통해 유기물을 분해시킨 후 모래는 wet sieving을 통해 분리 하고, 미사와 점토는 피펫법을 활용해 각각의 함량을 계산하였다. pH와 전기전도도의 경 우 토양과 증류수를 1:2(w/v) 비율로 섞은 뒤 측정하였다. TC와 TN은 원소분석기를 통해 분석하였고, SOC의 경우 1 M HCl 산세척, 건조/분쇄 후 TC와 TIC의 차이를 이용해 함량 을 계산하였다.

Sample	Water	pН	Conductivity	Soi	l texture	(%)	TC	TIC	SOC	TN	C/N
1	content(%)	1	(µS cm-1)	Sand	Silt	Clay	(%)	(%)	(%)	(%)	ratio
B14L	4.32	8.47	52.68	75.21	22.11	2.68	1.61	1.54	0.07	0.00	24.40
B14M	7.05	8.36	103.3	60.95	29.78	9.27	1.85	1.67	0.18	0.01	14.93
B14R	7.39	8.47	65.5	64.84	27.48	7.68	1.78	1.64	0.14	0.00	33.67
B15L	5.89	8.59	58.63	73.09	22.29	4.62	1.64	1.52	0.13	0.00	37.19
B15M	6.89	8.41	107.9	64.50	31.38	4.12	1.71	1.47	0.23	0.00	48.94
B15R	7.52	8.43	72.62	64.02	29.07	6.91	1.63	1.47	0.15	0.01	25.45
B16L	7.29	8.64	76.88	74.09	24.09	1.81	1.28	1.20	0.08	0.00	30.46
B16M	7.30	8.44	89.93	72.28	26.24	1.48	1.52	1.35	0.16	0.01	22.30
B16R	7.51	8.62	54.36	71.03	26.48	2.49	1.34	1.26	0.08	0.00	24.49
B17L	6.76	8.61	61.14	70.46	24.74	4.80	1.57	1.42	0.15	0.01	22.55
B17M	7.54	8.48	97.79	65.46	30.58	3.96	1.72	1.46	0.26	0.01	22.62
B17R	6.75	8.54	60.44	58.48	37.95	3.57	1.38	1.26	0.12	0.00	29.18
B18L	6.00	8.68	62.46	79.02	17.56	3.42	2.14	1.98	0.16	0.01	19.64
B18M	10.77	8.38	104.7	69.40	23.54	7.07	2.44	2.20	0.24	0.02	10.05
B18R	8.16	8.5	62.14	67.19	26.03	6.77	2.17	2.04	0.13	0.01	15.11
B19L	10.57	8.41	79.12	57.78	33.38	8.84	2.07	1.89	0.19	0.01	15.34
B19M	4.98	8.46	91.68	66.82	25.24	7.94	2.16	1.98	0.18	0.01	13.66
B19R	5.48	8.53	65.48	69.10	22.96	7.95	2.22	2.06	0.16	0.01	18.07
B20L	11.41	8.26	87.59	64.41	27.25	8.34	2.49	2.12	0.37	0.03	11.32
B20M	9.97	8.27	119.1	64.35	27.37	8.28	2.55	1.98	0.57	0.04	15.34
B20R	9.01	8.39	79.04	63.87	27.13	8.99	2.11	1.85	0.25	0.01	17.35
B21L	7.32	8.6	65.61	67.16	25.71	7.13	1.85	1.73	0.11	0.01	18.96
B21M	10.48	8.53	110.5	56.96	32.80	10.23	2.23	2.06	0.17	0.01	14.79
B21R	10.30	8.41	72.56	69.23	22.99	7.78	2.07	1.84	0.22	0.01	17.96
B22L	9.03	8.36	66.19	56.35	33.11	10.54	2.19	1.87	0.33	0.02	14.41
B22M	11.46	8.36	110.5	58.17	33.47	8.36	2.44	1.86	0.58	0.03	20.01
B22R	8.58	8.3	63.45	61.11	30.33	8.56	1.96	1.73	0.23	0.01	16.24
B23L	24.71	8.17	95.29	4.06	61.42	34.52	2.11	1.36	0.75	0.06	13.06
B23M	8.49	8.28	119.7	35.06	45.96	18.99	2.04	1.57	0.47	0.03	15.24
B23R	13.23	8.25	73.97	54.49	32.10	13.41	2.06	1.71	0.35	0.02	14.02
B24L	24.56	7.61	46.05	62.48	30.28	7.24	2.37	-0.42	2.79	0.17	15.96
B24M	22.50	7.67	51.57	60.22	32.67	7.11	1.58	0.20	1.37	0.10	13.29
B24R	19.82	7.09	61.34	63.83	28.51	7.66	1.25	0.17	1.08	0.09	12.16

표 1. 블룸스트란 빙하소멸지역 토양 물리화학적 특성

B25L	6.01	8.39	61.15	72.43	20.64	6.93	1.77	1.57	0.20	0.01	15.14
B25M	11.71	7.98	114.8	62.06	30.83	7.11	2.17	0.94	1.22	0.06	22.03
B25R	18.63	7.87	89.84	51.21	37.69	11.11	1.94	1.21	0.74	0.05	13.93
B26L	10.12	8.4	70.36	60.01	30.02	9.97	2.16	1.92	0.25	0.02	16.38
B26M	28.31	8.2	121.8	59.85	32.09	8.06	2.61	1.83	0.78	0.05	17.21
B26R	9.81	8.31	85.37	63.75	27.34	8.90	1.95	1.70	0.25	0.02	16.60
B27L	11.56	8.46	112.7	61.79	29.84	8.37	2.02	1.83	0.19	0.01	19.20
B27M	8.47	8.3	111.8	58.86	33.71	7.43	2.01	1.70	0.31	0.02	16.12
B27R	9.09	8.5	62.52	61.43	28.78	9.78	1.96	1.82	0.14	0.01	24.55
B28L	9.92	8.52	71.54	68.94	24.83	6.23	1.75	1.60	0.15	0.01	21.60
B28M	10.95	8.32	120.8	58.70	34.72	6.58	2.06	1.61	0.45	0.02	20.52
B28R	9.88	8.43	61.84	68.76	25.82	5.42	2.00	1.78	0.22	0.01	24.09
B29L	7.23	8.55	56.65	70.43	22.50	7.08	2.02	1.86	0.16	0.01	18.99
B29M	10.78	8.29	104.1	68.98	25.37	5.65	2.36	1.84	0.52	0.04	14.09
B29R	7.16	8.49	59.75	70.04	22.70	7.26	2.15	2.01	0.14	0.01	13.97
B30L	2.83	8.91	42.33	92.37	4.74	2.89	1.45	1.39	0.06	0.00	25.66
B30M	10.29	8.73	70.83	74.15	24.45	1.39	1.47	1.36	0.11	0.00	34.53
B30R	5.67	8.76	41.42	86.03	11.35	2.62	1.25	1.20	0.06	0.00	26.77
B31L	3.67	8.85	44.25	91.35	5.78	2.87	1.41	1.32	0.09	0.00	25.60
B31M	11.69	8.54	85.99	71.65	25.80	2.54	1.44	1.29	0.16	0.01	25.88
B31R	5.10	8.56	49.2	79.33	17.03	3.64	1.31	1.25	0.06	0.00	25.85
B32L	6.25	8.71	57.8	82.37	14.01	3.62	1.15	1.08	0.07	0.00	31.52
B32M	11.69	8.34	256.8	77.45	20.12	2.43	1.27	1.16	0.11	0.00	33.86
B32R	8.11	8.48	81.49	77.03	20.19	2.78	1.07	1.01	0.06	0.00	33.12
B33L	10.08	8.42	129.2	60.56	30.49	8.96	1.71	1.61	0.10	0.01	19.39
B33M	9.45	8.26	180.7	58.97	31.63	9.40	1.93	1.76	0.17	0.01	23.21
B33R	8.03	8.47	87.46	74.57	19.83	5.60	1.55	1.47	0.08	0.00	23.29
B34L	8.65	8.42	61.73	67.56	27.91	4.53	1.08	1.00	0.08	0.00	29.21
B34M	10.09	8.41	106.3	67.31	24.88	7.80	2.10	1.79	0.31	0.02	18.22
B34R	6.25	8.53	79.95	81.27	15.37	3.36	1.37	1.29	0.08	0.00	42.97
B35L	4.32	8.44	178.1	90.72	6.11	3.17	1.51	1.44	0.07	0.00	26.52
B35M	11.24	8.17	296.1	66.81	31.32	1.87	1.25	1.12	0.13	0.00	30.83
B35R	3.55	8.67	46.38	90.73	8.17	1.10	0.98	0.93	0.05	0.00	22.79
B36M	14.84	8.3	198.9	73.58	23.84	2.58	1.65	1.36	0.29	0.02	18.43
B37L	3.31	8.6	61.83	83.84	14.35	1.81	1.67	1.56	0.11	0.01	14.57
B37M	7.09	8.22	83.41	74.07	23.94	1.99	2.18	1.62	0.56	0.03	17.20
B37R	4.59	8.54	57.4	82.05	15.58	2.37	1.67	1.56	0.10	0.00	21.68
B38L	1.65	8.49	48.75	93.97	5.20	0.83	1.84	1.79	0.05	0.00	20.80
B38M	17.24	8.33	104.2	80.42	16.88	2.70	1.97	1.66	0.31	0.02	20.03
B38R	6.77	8.6	61.73	87.87	9.80	2.33	1.89	1.77	0.12	0.01	20.96
B39L	5.52	8.35	57.07	73.90	22.74	3.35	1.83	1.64	0.19	0.01	18.34
B39M	7.10	8.27	112.4	78.50	18.60	2.91	2.27	1.77	0.50	0.03	17.31
B39K	/.6/	8.39	59.85	78.26	20.48	2.25	1.90	1.72	0.18	0.01	18./4
B40L	3.62	8.5	55.55	/8.26	1/./4	4.00	1.69	1.58	0.11	0.01	21.61
B40M	2.65	8.48	80.61	/8.07	19.27	2.66	1.82	1.01	0.20	0.01	21.46
B40K	4.15	8.59	5/.32 72.84	/9.05	10.//	4.18	1.91	1.81	0.10	0.01	15.40
B41L	10.20	ð.34 8 22	12.84	00.20	22.26	8.03 7.74	2.02	1.79	0.25	0.01	18.90
B41M	8.58	ð.22 8 22	120.5	00.01	32.20 20.46	/./4 6 4 4	2.27	1.79	0.48	0.03	15.89
B41K	8.70	8.32	//.85	64.10	29.46	0.44	2.05	1.82	0.23	0.01	19.12

표 2. 동로벤 빙하소멸지역 토양 물리화학적 특성

C 1	Water		Conductivity	Soi	l texture	(%)	TC	TIC	SOC	TN	C/N
Sample	content(%)	рн	(µS cm-1)	Sand	Silt	Clay	(%)	(%)	(%)	(%)	ratio
A1L	14.59	7.99	82	31.12	60.69	8.19	0.64	0.45	0.20	0.01	15.19
A1M	9.99	7.77	147.4	68.63	24.22	7.14	0.89	0.54	0.36	0.03	13.97
A1R	3.75	7.85	72.94	85.45	11.66	2.89	0.59	0.49	0.11	0.01	16.03
A2L	14.82	8	85.05	54.58	39.49	5.93	0.77	0.60	0.17	0.01	13.80
A2M	13.36	7.74	164.8	49.65	37.65	12.70	1.32	0.82	0.50	0.04	11.37
A2R	9.52	7.98	86.45	50.14	37.41	12.45	0.82	0.61	0.21	0.01	18.20
A3L	9.84	7.9	96.7	47.10	38.28	14.62	0.64	0.46	0.18	0.01	14.05
A3M	10.08	7.87	144.4	50.63	35.14	14.23	1.04	0.54	0.50	0.03	16.39
A3R	10.80	7.91	88.7	47.11	37.67	15.21	0.75	0.58	0.17	0.01	11.88
A4L	9.64	8.42	7.92	49.00	36.87	14.13	0.83	0.69	0.14	0.01	12.09
A4M	14.71	7.63	362.3	52.77	33.11	14.12	1.16	0.62	0.55	0.04	12.62
A4R	11.30	7.91	117.7	48.20	36.84	14.96	0.86	0.71	0.15	0.01	11.28
A5L	3.48	8.58	7.81	82.45	15.98	1.57	0.68	0.55	0.13	0.01	15.00
A5M	3.68	7.94	62.47	85.66	12.40	1.94	0.69	0.45	0.24	0.01	24.90
A5R	13.99	7.93	70.3	35.52	61.30	3.18	0.77	0.58	0.18	0.01	15.69
A6L	6.36	8.4	8.05	86.57	11.06	2.37	0.47	0.25	0.22	0.01	17.17
A6M	10.05	7.38	90.74	85.06	11.64	3.29	1.66	0.59	1.07	0.07	14.74
A6R	4.38	7.95	40.61	86.50	9.84	3.66	0.66	0.49	0.16	0.01	11.28
A7L	3.67	8.68	8.32	89.27	8.44	2.29	0.57	0.45	0.12	0.01	18.84
A7M	4.15	7.9	49.09	84.70	11.95	3.35	1.10	0.78	0.32	0.02	16.01
A7R	5.58	7.98	49.7	84.01	13.61	2.38	0.66	0.44	0.22	0.01	19.45
A8L	5.28	8.55	8.3	83.06	15.29	1.65	0.50	0.35	0.14	0.01	19.16
A8M	21.79	7.89	124.8	44.61	48.33	7.06	1.00	0.28	0.72	0.04	19.09
A8R	8.16	8.02	63.93	70.02	26.33	3.65	0.60	0.26	0.33	0.02	18.78
A9L	3.50	8.66	8.36	92.10	6.48	1.42	0.44	0.34	0.10	0.01	15.73
A9M	4.51	8.07	60.71	89.78	9.06	1.16	0.61	0.49	0.12	0.01	13.01
A9R	2.57	8.26	38.9	93.61	5.17	1.23	0.56	0.48	0.08	0.00	20.13
A10L	5.21	8.33	45.9	85.83	11.57	2.60	0.48	0.36	0.12	0.01	20.63
A10M	9.69	8.28	59.95	88.96	9.93	1.11	0.49	0.34	0.15	0.01	17.55
A10R	4.53	8.31	47.8	85.33	12.56	2.11	0.54	0.39	0.15	0.01	24.92
A11L	4.33	8.4	44.97	86.08	12.49	1.42	0.53	0.40	0.14	0.01	20.29
A11M	11.40	8.02	148.4	49.21	38.21	12.58	0.83	0.59	0.24	0.01	16.85
A11R	4.48	8.35	54.3	78.20	17.48	4.33	0.45	0.36	0.09	0.01	15.12
A12L	9.37	8.04	98.4	62.86	29.44	7.71	0.77	0.61	0.16	0.01	15.15
A12M	12.37	7.86	139.2	55.77	35.25	8.98	1.18	0.63	0.55	0.04	13.46
A12R	8.29	7.95	98.1	55.84	32.20	11.95	0.70	0.56	0.14	0.01	11.69
A13L	8.82	7.95	76.4	49.26	40.66	10.08	0.64	0.49	0.15	0.01	15.74
A13M	10.38	7.78	180.7	48.46	38.54	13.00	0.97	0.43	0.54	0.04	13.77
A13R	11.56	8.03	95.1	46.58	40.57	12.84	0.63	0.43	0.20	0.01	17.11
A14L	5.59	8.02	88.1	59.42	33.52	7.06	0.69	0.56	0.13	0.01	14.54
A14M	27.94	8.04	116.2	78.65	15.80	5.56	0.47	0.31	0.16	0.01	14.15
A14R	8.52	8.08	94.1	48.29	37.23	14.48	0.70	0.59	0.11	0.01	12.48
A15L	5.62	8.08	86.66	57.75	33.43	8.82	0.82	0.70	0.12	0.01	22.62
A15M	12.01	8	160	53.99	34.35	11.66	0.87	0.71	0.16	0.01	15.60
A15R	11.27	8.19	101.9	36.16	50.71	13.13	0.75	0.60	0.16	0.01	23.55
A16L	7.78	7.98	249.1	74.97	20.62	4.41	0.70	0.54	0.16	0.01	29.76
A16M	12.31	7.84	296	54.70	35.37	9.93	0.90	0.72	0.17	0.01	14.39

A17M 14.86 7.86 476.3 50.11 36.01 13.88 1.03 0.93 0.11 0.01 16.21 A18L 9.61 8.41 71.2 70.13 26.79 3.08 0.37 0.24 0.14 0.00 28.05 A18R 13.89 8.35 75.94 79.43 17.36 3.20 0.41 0.27 0.13 0.00 28.05 A19L 11.26 8.34 83.84 46.30 40.17 13.33 0.57 0.40 0.17 0.01 26.21 A19R 8.97 8.16 93.74 44.99 42.34 12.68 0.86 0.44 0.22 0.01 25.11 A20L 7.62 8.27 79.47 51.77 37.99 10.24 0.57 0.35 0.22 0.01 25.11 A20M 12.00 7.93 12.17 76.22 29.06 8.41 0.76 0.48 0.22 0.02 17.20 A21M 16.06 7.8 117.7 62.87 29.14 7.99 1.32 0.64	A16R	8.63	8.15	123.1	59.30	31.54	9.16	1.00	0.89	0.11	0.00	23.63
A18L 9.61 8.41 71.2 70.13 26.79 3.08 0.37 0.24 0.14 0.00 28.05 A18M 14.54 8.31 107.3 43.82 46.57 9.62 0.62 0.49 0.13 0.00 28.05 A18R 13.89 8.35 75.94 79.43 17.36 3.20 0.41 0.27 0.13 0.00 26.61 A19L 11.26 8.34 83.84 44.39 11.77 1.01 0.61 0.40 0.02 18.35 A20L 7.62 8.27 79.47 51.77 57.99 10.24 0.57 0.35 0.22 0.01 24.93 A20L 7.62 8.27 79.41 71.77 57.99 10.24 0.46 0.21 0.26 0.01 24.93 A21M 16.06 7.8 117.7 62.87 29.14 7.99 1.32 0.47 0.35 0.02 20.57 A21L 16.06	A17M	14.86	7.86	476.3	50.11	36.01	13.88	1.03	0.93	0.11	0.01	16.21
A18M 14.54 8.31 107.3 43.82 46.57 9.62 0.62 0.49 0.13 0.01 19.74 A18R 13.89 8.35 75.94 79.43 17.36 3.20 0.41 0.27 0.13 0.00 29.68 A19M 11.26 8.34 83.84 46.30 40.17 13.53 0.57 0.40 0.10 0.01 26.21 A19M 15.40 8.05 155.7 46.84 41.39 11.77 1.01 0.61 0.40 0.02 18.35 A19R 9.97 8.16 93.74 44.99 42.34 12.68 0.86 0.64 0.22 0.01 25.11 A20R 8.30 8.22 72.11 71.45 22.84 5.71 0.46 0.21 0.26 0.01 24.93 A21L 11.20 8.05 69.9 62.53 29.06 8.41 0.76 0.48 0.22 0.02 20.57 A21R 13.57 8.13 103.3 56.44 35.66 6.70 0.92 0.4	A18L	9.61	8.41	71.2	70.13	26.79	3.08	0.37	0.24	0.14	0.00	28.05
A18R 13.89 8.35 75.94 79.43 17.36 3.20 0.41 0.27 0.13 0.00 29.68 A19L 11.26 8.34 83.84 46.30 40.17 13.53 0.57 0.40 0.17 0.01 26.21 A19R 9.97 8.16 93.74 44.99 42.34 12.68 0.66 0.62 0.22 0.01 34.00 A20L 7.62 8.27 79.47 51.77 37.99 10.24 0.57 0.35 0.22 0.01 24.93 A20L 7.62 8.27 79.47 51.77 37.99 10.24 0.57 0.35 0.22 0.01 24.93 A21L 11.20 8.05 69.9 62.53 29.06 8.40 0.76 0.88 0.62 0.17 0.44 0.22 0.02 17.20 A21L 11.57 8.13 103.3 56.44 36.6 6.70 0.82 0.47 0.35 0.02 20.57 A22L 9.93 7.95 134.5 50.08 35.96<	A18M	14.54	8.31	107.3	43.82	46.57	9.62	0.62	0.49	0.13	0.01	19.74
A19L 11.26 8.34 83.84 46.30 40.17 13.53 0.57 0.40 0.17 0.01 26.21 A19M 15.40 8.05 155.7 46.84 41.39 11.77 1.01 0.61 0.40 0.02 18.35 A19R 9.97 8.16 93.74 44.99 42.34 12.68 0.86 0.64 0.22 0.01 25.11 A20L 7.62 8.27 79.47 51.77 37.99 10.24 0.57 0.35 0.22 0.01 24.14 A20R 8.30 8.22 72.11 71.45 22.84 5.71 0.46 0.21 0.26 0.01 24.93 A21H 10.66 7.8 117.7 62.87 29.14 7.99 1.32 0.47 0.85 0.02 20.57 A21H 13.57 8.13 103.3 56.44 36.86 6.70 0.82 0.47 0.35 0.02 20.57 A22L 9.93 7.95 134.5 50.08 3.726 13.42 1.32 0.6	A18R	13.89	8.35	75.94	79.43	17.36	3.20	0.41	0.27	0.13	0.00	29.68
A19M 15.40 8.05 155.7 46.84 41.39 11.77 1.01 0.61 0.40 0.02 18.35 A19R 9.97 8.16 93.74 44.99 42.34 12.68 0.86 0.64 0.22 0.01 34.00 A20L 7.62 8.27 79.47 57.17 37.99 10.24 0.57 0.35 0.22 0.01 25.11 A20M 12.50 7.33 121.7 62.02 29.08 8.90 0.89 0.42 0.48 0.02 0.22.44 A20R 8.30 8.22 72.11 71.45 22.84 5.71 0.46 0.21 0.26 0.01 24.93 A21L 11.20 8.05 69.9 62.53 29.06 8.41 0.76 0.48 0.28 0.02 17.20 A21L 13.27 8.13 103.3 55.64 36.66 7.07 0.32 0.47 0.35 0.02 20.57 A22L 9.93 7.95 134.5 50.08 35.96 13.96 0.61 0.	A19L	11.26	8.34	83.84	46.30	40.17	13.53	0.57	0.40	0.17	0.01	26.21
A19R 9.97 8.16 93.74 44.99 42.34 12.68 0.86 0.64 0.22 0.01 34.00 A20L 7.62 8.27 79.47 51.77 37.99 10.24 0.57 0.35 0.22 0.01 25.11 A20R 8.30 8.22 72.11 71.45 22.84 5.71 0.46 0.21 0.26 0.01 24.93 A21L 11.20 8.05 69.9 62.53 29.06 8.41 0.76 0.48 0.02 17.70 A21R 13.57 8.13 103.3 56.44 36.86 6.70 0.82 0.47 0.35 0.02 20.57 A22L 9.93 7.95 134.5 50.08 35.96 13.96 0.91 0.64 0.27 0.01 19.04 A22R 10.71 8.06 75.58 57.91 36.51 5.58 0.88 0.48 0.40 0.02 18.18 A23L 4.86 8.04 40.4 91.97 6.12 1.91 0.37 0.22 0.15 <td>A19M</td> <td>15.40</td> <td>8.05</td> <td>155.7</td> <td>46.84</td> <td>41.39</td> <td>11.77</td> <td>1.01</td> <td>0.61</td> <td>0.40</td> <td>0.02</td> <td>18.35</td>	A19M	15.40	8.05	155.7	46.84	41.39	11.77	1.01	0.61	0.40	0.02	18.35
A20L 7.62 8.27 79.47 \$1.77 37.99 10.24 0.57 0.35 0.22 0.01 25.11 A20M 12.50 7.93 121.7 62.02 29.08 8.90 0.49 0.42 0.48 0.02 20.24 A20R 8.30 8.22 72.11 71.45 22.84 5.71 0.46 0.21 0.26 0.01 24.93 A21L 11.00 8.05 69.9 62.53 29.06 8.41 0.76 0.48 0.28 0.02 17.20 A21L 13.57 8.13 103.3 56.44 36.86 6.70 0.82 0.47 0.35 0.02 20.57 A22L 9.93 7.95 134.5 50.08 35.96 13.96 0.91 0.64 0.27 0.01 19.04 A22R 10.71 8.06 75.58 57.91 16.51 5.58 0.88 0.48 0.00 13.27 A23R 6.65 8.3 40.42 87.21 10.39 2.41 0.49 0.28 0.20 <td>A19R</td> <td>9.97</td> <td>8.16</td> <td>93.74</td> <td>44.99</td> <td>42.34</td> <td>12.68</td> <td>0.86</td> <td>0.64</td> <td>0.22</td> <td>0.01</td> <td>34.00</td>	A19R	9.97	8.16	93.74	44.99	42.34	12.68	0.86	0.64	0.22	0.01	34.00
A20M 12.50 7.93 121.7 62.02 29.08 8.90 0.89 0.42 0.48 0.02 20.24 A20R 8.30 8.22 72.11 71.45 22.84 5.71 0.46 0.21 0.26 0.01 24.93 A21L 11.20 8.05 69.9 62.53 29.06 8.41 0.76 0.48 0.28 0.02 17.20 A21M 16.06 7.8 117.7 62.87 29.14 7.99 1.32 0.47 0.85 0.02 15.7 A21R 13.57 8.13 103.3 56.44 36.66 6.70 0.82 0.47 0.35 0.02 18.18 A22M 22.78 7.89 215.8 49.33 37.26 13.42 1.32 0.60 0.71 0.04 17.16 A22R 10.71 8.06 75.58 57.91 36.51 5.58 0.88 0.48 0.40 0.02 18.18 A23R 6.65 8.3 40.42 87.21 10.39 2.41 0.49 0.28 <td>A20L</td> <td>7.62</td> <td>8.27</td> <td>79.47</td> <td>51.77</td> <td>37.99</td> <td>10.24</td> <td>0.57</td> <td>0.35</td> <td>0.22</td> <td>0.01</td> <td>25.11</td>	A20L	7.62	8.27	79.47	51.77	37.99	10.24	0.57	0.35	0.22	0.01	25.11
A20R 8.30 8.22 72.11 71.45 22.84 5.71 0.46 0.21 0.26 0.01 24.93 A21L 11.20 8.05 69.9 62.53 29.06 8.41 0.76 0.48 0.28 0.02 17.20 A21L 11.20 8.05 69.9 62.53 29.06 8.41 0.76 0.48 0.28 0.02 17.20 A21R 13.57 8.13 103.3 56.44 36.86 6.70 0.82 0.47 0.35 0.02 20.57 A22L 9.93 7.95 134.5 50.08 35.96 13.42 1.32 0.60 0.71 0.04 17.16 A22R 10.71 8.06 75.58 57.91 36.51 5.58 0.88 0.48 0.40 0.02 18.18 A23L 4.86 8.04 40.4 91.97 6.12 1.91 0.37 0.22 0.15 0.01 25.40 A23R 6.65 8.3 40.42 87.21 10.39 0.21 0.72 0.03	A20M	12.50	7.93	121.7	62.02	29.08	8.90	0.89	0.42	0.48	0.02	20.24
A21L 11.20 8.05 69.9 62.53 29.06 8.41 0.76 0.48 0.28 0.02 17.20 A21M 16.06 7.8 117.7 62.87 29.14 7.99 1.32 0.47 0.85 0.02 20.57 A21R 13.57 8.13 103.3 56.44 36.86 6.70 0.82 0.47 0.35 0.02 20.57 A22L 9.93 7.95 134.5 50.08 35.96 13.42 1.32 0.60 0.71 0.04 17.16 A22M 22.78 7.89 215.8 49.33 37.26 13.42 1.32 0.60 0.71 0.04 17.16 A22R 6.65 8.04 40.4 91.97 6.12 1.91 0.37 0.22 0.15 0.01 25.40 A23R 6.65 8.3 40.42 87.21 10.39 2.41 0.49 0.28 0.20 0.01 18.45 A24L 9.61 8.29 81.3 59.01 30.26 10.72 0.63 0.21	A20R	8.30	8.22	72.11	71.45	22.84	5.71	0.46	0.21	0.26	0.01	24.93
A21M 16.06 7.8 117.7 62.87 29.14 7.99 1.32 0.47 0.85 0.06 15.15 A21R 13.57 8.13 103.3 56.44 36.86 6.70 0.82 0.47 0.35 0.02 20.57 A22L 9.93 7.95 134.5 50.08 35.96 13.96 0.91 0.64 0.27 0.01 19.04 A22M 22.78 7.89 215.8 49.33 37.26 13.42 1.32 0.60 0.71 0.04 17.16 A22R 10.71 8.06 75.58 57.91 36.51 55.8 0.88 0.48 0.40 0.02 18.18 A23L 4.86 8.04 40.4 91.97 6.12 1.91 0.37 0.22 0.15 0.01 25.40 A23R 6.65 8.3 40.42 87.21 10.39 2.41 0.49 0.28 0.20 0.01 18.45 A24L 9.61 8.29 81.3 59.01 30.26 10.72 0.68 0.48	A21L	11.20	8.05	69.9	62.53	29.06	8.41	0.76	0.48	0.28	0.02	17.20
A21R 13.57 8.13 103.3 56.44 36.86 6.70 0.82 0.47 0.35 0.02 20.57 A22L 9.93 7.95 134.5 50.08 35.96 13.96 0.91 0.64 0.27 0.01 19.04 A22M 22.78 7.89 215.8 49.33 37.26 13.42 1.32 0.60 0.71 0.04 17.16 A22R 10.71 8.06 75.58 57.91 36.51 55.8 0.88 0.40 0.02 18.18 A23L 4.86 8.04 40.4 91.97 6.12 1.91 0.37 0.22 0.15 0.01 25.40 A23M 15.46 7.95 45.56 88.55 9.78 1.67 0.63 0.28 0.34 0.03 13.27 A24K 9.61 8.29 81.3 59.01 30.26 10.72 0.68 0.48 0.20 0.01 18.95 A24R 10.85 8.26 76.05 57.98 32.15 9.87 0.62 0.41 0.20 <td>A21M</td> <td>16.06</td> <td>7.8</td> <td>117.7</td> <td>62.87</td> <td>29.14</td> <td>7.99</td> <td>1.32</td> <td>0.47</td> <td>0.85</td> <td>0.06</td> <td>15.15</td>	A21M	16.06	7.8	117.7	62.87	29.14	7.99	1.32	0.47	0.85	0.06	15.15
A22L 9.93 7.95 134.5 50.08 35.96 13.96 0.91 0.64 0.27 0.01 19.04 A22M 22.78 7.89 215.8 49.33 37.26 13.42 1.32 0.60 0.71 0.04 17.16 A22R 10.71 8.06 75.58 57.91 36.51 5.58 0.88 0.48 0.40 0.02 18.18 A23L 4.86 8.04 40.4 91.97 6.12 1.91 0.37 0.22 0.15 0.01 25.40 A23M 15.46 7.95 45.56 88.55 9.78 1.67 0.63 0.28 0.34 0.03 13.27 A23R 6.65 8.3 40.42 87.21 10.39 2.41 0.49 0.28 0.20 0.01 18.45 A24L 9.61 8.29 81.3 59.01 30.26 10.72 0.68 0.48 0.20 0.01 18.45 A24R 10.85 8.26 76.05 57.98 32.15 9.87 0.62 0.41	A21R	13.57	8.13	103.3	56.44	36.86	6.70	0.82	0.47	0.35	0.02	20.57
A22M22.787.89215.849.3337.2613.421.320.600.710.0417.16A22R10.718.0675.5857.9136.515.580.880.480.400.0218.18A23L4.868.0440.491.976.121.910.370.220.150.0125.40A23M15.467.9545.5688.559.781.670.630.280.340.0313.27A23R6.658.340.4287.2110.392.410.490.280.200.0124.68A24L9.618.2981.359.0130.2610.720.680.480.200.0118.95A24M15.918.0388.5362.2030.157.650.930.210.720.0321.60A24R10.858.3159.2643.0853.753.180.820.620.190.0112.021A25M23.188.1473.7626.5667.585.861.460.610.840.0516.00A25R9.858.2284.0650.7236.1813.110.770.500.270.0122.59A26L10.418.2690.7748.3738.9212.710.910.700.220.0122.55A26K9.458.290.5553.8634.5811.560.880.640.240.0120.06 <t< td=""><td>A22L</td><td>9.93</td><td>7.95</td><td>134.5</td><td>50.08</td><td>35.96</td><td>13.96</td><td>0.91</td><td>0.64</td><td>0.27</td><td>0.01</td><td>19.04</td></t<>	A22L	9.93	7.95	134.5	50.08	35.96	13.96	0.91	0.64	0.27	0.01	19.04
A22R 10.71 8.06 75.58 57.91 36.51 5.58 0.88 0.48 0.40 0.02 18.18 A23L 4.86 8.04 40.4 91.97 6.12 1.91 0.37 0.22 0.15 0.01 25.40 A23M 15.46 7.95 45.56 88.55 9.78 1.67 0.63 0.28 0.34 0.03 13.27 A23R 6.65 8.3 40.42 87.21 10.39 2.41 0.49 0.28 0.20 0.01 24.68 A24L 9.61 8.29 81.3 59.01 30.26 10.72 0.68 0.48 0.20 0.01 18.95 A24M 15.91 8.03 88.53 62.20 30.15 7.65 0.93 0.21 0.72 0.03 21.60 A24R 10.85 8.26 76.05 57.98 32.15 9.87 0.62 0.41 0.20 0.01 20.21 A25L 10.95 8.31 59.26 43.08 53.75 3.18 0.82 0.62	A22M	22.78	7.89	215.8	49.33	37.26	13.42	1.32	0.60	0.71	0.04	17.16
A23L 4.86 8.04 40.4 91.97 6.12 1.91 0.37 0.22 0.15 0.01 25.40 A23M 15.46 7.95 45.56 88.55 9.78 1.67 0.63 0.28 0.34 0.03 13.27 A23R 6.65 8.3 40.42 87.21 10.39 2.41 0.49 0.28 0.20 0.01 24.68 A24L 9.61 8.29 81.3 59.01 30.26 10.72 0.68 0.48 0.20 0.01 18.95 A24M 15.91 8.03 88.53 62.20 30.15 7.65 0.93 0.21 0.72 0.03 21.60 A24R 10.85 8.26 76.05 57.98 32.15 9.87 0.62 0.41 0.20 0.01 18.45 A25L 10.95 8.31 59.26 43.08 53.75 3.18 0.82 0.62 0.19 0.01 22.21 A25M 23.18 8.14 73.76 26.56 67.58 5.86 1.46 0.61	A22R	10.71	8.06	75.58	57.91	36.51	5.58	0.88	0.48	0.40	0.02	18.18
A23M 15.46 7.95 45.56 88.55 9.78 1.67 0.63 0.28 0.34 0.03 13.27 A23R 6.65 8.3 40.42 87.21 10.39 2.41 0.49 0.28 0.20 0.01 24.68 A24L 9.61 8.29 81.3 59.01 30.26 10.72 0.68 0.48 0.20 0.01 18.95 A24M 15.91 8.03 88.53 62.20 30.15 7.65 0.93 0.21 0.72 0.03 21.60 A24R 10.85 8.26 76.05 57.98 32.15 9.87 0.62 0.41 0.20 0.01 18.45 A25L 10.95 8.31 59.26 43.08 53.75 3.18 0.82 0.62 0.19 0.01 20.21 A25M 23.18 8.14 73.76 26.56 67.58 5.86 1.46 0.61 0.84 0.05 16.00 A25R 9.85 8.22 84.06 50.72 36.18 13.11 0.77 0.50 <td>A23L</td> <td>4.86</td> <td>8.04</td> <td>40.4</td> <td>91.97</td> <td>6.12</td> <td>1.91</td> <td>0.37</td> <td>0.22</td> <td>0.15</td> <td>0.01</td> <td>25.40</td>	A23L	4.86	8.04	40.4	91.97	6.12	1.91	0.37	0.22	0.15	0.01	25.40
A23R 6.65 8.3 40.42 87.21 10.39 2.41 0.49 0.28 0.20 0.01 24.68 A24L 9.61 8.29 81.3 59.01 30.26 10.72 0.68 0.48 0.20 0.01 18.95 A24M 15.91 8.03 88.53 62.20 30.15 7.65 0.93 0.21 0.72 0.03 21.60 A24R 10.85 8.26 76.05 57.98 32.15 9.87 0.62 0.41 0.20 0.01 18.45 A25L 10.95 8.31 59.26 43.08 53.75 3.18 0.82 0.62 0.19 0.01 20.21 A25M 23.18 8.14 73.76 26.56 67.58 5.86 1.46 0.61 0.84 0.05 16.00 A25R 9.85 8.22 84.06 50.72 36.18 13.11 0.77 0.50 0.27 0.01 22.59 A26L 10.41 8.26 90.77 48.37 38.92 12.71 1.00 0.68<	A23M	15.46	7.95	45.56	88.55	9.78	1.67	0.63	0.28	0.34	0.03	13.27
A24L 9.61 8.29 81.3 59.01 30.26 10.72 0.68 0.48 0.20 0.01 18.95 A24M 15.91 8.03 88.53 62.20 30.15 7.65 0.93 0.21 0.72 0.03 21.60 A24R 10.85 8.26 76.05 57.98 32.15 9.87 0.62 0.41 0.20 0.01 18.45 A25L 10.95 8.31 59.26 43.08 53.75 3.18 0.82 0.62 0.19 0.01 20.21 A25M 23.18 8.14 73.76 26.56 67.58 5.86 1.46 0.61 0.84 0.05 16.00 A25R 9.85 8.22 84.06 50.72 36.18 13.11 0.77 0.50 0.27 0.01 22.59 A26L 10.41 8.26 90.77 48.37 38.92 12.71 0.91 0.70 0.22 0.01 22.35 A26R 9.45 8.2 90.35 53.86 34.58 11.56 0.88 0.64	A23R	6.65	8.3	40.42	87.21	10.39	2.41	0.49	0.28	0.20	0.01	24.68
A24M 15.91 8.03 88.53 62.20 30.15 7.65 0.93 0.21 0.72 0.03 21.60 A24R 10.85 8.26 76.05 57.98 32.15 9.87 0.62 0.41 0.20 0.01 18.45 A25L 10.95 8.31 59.26 43.08 53.75 3.18 0.82 0.62 0.19 0.01 20.21 A25M 23.18 8.14 73.76 26.56 67.58 5.86 1.46 0.61 0.84 0.05 16.00 A25R 9.85 8.22 84.06 50.72 36.18 13.11 0.77 0.50 0.27 0.01 22.59 A26L 10.41 8.26 90.77 48.37 38.92 12.71 0.91 0.70 0.22 0.01 22.35 A26M 11.25 8.26 126.6 53.05 34.22 12.74 1.00 0.68 0.32 0.02 18.37 A26R 9.45 8.2 90.35 53.86 34.58 11.56 0.88 0.	A24L	9.61	8.29	81.3	59.01	30.26	10.72	0.68	0.48	0.20	0.01	18.95
A24R 10.85 8.26 76.05 57.98 32.15 9.87 0.62 0.41 0.20 0.01 18.45 A25L 10.95 8.31 59.26 43.08 53.75 3.18 0.82 0.62 0.19 0.01 20.21 A25M 23.18 8.14 73.76 26.56 67.58 5.86 1.46 0.61 0.84 0.05 16.00 A25R 9.85 8.22 84.06 50.72 36.18 13.11 0.77 0.50 0.27 0.01 22.59 A26L 10.41 8.26 90.77 48.37 38.92 12.71 0.91 0.70 0.22 0.01 22.35 A26R 9.45 8.2 90.35 53.86 34.58 11.56 0.88 0.64 0.24 0.01 20.06 A27L 10.28 8.04 94.18 61.32 28.05 10.63 0.75 0.56 0.19 0.01 23.19 A28L 14.16 8.18 130.7 56.24 35.07 8.70 0.88 0.	A24M	15.91	8.03	88.53	62.20	30.15	7.65	0.93	0.21	0.72	0.03	21.60
A25L 10.95 8.31 59.26 43.08 53.75 3.18 0.82 0.62 0.19 0.01 20.21 A25M 23.18 8.14 73.76 26.56 67.58 5.86 1.46 0.61 0.84 0.05 16.00 A25R 9.85 8.22 84.06 50.72 36.18 13.11 0.77 0.50 0.27 0.01 22.59 A26L 10.41 8.26 126.6 53.05 34.22 12.71 0.91 0.70 0.22 0.01 22.35 A26M 11.25 8.26 126.6 53.05 34.22 12.74 1.00 0.68 0.32 0.02 18.37 A26R 9.45 8.2 90.35 53.86 34.58 11.56 0.88 0.64 0.24 0.01 20.06 A27L 10.28 8.04 94.18 61.32 28.05 10.63 0.75 0.56 0.19 0.01 23.19 A28L 14.16 8.18 130.7 56.24 35.07 8.70 0.88 0	A24R	10.85	8.26	76.05	57.98	32.15	9.87	0.62	0.41	0.20	0.01	18.45
A25M 23.18 8.14 73.76 26.56 67.58 5.86 1.46 0.61 0.84 0.05 16.00 A25R 9.85 8.22 84.06 50.72 36.18 13.11 0.77 0.50 0.27 0.01 22.59 A26L 10.41 8.26 90.77 48.37 38.92 12.71 0.91 0.70 0.22 0.01 22.35 A26M 11.25 8.26 126.6 53.05 34.22 12.74 1.00 0.68 0.32 0.02 18.37 A26R 9.45 8.2 90.35 53.86 34.58 11.56 0.88 0.64 0.24 0.01 20.06 A27L 10.28 8.04 94.18 61.32 28.05 10.63 0.75 0.56 0.19 0.01 22.05 A27M 15.45 8.15 128.9 50.34 37.40 12.26 1.06 0.69 0.37 0.02 15.52 A27R 10.77 8.14 101.5 50.58 34.54 14.87 0.80 <td< td=""><td>A25L</td><td>10.95</td><td>8.31</td><td>59.26</td><td>43.08</td><td>53.75</td><td>3.18</td><td>0.82</td><td>0.62</td><td>0.19</td><td>0.01</td><td>20.21</td></td<>	A25L	10.95	8.31	59.26	43.08	53.75	3.18	0.82	0.62	0.19	0.01	20.21
A25R 9.85 8.22 84.06 50.72 36.18 13.11 0.77 0.50 0.27 0.01 22.59 A26L 10.41 8.26 90.77 48.37 38.92 12.71 0.91 0.70 0.22 0.01 22.35 A26M 11.25 8.26 126.6 53.05 34.22 12.74 1.00 0.68 0.32 0.02 18.37 A26R 9.45 8.2 90.35 53.86 34.58 11.56 0.88 0.64 0.24 0.01 20.06 A27L 10.28 8.04 94.18 61.32 28.05 10.63 0.75 0.56 0.19 0.01 22.05 A27M 15.45 8.15 128.9 50.34 37.40 12.26 1.06 0.69 0.37 0.02 15.52 A27R 10.77 8.14 101.5 50.58 34.54 14.87 0.80 0.61 0.19 0.01 23.19 A28L 14.16 8.18 130.7 56.24 35.07 8.70 0.88 <td< td=""><td>A25M</td><td>23.18</td><td>8.14</td><td>73.76</td><td>26.56</td><td>67.58</td><td>5.86</td><td>1.46</td><td>0.61</td><td>0.84</td><td>0.05</td><td>16.00</td></td<>	A25M	23.18	8.14	73.76	26.56	67.58	5.86	1.46	0.61	0.84	0.05	16.00
A26L 10.41 8.26 90.77 48.37 38.92 12.71 0.91 0.70 0.22 0.01 22.35 A26M 11.25 8.26 126.6 53.05 34.22 12.74 1.00 0.68 0.32 0.02 18.37 A26R 9.45 8.2 90.35 53.86 34.58 11.56 0.88 0.64 0.24 0.01 20.06 A27L 10.28 8.04 94.18 61.32 28.05 10.63 0.75 0.56 0.19 0.01 22.05 A27M 15.45 8.15 128.9 50.34 37.40 12.26 1.06 0.69 0.37 0.02 15.52 A27R 10.77 8.14 101.5 50.58 34.54 14.87 0.80 0.61 0.19 0.01 23.19 A28L 14.16 8.18 130.7 56.24 35.07 8.70 0.88 0.70 0.17 0.01 22.04 A28L 19.28 8.1 147.2 54.16 35.10 10.74 1.29 <td< td=""><td>A25R</td><td>9.85</td><td>8.22</td><td>84.06</td><td>50.72</td><td>36.18</td><td>13.11</td><td>0.77</td><td>0.50</td><td>0.27</td><td>0.01</td><td>22.59</td></td<>	A25R	9.85	8.22	84.06	50.72	36.18	13.11	0.77	0.50	0.27	0.01	22.59
A26M 11.25 8.26 126.6 53.05 34.22 12.74 1.00 0.68 0.32 0.02 18.37 A26R 9.45 8.2 90.35 53.86 34.58 11.56 0.88 0.64 0.24 0.01 20.06 A27L 10.28 8.04 94.18 61.32 28.05 10.63 0.75 0.56 0.19 0.01 22.05 A27M 15.45 8.15 128.9 50.34 37.40 12.26 1.06 0.69 0.37 0.02 15.52 A27R 10.77 8.14 101.5 50.58 34.54 14.87 0.80 0.61 0.19 0.01 23.19 A28L 14.16 8.18 130.7 56.24 35.07 8.70 0.88 0.70 0.17 0.01 22.04 A28M 19.28 8.1 147.2 54.16 35.10 10.74 1.29 0.87 0.42 0.02 17.38 A28R 9.79 8.01 150.2 52.10 34.81 13.09 0.84	A26L	10.41	8.26	90.77	48.37	38.92	12.71	0.91	0.70	0.22	0.01	22.35
A26R 9.45 8.2 90.35 53.86 34.58 11.56 0.88 0.64 0.24 0.01 20.06 A27L 10.28 8.04 94.18 61.32 28.05 10.63 0.75 0.56 0.19 0.01 22.05 A27M 15.45 8.15 128.9 50.34 37.40 12.26 1.06 0.69 0.37 0.02 15.52 A27R 10.77 8.14 101.5 50.58 34.54 14.87 0.80 0.61 0.19 0.01 23.19 A28L 14.16 8.18 130.7 56.24 35.07 8.70 0.88 0.70 0.17 0.01 22.04 A28M 19.28 8.1 147.2 54.16 35.10 10.74 1.29 0.87 0.42 0.02 17.38 A28R 9.79 8.01 150.2 52.10 34.81 13.09 0.84 0.66 0.17 0.01 23.72 A29L 13.36 8.28 97.7 69.59 22.04 8.37 0.75 0.	A26M	11.25	8.26	126.6	53.05	34.22	12.74	1.00	0.68	0.32	0.02	18.37
A27L 10.28 8.04 94.18 61.32 28.05 10.63 0.75 0.56 0.19 0.01 22.05 A27M 15.45 8.15 128.9 50.34 37.40 12.26 1.06 0.69 0.37 0.02 15.52 A27R 10.77 8.14 101.5 50.58 34.54 14.87 0.80 0.61 0.19 0.01 23.19 A28L 14.16 8.18 130.7 56.24 35.07 8.70 0.88 0.70 0.17 0.01 22.04 A28M 19.28 8.1 147.2 54.16 35.10 10.74 1.29 0.87 0.42 0.02 17.38 A28R 9.79 8.01 150.2 52.10 34.81 13.09 0.84 0.66 0.17 0.01 23.72 A29L 13.36 8.28 97.7 69.59 22.04 8.37 0.75 0.58 0.17 0.01 29.27 A29M 67.44 8.08 162.4 54.53 35.33 10.13 1.08	A26R	9.45	8.2	90.35	53.86	34.58	11.56	0.88	0.64	0.24	0.01	20.06
A27M 15.45 8.15 128.9 50.34 37.40 12.26 1.06 0.69 0.37 0.02 15.52 A27R 10.77 8.14 101.5 50.58 34.54 14.87 0.80 0.61 0.19 0.01 23.19 A28L 14.16 8.18 130.7 56.24 35.07 8.70 0.88 0.70 0.17 0.01 22.04 A28M 19.28 8.1 147.2 54.16 35.10 10.74 1.29 0.87 0.42 0.02 17.38 A28R 9.79 8.01 150.2 52.10 34.81 13.09 0.84 0.66 0.17 0.01 23.72 A29L 13.36 8.28 97.7 69.59 22.04 8.37 0.75 0.58 0.17 0.01 29.27 A29M 67.44 8.08 162.4 54.53 35.33 10.13 1.08 0.75 0.33 0.02 13.50 A29R 9.38 8.25 78.68 65.85 26.12 8.03 0.90 0.	A27L	10.28	8.04	94.18	61.32	28.05	10.63	0.75	0.56	0.19	0.01	22.05
A27R 10.77 8.14 101.5 50.58 34.54 14.87 0.80 0.61 0.19 0.01 23.19 A28L 14.16 8.18 130.7 56.24 35.07 8.70 0.88 0.70 0.17 0.01 22.04 A28M 19.28 8.1 147.2 54.16 35.10 10.74 1.29 0.87 0.42 0.02 17.38 A28R 9.79 8.01 150.2 52.10 34.81 13.09 0.84 0.66 0.17 0.01 23.72 A29L 13.36 8.28 97.7 69.59 22.04 8.37 0.75 0.58 0.17 0.01 29.27 A29M 67.44 8.08 162.4 54.53 35.33 10.13 1.08 0.75 0.33 0.02 13.50 A29R 9.38 8.25 78.68 65.85 26.12 8.03 0.90 0.77 0.13 0.01 23.90 A30L 9.57 8.35 8.44 60.18 30.50 9.33 0.96 0.83<	A27M	15.45	8.15	128.9	50.34	37.40	12.26	1.06	0.69	0.37	0.02	15.52
A28L 14.16 8.18 130.7 56.24 35.07 8.70 0.88 0.70 0.17 0.01 22.04 A28M 19.28 8.1 147.2 54.16 35.10 10.74 1.29 0.87 0.42 0.02 17.38 A28R 9.79 8.01 150.2 52.10 34.81 13.09 0.84 0.66 0.17 0.01 23.72 A29L 13.36 8.28 97.7 69.59 22.04 8.37 0.75 0.58 0.17 0.01 29.27 A29M 67.44 8.08 162.4 54.53 35.33 10.13 1.08 0.75 0.33 0.02 13.50 A29R 9.38 8.25 78.68 65.85 26.12 8.03 0.90 0.77 0.13 0.01 23.90 A30L 9.57 8.35 8.44 60.18 30.50 9.33 0.96 0.83 0.14 0.00 28.42 A30M 11.28 8.4 97.96 63.78 28.12 8.10 1.17 0.98 <td>A27R</td> <td>10.77</td> <td>8.14</td> <td>101.5</td> <td>50.58</td> <td>34.54</td> <td>14.87</td> <td>0.80</td> <td>0.61</td> <td>0.19</td> <td>0.01</td> <td>23.19</td>	A27R	10.77	8.14	101.5	50.58	34.54	14.87	0.80	0.61	0.19	0.01	23.19
A28M 19.28 8.1 147.2 54.16 35.10 10.74 1.29 0.87 0.42 0.02 17.38 A28R 9.79 8.01 150.2 52.10 34.81 13.09 0.84 0.66 0.17 0.01 23.72 A29L 13.36 8.28 97.7 69.59 22.04 8.37 0.75 0.58 0.17 0.01 29.27 A29M 67.44 8.08 162.4 54.53 35.33 10.13 1.08 0.75 0.33 0.02 13.50 A29R 9.38 8.25 78.68 65.85 26.12 8.03 0.90 0.77 0.13 0.01 23.90 A30L 9.57 8.35 8.44 60.18 30.50 9.33 0.96 0.83 0.14 0.00 28.42 A30M 11.28 8.4 97.96 63.78 28.12 8.10 1.17 0.98 0.18 0.01 23.62	A28L	14.16	8.18	130.7	56.24	35.07	8.70	0.88	0.70	0.17	0.01	22.04
A28R 9.79 8.01 150.2 52.10 34.81 13.09 0.84 0.66 0.17 0.01 23.72 A29L 13.36 8.28 97.7 69.59 22.04 8.37 0.75 0.58 0.17 0.01 29.27 A29M 67.44 8.08 162.4 54.53 35.33 10.13 1.08 0.75 0.33 0.02 13.50 A29R 9.38 8.25 78.68 65.85 26.12 8.03 0.90 0.77 0.13 0.01 23.90 A30L 9.57 8.35 8.44 60.18 30.50 9.33 0.96 0.83 0.14 0.00 28.42 A30M 11.28 8.4 97.96 63.78 28.12 8.10 1.17 0.98 0.18 0.01 23.62	A28M	19.28	8.1	147.2	54.16	35.10	10.74	1.29	0.87	0.42	0.02	17.38
A29L 13.36 8.28 97.7 69.59 22.04 8.37 0.75 0.58 0.17 0.01 29.27 A29M 67.44 8.08 162.4 54.53 35.33 10.13 1.08 0.75 0.33 0.02 13.50 A29R 9.38 8.25 78.68 65.85 26.12 8.03 0.90 0.77 0.13 0.01 23.90 A30L 9.57 8.35 8.44 60.18 30.50 9.33 0.96 0.83 0.14 0.00 28.42 A30M 11.28 8.4 97.96 63.78 28.12 8.10 1.17 0.98 0.18 0.01 23.62	A28R	9.79	8.01	150.2	52.10	34.81	13.09	0.84	0.66	0.17	0.01	23.72
A29M 67.44 8.08 162.4 54.53 35.33 10.13 1.08 0.75 0.33 0.02 13.50 A29R 9.38 8.25 78.68 65.85 26.12 8.03 0.90 0.77 0.13 0.01 23.90 A30L 9.57 8.35 8.44 60.18 30.50 9.33 0.96 0.83 0.14 0.00 28.42 A30M 11.28 8.4 97.96 63.78 28.12 8.10 1.17 0.98 0.18 0.01 23.62 A30P 8.64 8.30 68.25 50.05 30.25 10.70 1.30 1.15 0.16 0.00 21.75	A29L	13.36	8.28	97.7	69.59	22.04	8.37	0.75	0.58	0.17	0.01	29.27
A29R 9.38 8.25 78.68 65.85 26.12 8.03 0.90 0.77 0.13 0.01 23.90 A30L 9.57 8.35 8.44 60.18 30.50 9.33 0.96 0.83 0.14 0.00 28.42 A30M 11.28 8.4 97.96 63.78 28.12 8.10 1.17 0.98 0.18 0.01 23.62 A30P 8.64 8.30 68.25 50.05 30.25 10.70 1.20 1.15 0.16 0.00 21.75	A29M	67.44	8.08	162.4	54.53	35.33	10.13	1.08	0.75	0.33	0.02	13.50
A30L 9.57 8.35 8.44 60.18 30.50 9.33 0.96 0.83 0.14 0.00 28.42 A30M 11.28 8.4 97.96 63.78 28.12 8.10 1.17 0.98 0.18 0.01 23.62 A30P 8.64 8.30 68.25 50.05 30.25 10.70 1.20 1.15 0.16 0.00 21.75	A29R	9.38	8.25	78.68	65.85	26.12	8.03	0.90	0.77	0.13	0.01	23.90
A30M 11.28 8.4 97.96 63.78 28.12 8.10 1.17 0.98 0.18 0.01 23.62 A30P 8.64 8.30 68.25 50.05 20.25 10.70 1.20 1.15 0.16 0.00 21.75	A30L	9.57	8.35	8.44	60.18	30.50	9.33	0.96	0.83	0.14	0.00	28.42
A 20 D 8 64 8 20 68 25 50 05 20 25 10 70 1 20 1 15 0 16 0 00 21 75	A30M	11.28	8.4	97.96	63.78	28.12	8.10	1.17	0.98	0.18	0.01	23.62
ASUR $0.0+$ 0.59 00.23 39.03 50.23 10.70 1.50 1.15 0.10 0.00 31.73	A30R	8.64	8.39	68.25	59.05	30.25	10.70	1.30	1.15	0.16	0.00	31.75
A31L 10.44 8.42 8.42 46.84 40.76 12.40 1.08 0.97 0.11 0.00 25.72	A31L	10.44	8.42	8.42	46.84	40.76	12.40	1.08	0.97	0.11	0.00	25.72
A31M 11.89 8.44 102.4 51.82 38.76 9.42 1.02 0.91 0.11 0.01 14.03	A31M	11.89	8.44	102.4	51.82	38.76	9.42	1.02	0.91	0.11	0.01	14.03
A31R 15.27 8.41 63.89 65.73 27.98 6.29 1.47 1.31 0.16 0.01 16.98	A31R	15.27	8.41	63.89	65.73	27.98	6.29	1.47	1.31	0.16	0.01	16.98
표 3. 중앙로벤 빙하소멸지역 토양 물리화학적 특성

Sample	Water	pН	Conductivity $(\mu S \text{ cm}-1)$	Soi	l texture	(%)	TC (%)	TIC	SOC	TN (%)	C/N ratio
MT 11	(05	0.12	(µ 5 cm-1)	Sand	Silt		0.42	0.00	0.14	0.01	20.00
MLIL	6.05	8.13	43.35	83.61	14.02	2.38	0.42	0.28	0.14	0.01	20.99
MLIM	6.52	7.9	44.2	/3.20	20.66	6.14	0.42	0.18	0.24	0.01	22.32
MLIR	9.34	7.91	56.61	81.75	16.34	1.91	0.77	0.46	0.32	0.02	20.56
ML2L	6.50	8.01	43.11	84.85	11.82	3.33	0.37	0.18	0.19	0.01	17.65
ML2M	10.11	8.27	68.18	56.81	35.31	7.89	0.65	0.38	0.27	0.01	19.03
ML2R	16.42	8.02	254.7	73.66	22.17	4.16	0.61	0.31	0.30	0.01	20.33
ML3L	8.89	8.22	62.09	74.78	20.62	4.60	0.51	0.29	0.22	0.02	13.29
ML3M	13.33	8.08	85.02	49.62	40.26	10.12	0.82	0.23	0.59	0.04	13.95
ML3R	13.69	8.18	75.32	50.70	37.56	11.74	0.71	0.34	0.36	0.02	14.92
ML4L	4.93	8.06	41.87	84.13	14.32	1.55	0.40	0.23	0.16	0.01	23.32
ML4M	5.38	7.9	44.11	68.01	30.13	1.86	0.29	0.11	0.18	0.01	23.88
ML4R	8.04	8.16	50.73	88.74	9.39	1.87	0.45	0.23	0.22	0.01	34.69
ML5L	4.46	7.88	23.75	90.54	8.03	1.43	0.19	0.04	0.15	0.01	28.57
ML5M	5.39	8.13	32.25	90.40	7.81	1.79	0.24	0.07	0.17	0.01	26.97
ML5R	5.39	7.85	22.94	79.43	19.10	1.47	0.18	0.01	0.17	0.01	26.62
ML6L	8.13	7.89	38.88	87.51	10.30	2.19	0.30	0.12	0.18	0.01	24.87
ML6M	5.49	8.08	52.49	86.25	12.25	1.50	0.37	0.22	0.15	0.01	23.24
ML6R	4.53	8.1	46.22	83.09	14.41	2.50	0.35	0.21	0.14	0.01	24.35
ML7L	5.68	7.91	45.71	88.96	10.13	0.91	0.22	0.09	0.13	0.01	20.53
ML7M	6.82	8.05	41.85	90.96	7.74	1.31	0.25	0.13	0.12	0.00	27.87
ML7R	6.99	8.22	50.43	85.11	13.86	1.03	0.26	0.08	0.18	0.00	48.49
ML8L	3.66	8.2	29.55	91.11	7.86	1.03	0.18	0.05	0.14	0.01	26.03
ML8M	14.04	8.12	39.93	65.83	31.84	2.33	0.20	0.08	0.11	0.00	23.96
ML8R	10.76	8.2	88.53	88.58	10.24	1.18	0.46	0.38	0.09	0.00	19.52
ML9L	6.65	8.25	142.5	79.40	17.93	2.66	0.44	0.34	0.10	0.00	30.46
ML9M	14 37	83	108.8	61 24	33.03	5 73	0.36	0.25	0.11	0.01	22.54
MI 9R	8 91	7.83	91.86	44 72	44 58	10.70	0.61	0.48	0.13	0.00	28.88
ML10L	9.21	7.96	80.14	68.02	26.59	5 39	0.01	0.20	0.15	0.00	17 30
MI 10M	7 35	8.13	49.33	69.89	20.57	5.14	0.40	0.20	0.27	0.02	22.97
MI 10R	9.86	8.16	97.81	74.36	24.97	3.88	0.40	0.14	0.27	0.01	22.97
MI 11I	11.26	7.09	77.66	97 56	11.65	0.70	0.50	0.20	0.12	0.01	22.05
ML11L	× 00	7.90 0.01	//.00 82.07	67.50	20 11	1.96	0.32	0.39	0.15	0.01	24.05
	0.00	0.21 0.17	03.7/ 51.12	72.04	20.11 21.59	1.00	0.40	0.10	0.24	0.01	20.30
ML11K	4.18	ð.1/ 0.27	54.43 (2.28	12.04	21.58 12.04	0.39	0.55	0.54	0.17	0.01	18.5/
ML12L	0.3/	8.3/	62.38	85.47	13.04	3.49	0.38	0.21	0.17	0.01	21.6/
ML12M	11.81	8.14	75.35	82.51	16.07	1.42	0.54	0.36	0.18	0.01	23.57
ML12R	8.96	8.23	/3.53	75.95	20.73	3.32	0.44	0.28	0.16	0.00	35.89
ML13L	3.25	8.09	39.01	86.53	11.17	2.30	0.45	0.32	0.13	0.01	18.01
ML13M	7.30	8.08	50.32	89.49	8.58	1.93	0.43	0.31	0.12	0.01	21.99
ML13R	7.35	8.14	46.74	87.77	10.30	1.93	0.43	0.32	0.12	0.01	18.84
ML14L	6.68	8.23	59.58	68.96	23.98	7.06	0.48	0.32	0.16	0.01	21.91
ML14M	7.42	8.14	63.54	63.58	33.02	3.40	0.58	0.31	0.26	0.01	17.97
ML14R	7.88	8.04	46.13	64.53	27.98	7.49	0.38	0.21	0.17	0.01	18.31
ML15L	7.77	7.59	76.4	53.12	35.31	11.56	0.47	0.26	0.21	0.01	15.37
ML15M	8.16	8.21	74.25	55.96	33.99	10.06	0.46	0.18	0.28	0.01	22.83
ML15R	7.39	7.63	60.84	52.99	35.28	11.73	0.53	0.31	0.22	0.01	14.82
ML16L	5.46	7.81	44.84	75.70	23.04	1.26	0.33	0.24	0.09	0.00	20.35
ML16M	1.79	8.38	38.27	88.81	8.62	2.57	0.29	0.01	0.28	0.00	69.95

ML16R	2.56	7.61	35.68	83.02	14.05	2.92	0.27	0.13	0.13	0.01	19.00
ML17L	5.36	7.77	56.72	72.72	20.33	6.95	0.26	0.15	0.11	0.01	18.42
ML17M	4.45	8.42	75.44	79.96	18.11	1.93	0.36	0.18	0.18	0.01	32.08
ML17R	5.85	7.7	50.38	68.00	25.93	6.07	0.37	0.24	0.12	0.01	22.69
ML18L	7.49	7.59	84.85	58.36	31.85	9.79	0.49	0.25	0.24	0.01	22.58
ML18M	5.81	8.33	74.24	53.02	34.84	12.14	0.52	0.29	0.23	0.01	20.74
ML18R	9.41	7.88	63.86	50.40	38.88	10.72	0.31	0.15	0.16	0.01	19.74
ML19L	5.83	7.79	68.2	62.85	27.93	9.23	0.38	0.25	0.12	0.01	20.28
ML19M	3.08	8.1	49.07	68.65	26.42	4.93	0.23	0.14	0.09	0.00	22.38
ML19R	7.03	7.83	66.58	88.45	10.09	1.46	0.31	0.19	0.12	0.01	18.26
ML20L	3.17	8.06	74.98	82.28	15.30	2.42	0.35	0.28	0.07	0.00	19.84
ML20M	3.87	8.29	63.59	57.61	33.27	9.12	0.35	0.18	0.17	0.01	30.94
ML20R	9.50	8.34	68.72	66.92	29.71	3.37	0.40	0.26	0.14	0.01	27.00
ML21L	11.97	7.91	96.97	46.52	44.97	8.51	0.41	0.31	0.10	0.01	19.68
ML21M	10.71	8.38	90.4	54.44	35.48	10.08	0.41	0.30	0.12	0.00	27.58
ML21R	9.97	7.94	81.78	36.86	55.33	7.81	0.36	0.24	0.12	0.00	28.34
ML22L	12.08	7.89	64.25	71.98	24.97	3.05	0.38	0.27	0.11	0.01	20.17
ML22M	7.88	7.81	35.78	73.35	22.29	4.36	0.35	0.13	0.22	0.01	21.82
ML22R	9.64	7.69	57.45	74.35	20.07	5.58	0.36	0.13	0.24	0.01	22.39
ML23L	8.02	7.7	57.46	71.51	23.60	4.89	0.37	0.21	0.16	0.01	19.84
ML23M	10.67	7.85	59.05	64.17	29.33	6.50	0.36	0.19	0.17	0.01	18.49
ML23R	17.20	8.21	80.52	62.11	30.04	7.84	0.44	0.26	0.18	0.01	27.50
ML24L	8.09	7.81	43.48	76.73	20.89	2.37	0.34	0.17	0.17	0.01	29.53
ML24M	8.09	7.9	54.79	92.78	5.09	2.14	0.41	0.20	0.21	0.01	31.09
ML24R	3.73	7.65	40.52	67.48	26.74	5.78	0.33	0.10	0.23	0.01	25.08
ML25L	28.49	7.67	128.9	79.29	17.72	2.99	0.70	0.23	0.47	0.03	16.33
ML25M	19.86	7.69	89.36	87.23	9.36	3.41	0.74	0.15	0.59	0.03	22.51
ML25R	9.54	7.91	57.47	75.91	19.37	4.72	0.37	0.18	0.18	0.01	24.39
ML26L	4.63	7.9	50.63	80.12	16.86	3.01	0.38	0.24	0.14	0.00	27.55
ML26M	4.18	7.89	47.23	80.75	16.36	2.88	0.38	0.25	0.14	0.00	30.69
ML27L	9.08	7.77	59.52	61.48	29.30	9.22	0.40	0.21	0.20	0.01	20.22
ML27M	10.08	7.64	49.47	85.94	10.45	3.61	0.32	0.14	0.18	0.01	22.00
ML27R	3.65	7.85	29.28	57.37	34.81	7.82	0.37	0.18	0.20	0.01	25.79
ML28L	9.43	7.87	73.49	55.60	33.41	10.99	0.40	0.23	0.17	0.01	21.55
ML28M	4.32	7.44	42.11	74.28	21.09	4.63	0.31	0.13	0.17	0.01	24.68
ML28R	6.22	7.75	49.88	84.87	12.24	2.89	0.27	0.09	0.18	0.01	29.25
ML29L	13.35	7.78	92.39	55.22	33.10	11.68	0.43	0.25	0.17	0.01	22.85
ML29M	7.01	7.71	72.85	57.43	31.72	10.85	0.47	0.18	0.28	0.01	25.36
ML29R	8.24	7.87	65.43	56.76	33.39	9.85	0.47	0.10	0.37	0.01	28.44
ML30L	11.87	7.9	86.75	60.08	30.61	9.31	0.36	0.20	0.16	0.01	23.10
ML30M	10.33	7.8	74.87	55.41	34.65	9.94	0.40	0.16	0.24	0.01	26.90
ML30R	9.66	8.14	77.93	48.15	40.36	11.48	0.33	0.17	0.16	0.01	24.02
ML31L	11.78	8.18	66.8	49.38	38.68	11.94	0.42	0.24	0.18	0.01	29.87
ML31M	12.91	8.23	72.85	53.16	34.63	12.21	0.38	0.27	0.11	0.00	25.73
ML31R	11.04	8.2	71.33	55.86	34.80	9.34	0.52	0.29	0.23	0.01	27.86

표 4. 중앙로벤 빙하소멸지역 지구 구성 원소 조성

S1 -	Earth element (wt %)											
Sample	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	Na ₂ O	MgO	P_2O_5	K ₂ O	CaO	TiO ₂	MnO	L.O.I	Total
ML1M	74.77	11.30	3.42	2.02	1.25	0.09	2.77	0.98	0.63	0.05	2.74	100.0
ML2M	73.02	11.41	3.68	1.73	1.35	0.11	2.90	1.65	0.64	0.06	3.82	100.4
ML3M	71.39	11.71	4.17	1.73	1.33	0.13	2.72	1.33	0.73	0.07	4.41	99.7
ML4M	78.92	9.23	3.40	1.84	0.99	0.09	2.17	0.79	0.54	0.06	2.16	100.2
ML5M	77.72	10.15	3.18	1.99	1.05	0.10	2.45	0.72	0.65	0.05	2.05	100.1
ML6M	77.76	9.65	3.30	1.83	1.11	0.09	2.30	1.17	0.56	0.06	2.58	100.4
ML7M	75.43	11.10	3.79	2.03	1.21	0.11	2.70	0.87	0.72	0.05	2.41	100.4
ML8M	74.76	11.16	4.00	1.98	1.11	0.10	2.83	0.60	0.78	0.05	2.09	99.5
ML9M	68.44	13.74	4.51	1.88	1.73	0.12	3.59	1.43	0.90	0.07	3.29	99.7
ML10M	77.55	10.19	3.30	1.90	1.09	0.11	2.39	0.98	0.57	0.06	2.33	100.5
ML11M	76.46	10.11	3.37	1.93	1.13	0.11	2.32	1.13	0.52	0.05	2.65	99.8
ML12M	74.19	10.14	3.25	2.02	1.15	0.10	2.48	1.77	0.53	0.06	2.89	98.6
ML13M	79.06	8.56	2.93	1.72	1.11	0.12	2.03	1.40	0.45	0.05	2.45	99.9
ML14M	75.15	10.27	3.59	1.83	1.26	0.12	2.39	1.48	0.58	0.06	3.26	100.0
ML15M	74.52	11.23	4.01	1.94	1.24	0.12	2.57	1.25	0.63	0.07	3.21	100.8
ML16M	80.85	8.61	2.84	1.87	0.93	0.11	1.95	0.99	0.45	0.05	2.11	100.8
ML17M	76.09	10.58	3.42	2.02	1.17	0.10	2.51	1.17	0.58	0.06	2.61	100.3
ML18M	73.84	11.25	3.80	1.97	1.23	0.11	2.66	1.34	0.67	0.06	3.33	100.3
ML19M	79.99	8.77	3.22	1.90	0.89	0.10	1.92	0.81	0.48	0.06	2.02	100.2
ML20M	73.13	11.79	3.41	2.30	1.41	0.11	2.73	1.28	0.65	0.05	2.47	99.3
ML21M	68.78	13.84	4.04	2.43	1.57	0.11	3.37	1.73	0.75	0.06	3.30	100.0
ML22M	74.52	11.37	3.88	2.15	1.24	0.09	2.67	0.77	0.65	0.05	2.85	100.2
ML23M	72.55	12.22	3.97	2.18	1.35	0.11	2.93	1.27	0.72	0.06	3.07	100.4
ML24M	74.23	11.49	3.60	2.17	1.22	0.10	2.71	1.11	0.67	0.06	2.76	100.2
ML25M	74.33	10.94	3.35	2.12	1.13	0.09	2.51	0.95	0.68	0.05	3.67	99.8
ML26M	75.39	10.64	3.21	2.19	1.21	0.09	2.49	1.39	0.61	0.05	2.69	100.0
ML27M	73.06	12.72	3.96	2.28	1.36	0.11	3.03	0.97	0.73	0.06	2.74	101.0
ML28M	74.80	11.43	3.38	2.48	1.25	0.08	2.67	0.94	0.57	0.05	2.33	100.0
ML29M	72.10	12.16	4.02	2.05	1.37	0.10	2.89	1.11	0.72	0.06	3.01	99.6
ML30M	70.01	13.24	4.35	2.07	1.47	0.11	3.29	1.11	0.82	0.06	3.24	99.8
ML31M	69.07	13.40	4.77	2.48	1.64	0.11	2.90	1.67	0.77	0.07	3.37	100.3

토성, 수분 함량, 전기 전도도는 빙하소멸시기에 따라 일정한 패턴이 나타나지 않았다. 토양 pH의 경우 세 빙하후퇴지역 모두 pH 7.0~9.0 범위로 알칼리성이었고 동로벤과 중앙 로벤 빙하후퇴지역에서는 pH 변화가 뚜렷하지 않은 반면 블룸스트란 빙하소멸지역에서는 빙하 후퇴시기에 따라 pH가 감소하는 패턴을 보였다. 블룸스트란의 경우 빙하가 후퇴한 이후 run-off에 의한 교란이 다른 두 빙하후퇴지역보다 상대적으로 적었기 때문일 것으로 보인다. 같은 이유로 중앙로벤 빙하후퇴지역의 경우 동로벤 지역보다 run-off에 의한 교란 이 더 빈번했기에 같은 시기의 토양 샘플들 간에도 pH 변화가 크게 나타났을 것으로 추 정할 수 있다. 하지만 이러한 추론은 항공사진, 위성 데이터로부터 얻어진 run-off 빈도와 패턴이 나타난 시공간 GIS 데이터를 통해 추가로 증빙되어야 한다.

토양 유기탄소와 총 질소량은 빙하소멸시기에 따라 전체적으로 점점 증가하는 패턴을 보이지만 지역적인 변이가 심하여 통계적인 유의성은 낮게 나타났다. 이러한 지역적 차이 는 현장에서 식물 근권을 최대한 피하여 bulk soil 샘플링을 수행했음에도 불구하고 의도 치 않게 일부 식물유래 유기물이 포함되었기 때문일 것으로 판단된다.

그림 29. 빙하소멸 시기에 따른 토양 유기 탄소 및 총 질소량 변화(중앙로벤빙하)

4. 빙하 소멸로 노출된 지역 암석의 생물학적 풍화과정 규명

가. 다산과학기지 주변 빙하 소멸지역에서 암석 시료 확보

2016년 하계 기간 현장조사를 통해 다산과학기지에서 약 5 km 떨어진 Scheteligfijellet에 서 가장 많이 나타나는 Limestone(석회암)과 Sandstone(사암) 시료를 확보한 바 있다(그림 30). 암석의 종류에 따라 서식하는 미생물이 다를 것이고 이러한 미생물 군집의 차이가 암석풍화작용에 영향을 줄 것이라는 가설을 세우고, 이를 확인하기 위하여 Limestone과 Sandstone에 서식하고 있는 미생물의 구성 차이를 확인하고자 DNA 기반 미생물 군집 구 조 분석을 진행하였다. 또한 미생물 군집 구성에 영향을 줄 수 있는 암석의 물리·화학적 특성을 X-ray CT, MIP, XRF, ICP-MS 등의 장비를 활용하여 분석하였다.

그림 30. 다산기지 주변 암석 샘플링 지점

나. 빙하 소멸지역에서 확보된 암석의 물리·화학적 특성 분석

암석의 미세구조에 따라 암석이 수분을 보유할 수 있는 능력이 결정된다. 특히 연구지 역과 같이 건조한 환경에서 미생물에게 수분을 공급할 수 있는 암석의 미세구조 특성은 미생물 군집구조를 결정하는 요인으로 작용한다. 이러한 구조적 특성을 구분하기 위해 한 국건설기술연구원(KICT)에서 X-ray CT scan 기술을 활용하여 limestone과 sandstone 내부의 공극(pore) 분포와 공극 사이즈를 분석하였다(그림 31). 분석결과를 보면 Sandstone은 공극 이 표면에 집중되어 있고 Limestone은 표면과 내부까지 고르게 분포하는 것을 알 수 있다 (그림 32).

<암석 시료 준비>

<촬영 결과 확보 및 후처리>

그림 31. 암석 X-ray CT 분석 과정

그림 32. Sandstone과 Limestone의 공극 분포 차이

암석의 공극에 대한 특성을 더 자세히 분석하기 위해 한국기초과학지원연구원(KBSI)에 서 수은압입법(Mercury instrusion porosimetry) 분석을 진행하였다. 분석결과 Sandstone과 Limestone의 공극률(Porosity)은 유의한 차이가 없었으나 공극(Pore) 크기에서 Limestone이 Sandstone 보다 약 3배 정도 크게 나타났다(그림 33). X-ray CT 분석에서 나타나는 공극의 분포와 MIP 분석에서 나타나는 공극 크기 차이는 두 암석의 water retention 능력의 차이 로 나타나고 이러한 특성이 각 암석에 서식하는 미생물 군집에 영향을 줄 것으로 예상된다.

암석의 화학적 특성을 분석하기 위해 X-선 형광분석(XRF) 장비를 이용해 암석의 주요 원소를 분석하였고 유도 결합 플라즈마 질량분광법 (ICP-MS)를 활용해 암석의 미량원소 를 분석하였다(그림 34, 그림 35).

그림 34. XRF를 이용한 두 종류의 암석 주요원소 분석 결과

그림 35. ICP-MS를 이용한 두 종류의 암석 미량원소 분석 결과

Sandstone과 Limestone의 주요원소 분석결과 Sandstone에서는 Si가 80% 이상으로 많이 존재하였고 Limestone에서는 Mg와 Ca가 많이 포함되어 있는 것으로 나타났다. 미량원소 분석결과 Sandstone에서는 V, Ni, Rb, Ba가 Limestone에 비해 상대적으로 많이 존재하였고 Limestone에서는 반대로 Zn, Sr이 가장 많이 나타났다. 이러한 화학적 구성 성분의 차이가 미생물 군집에게 미치는 영향을 알아보기 위해 미생물 군집분석을 진행하였다.

다. Sandstone과 Limestone에 서식하는 암석 미생물 군집 분석

암석 샘플로부터 DNA를 추출하여 Limestone과 Sandstone에 서식하는 암석 미생물에 대 한 군집 분석을 수행하였다(Limestone 3점 x Sandstone 3점 x 미생물 4그룹(고세균, 세균, 원생생물, 진균) = 총 36개 분석 완료). 추출된 DNA는 고세균, 세균, 원생생물, 진균 특이 적인 마커 유전자(고세균 16S V6-V6 region, 세균 16S V4-V5 region, 원생생물 18S V4 region, 진균 ITS2 region)를 이용하여 PCR 수행 후 Miseq 2x300bp 로 NGS 염기서열분석 을 진행하였다.

우선 Limestone과 Sandstone 두 암석의 미생물 분석결과를 바탕으로 Principal Coordinates analysis를 진행하여 서로 다른 암석의 미생물 군집이 구분되는지 확인한 결과 Limestone 과 Sandstone의 샘플들이 서로 구분되어 그룹을 이루는 것을 보아 두 암석 간 미생물 군 집의 차이가 존재함을 확인하였다(그림 36).

Limestone과 Sandstone에 서식하는 미생물 군집 구조분석을 진행한 결과(그림 37), 고세 균에서는 ammonia oxidizing에 관련된 *Nitrososphaera*가 두 암석 타입 모두에서 우점하였고 세균에서는 *Actinobacteria, Bacteroidetes, Cyanobacteria, Proteobacteria*가 우점하였다. 원생 생물에서는 *Chlorophyta 와 Metazoa* 등이 우점하였고, 진균에서는 지의류에 속하는 미생물 종을 포한하는 *Ascomycota* 문이 우점하였다. 문(phylum) 또는 강(class) 수준에서는 두 암 석종류에서 나타나는 미생물의 차이를 확인하기 어려워 OTU(Operational taxonimic unit) 수준에서 미생물 비교를 수행하였다.

Protists

100%

- Ascomycota;Leotiomycetes
- Ascomycota;Sordariomycetes
- Basidiomycota;Tremellomycetes
- Others
- unclassified 🖿

그림 37. 고세균, 세균, 원생생물, 진균 군집 분석

Limestone과 Sandstone에 서식하는 OTUs 중 두 암석 모두에 나타나는 것과 하나의 암석 종류에만 나타나는 OTU 수가 얼마나 되는지 4개 그룹의 미생물에서 벤다이어그램 분석 을 진행함(그림 38). 분석결과 각 미생물 그룹 모두에서 Limestone에만 존재하는 OTUs와 Sandstone에서만 존재하는 OTUs가 존재했고 두 암석종류 모두에서 나타나는 OTUs도 존 재함을 알 수 있었다. 이것은 특정 암석에만 존재하는 Habitat specialists 미생물들과 암석 종류에 상관없이 서식하는 Habitat generalists 로 구분되어 있다는 것을 나타낸다.

Limestone과 Sandstone에 서식하는 OTU(Operational taxonimic unit) 중에서 통계적으로 유의하게 차이가 나는 정도의 풍부도를 나타내는 OTUs를 확인하기 위해 DESeq2 라는 통계분석법을 이용하여 두 암석의 OTUs 차이를 분석하였다(그림 39). 그림에서 하나의 점은 OTU를, 가로축은 OTU가 속한 속(genus)을, 점의 색깔은 해당 OTU가 속해 있는 문 (phylum)을 나타낸다. 세로축의 0을 기준으로 위쪽 +에 존재하는 점들은 Sandstone에 유의 하게 많이 존재하는 OTUs를 나타내고, 아래쪽 - 에 존재하는 점들은 Limestone에 유의하 게 많이 존재하는 OTUs를 나타낸다. 이 결과를 보면 암석에 서식하는 미생물들은 상위례 벨(phylum 또는 class)의 분류군에서는 차이를 알 수 없지만 하위레벨(genus 또는 OTUs)에 서는 확연히 차이가 나는 것을 알 수 있다.

암석의 종류에 따라 존재하는 미생물들이 차이 나는 이유를 확인하기 위해 암석의 주 요원소 및 미량원소와 OTU 간의 상관관계를 분석하였다(그림 40). Heatmap에서 파란색이 진할수록 암석원소와 미생물 간의 양의 상관관계가 크게 나타나는 것이고 빨간색이 진할 수록 음의 상관관계가 큰 것이다. 결과를 보면 두 암석 종류 모두에 존재하는 generalists 들은 암석의 원소와의 상관관계에서 특정한 패턴을 보이지 않는 반면, 각 암석의 specialists 들은 암석의 특정원소들과 양 또는 음의 상관관계의 패턴이 나타났다. Limestone specialists 경우에는 Limestone에 상대적으로 많이 존재하는 Zn, Cd, Ca, Mg, Mo 같은 원소들과 양의 상관관계가 크게 나타났고 Sandstone specialists 들은 Sandstone에 상 대적으로 많이 존재하는 Si, Fe, Mn, P, Cu, Co, Ni, 등의 원소들과 양의 상관관계를 나타 났다. 이것은 암석에 존재하는 미생물의 군집 구성이 암석의 특정 원소들의 영향을 받아 다르게 나타날 수 있음을 보여준다.

그림 40. 암석 주요원소 및 미량원소와 미생물 간의 상관관계

두 암석에 존재하는 세균의 DNA가 어떤 기능 유전자를 보유하고 있는지 예측하고자 Tax4Fun이라고 하는 통계적 방법을 활용하여 분석하였다(그림 41). 분석결과를 보면 각 암석에 따라 세균이 보유하고 있는 기능 유전자들에서 차이가 나는 것을 확인할 수 있는 데 이것은 암석의 물리·화학적 차이에서 나타나는 환경에 미생물이 적응하기 위해 서로 다른 기능 유전자를 보유하게 된 것으로 판단된다. 예를 들어, Limestone에 많이 존재하는 2-isopropylmalate synthase 같은 경우 세균 내에서 각종 생리작용에 관여하는 pyruvate 메커 니즘에 관여하는 효소이다. 이 효소가 활성을 나타내는데 금속이온이 결정적인 역할을 하 는 것으로 알려져 있는데 그 대표적인 금속이온이 마그네슘(Mg)이다(de Carvalho et al., 2006). 마그네슘은 Limestone의 구성원소 중 30% 이상을 차지하는 원소로서 Sandstone의 그것보다 많이 존재하는 것을 알 수 있다.

두 암석의 세균에서 공통적으로 세포막의 물질이동에 관련된 효소들이 많이 나타나는 데 이것은 암석에 서식하면서 암석으로부터 생존에 필요한 물질을 세포내로 받아들이기 위한 것으로 생각되고 이 과정에서 암석과 미생물간 물리·화학적 풍화가 발생할 것으로 판단된다.

종합적으로 암석의 물리적 환경의 차이와 암석을 구성하는 원소의 차이가 그 곳에 서 식하는 미생물의 구성과 유전적 차이를 야기할 수 있음을 밝혔다. 추가적으로 암석이 위 치하고 있는 기후 요인들이 미치는 영향에 대한 연구(예를 들어, 북극과 같이 건조한 환 경에서는 수분의 존재유무가 미생물에게는 중요한 요인이 될 수 있는데 암석에 따른 water retention에 대한 연구)가 추가적으로 수행되면 더 명확한 해석이 가능할 것으로 판 단된다.

그림 41. 두 암석에서 추정된 세균 DNA내 기능 유전자들

라. 암석 내 미세환경과 암석 미생물의 상관관계 연구

암석의 생물학적 풍화과정에서 미생물 군집의 구성뿐만 아니라 미생물이 가지고 있는 기능 유전자를 파악하는 것이 중요하다. 이러한 기능 유전자는 암석의 구조적 차이(암석 표면-Epilith, 암석의 틈 내부-Chasmolith, 암석과 토양의 경계면-Hypolith)에 의해 영향을 받 을 수 있기 때문에 구분하여 연구하는 것이 필요하다. 따라서, 암석 내 미세환경에 따른 미생물 군집 구성과 기능 유전자를 파악하고자 연구지역에서 암석의 미세환경을 구분하 여 시료를 확보하였다(그림 42). 암석시료의 DNA와 RNA를 추출하여 Metagenome, Metatranscriptome 분석을 진행하였다.

그림 42. 암석의 미세 환경에 따라 시료채취

마. 암석 위치별 미생물 군집 구성 분석

암석 위치에 따라 4개 그룹의 미생물(고세균, 세균, 원생생물, 진균) 군집 구성 분석을 진행하였다(그림 43). 고세균 군집에서는 암석 위치별 차이를 보이지 않고 ammonia oxidizing에 관련된 *Nitrososphaera*가 우점하는 것으로 확인되었다. 세균 군집에서는 광합 성 및 생태계 1차 생산자로서 중요한 역할을 담당하는 *Cyanobacteria*가 Epilith⇒ Chasmolith⇒Hypolith로 위치가 달라질수록 상대 풍부도가 줄어드는 것이 관찰되는데, 이 것은 위치에 따라 햇빛의 양이 줄어들기 때문일 것으로 판단된다(Wierzchos et al., 2015).

진균에서는 지의류에 관련된 Ascomycota 문이 가장 풍부하게 존재하였는데 그 하위레벨 에서 Lecanoromycetes 강은 Epilith⇒Chasmolith⇒Hypolith로 위치가 달라질수록 상대풍부도 가 줄어들고 Eurotiomycetes 강은 오히려 상대풍부도가 늘어나는, 반비례 현상이 관찰되었 다.

원생생물 군집에서는 녹조류에 속하는 *Trebouxiophyceae*의 상대풍부도가 Epilith⇒ Chasmolith⇒Hypolith로 위치가 달라질수록 줄어드는 경향을 보이는데 이 현상 또한 녹조 류의 생존에 중요한 햇빛의 감소에 따른 결과라 판단된다. 이처럼 암석에 존재하는 미세 환경은 햇빛의 영향을 받는 미생물 군이 뚜렷하게 차이를 보이는 것으로 나타났다.

그림 43. 암석 위치별 4개 그룹 미생물 군집 구성

암석 위치에 따른 미생물 군집이 소유하고 있는 기능 유전자 구성과 실제 유전자 발현 의 차이를 확인하기 위해 각 위치별 암석시료에서 추출된 DNA와 RNA를 염기서열분석 하고 그 결과를 MG-RAST 서버를 활용하여 분석하였다(Meyer et al., 2008). 그 결과, 전 체 염기서열 중 평균 40% 정도만이 이미 알려진 기능 유전자 서열과 일치하여 그 기능 을 밝혀낼 수 있었다(표 5). 메타지놈 데이터는 미생물 군집이 소유하고 있는 기능 유전 자의 상대적 풍부도를 나타내고, metatranscriptome 데이터는 이러한 기능 유전자 중 실제 로 세포 내에서 기능을 하기 위해 발현되고 있는 상대적 풍부도를 나타낸다. 이러한 연구 는 해당 미생물 군집이 서식환경에 따라 소유하고 있는 기능 유전자의 구성을 파악하고, 실제로 발현되어 기능하고 있는 유전자를 비교하는 연구에 유용하다.

Metagenome	Epilith	Chasmolith	Hypolith
No. of sequences	67,749,940	61,823,608	81,446,062
No. of sequences after QC	64,824,175	59,701,094	77,990,853
Mean Sequence Length after QC	151	151	151
Percentage of non annotated reads	59.24	60.36	59.5
MG-RAST-assigned reads (known function with SEED)	36827902	35681552	45727667
Archaea	342969	378523	511105
Bacteria	34996809	34695115	44773750
Eukaryota	1481800	602229	434865
Viruses	5305	5032	7240
Other	1019	653	707
Metatranscriptome	Epilith	Chasmolith	Hypolith
No. of sequences	166,272,547	112,330,014	166,839,272
No. of sequences after QC	55,937,762	22,235,477	32,557,123
Mean Sequence Length after QC	116 ± 44 bp	120 ± 42 bp	108 ± 45 bp
Percentage of non annotated reads	48.56	60.19	56.55
MG-RAST-assigned reads (known function with SEED)	3882704	1140527	597290
Archaea	2037	3083	1171
Bacteria	361263	209211	239451
Eukaryota	3518598	928064	356602
	000	165	64
Viruses	806	102	04

퓨	5.	유전자	염기	시열분석	개요
	••••				

*QC: Quality Control

암석 위치별로 분석된 metagenome 데이터를 SEED database (기능 유전자 서열 분류 데 이터베이스) 분류기준으로 subsystem level1에서 비교하였다(그림 44). 기능 유전자 분류 중에서 Carbohydrate 관련 기능 유전자가 암석 위치에 상관없이 가장 많이 나타났고 그 다음으로 Clustering-based subsystems, Amino Acids and Derivatives, Protein Metabolism 순으 로 각각의 기능 유전자들을 포함하고 있었다. 이러한 기능 유전자들은 미생물이 생존하는 데 필요한 기본적인 메타볼리즘에 관련된 유전자들을 많이 포함하고 있었다. 이 결과를 볼 때 암석의 위치별 미생물 군집들은 환경이 다를 것으로 예상되는 서식지 차이에 상관 없이 소유하고 있는 기능 유전자들의 비율은 비슷하게 나타났다.

그림 44. 암석 위치별 metagenome 분석 결과

암석 위치별로 분석된 metatranscriptome 데이터를 metagenome과 같은 방법으로 분석하 였다(그림 45). Metagenome 분석 결과에서는 암석 위치별 미생물 군집이 소유하고 있는 기능유전자의 상대적 풍부도가 유사한 것으로 나타났지만 실제 미생물 내에서 발현되고 있는 기능 유전자의 상대 풍부도는 암석 위치에 따라 상당한 차이를 나타냈다. 이러한 결 과는 각 위치에 서식하는 미생물들이 소유하고 있는 기능 유전자는 모두 동일하지만 각 자의 서식지 특성에 따라 필요한 기능 유전자들이 다르고 그것이 발현량의 차이로 나타 난다고 판단된다.

암석의 위치별 특성을 가장 잘 반영할 것으로 생각되는 (암석표면(Epilith)⇒암석틈 (Chasmolith) ⇒암석 아래(Hypolith) 순으로 햇빛의 양 감소, Wierzchos et al., 2015) 기능 유전자를 비교함으로서 실제 서식처의 차이가 기능유전자의 발현 차이로 이어지는지 구 체적인 분석을 통해 확인하였다(그림 46). 암석 위치별로 미생물 군집이 소유하고 있는 광합성 관련 유전자의 양과 실제로 발현되고 있는 양을 비교했을 때, 암석의 표면에 존재 하는 미생물 군집이 다른 위치의 미생물 군집보다 많은 양의 광합성 관련 유전자를 소유 하고 있었으며 이에 따라 실제로 발현되는 유전자의 상대적인 양도 높게 나타났다. 이것 은 햇빛을 많이 받는 암석표면(Epilith)에 서식하는 미생물 군집에게 광합성에 필요한 유 전자가 더 많이 필요하기 때문으로 판단된다.

서식지에 따른 광합성 관련 유전자뿐만 아니라 미생물 군집이 받게 되는 환경 스트레스 의 정도도 차이 날 것으로 예상되어 각 암석 위치별 미생물 군집이 소유하고 있는 스트레 스에 관련 유전자에 대해서도 분석하였다(그림 47). Metagenome 결과를 보면 스트레스 종 류에 따른 기능 유전자 그룹 간 상대적 풍부도 차이는 나타나지만 같은 기능 유전자 그룹 내에서 암석 위치별 차이는 많지 않았다. 그러나 실제 기능 유전자의 발현을 나타내는 metatranscriptome 결과를 보면 암석 위치에 따른 기능 유전자의 발현 차이가 확연하게 다 른 것이 관찰되었다. 특히, 햇빛은 미생물 광합성에 중요한 요소이지만 이와 함께 UV 스 트레스도 유발하는데, UV에 미생물이 노출되면 세포 안에서 산화 스트레스가 발생하게 된다(Ziegelhoffer and Donohue, 2009). 이러한 현상이 실제 결과에서도 관찰되는데, metagenome 결과에서는 oxidative stress 유전자의 상대 풍부도가 암석 위치별로 크게 다르 지 않았지만, metatranscriptome 결과에서는 UV가 많을 것으로 예상되는 암석 표면에 서식 하는 미생물 군집에서 oxidative stress 관련 유전자가 확연히 많이 발현되는 것을 확인할 수 있었다.

Metagenome과 metatranscriptome 분석 결과를 종합해 보면, 암석 위치에 따라 각 미생물 군집이 소유하고 있는 기능 유전자의 상대 풍부도에는 큰 차이가 없지만 실제 미생물 군 집에서 발현되는 유전자의 상대 풍부도는 확연한 차이를 보였다. 이것은 암석의 위치별 서식 환경의 차이가 미생물 군집에게 영향을 미칠 수 있고 미생물들은 이러한 환경에 적 응하기 위해 차별된 유전적 메커니즘을 가지는 것으로 판단된다. 미생물 군집의 유전적 메커니즘 차이는 암석의 생물학적 풍화작용에 영향을 미칠 것이라 생각되고(Gadd, 2010), 실제 암석과 미생물 사이에서 발생하는 풍화현상을 추적하여 관찰하고 관련된 기능 유전 자들에 대한 추가적인 연구가 수행되어야 한다고 판단된다.

제 4 장 연구개발목표 달성도 및 대외기여도

1. 연구기간 :총 1년 (2017.04.01. ~ 2018.03.31.)

2. 목표 달성도

구분	연구 목표	내 용	달성도(%)
	빙하 소멸로 인한 육상 식물과 토양 미생물 군집 간의 천이 양상 비교	- 토양 샘플 180점에 대한 메타지놈 분석을 이용한 미생물 군집 분석 완료	100%
1차	빙하 소멸로 인한 토양 유기탄소 특성 변화와 분해 미생물 간의 상관관계 규명	- 토양 샘플 30점에 대한 유기탄소 특성 분석 완료 - 활성 미생물 군집 연구를 위한 RNA기반 30점, PLFA 90점 분석 완료	100%
년도	빙하 소멸로 인한 토양의 물리화학적 특성 변화 규명	- 토양 샘플 270점에 대한 물리화학적 특성 분석 완료	100%
	빙하 소멸로 노출된 지역 암석의 생물학적 풍화 과정 규명	 암석샘플 26개에 대한 암석 미생물 군집 분석 완료 풍화관련 물질대사 연구를 위한 metatranscriptome 3점 분석 완료 	100%

3. 대외기여도

기여항목 및 기술명	기여형태
빙하 소멸지역 육상 생태계 변화 종합 연구	식생, 토양 및 유기물 특성, 미생물 군집, 암석 풍 화에 대한 상호 연관 분석을 통해 빙하소멸지역 생 태계 변화에 대한 종합적인 이해에 기여

제 5 장 연구개발결과의 활용계획

- 다산과학기지 주변 빙하 소멸 지역의 식물 천이, 토양 미생물 천이, 물질대사 흐름 간
 의 종합적인 분석을 통해 북극지역에서 급속히 늘어나고 있는 빙하 소멸 지역의 육상
 생태계 변화규명에 기여
- 암석에 서식하는 미생물에 의한 생물학적 풍화 과정이 빙하후퇴지역의 토양발달에
 미치는 영향을 파악하는데 활용
- 본 연구 과제를 기반으로 국제공동연구를 주도적 추진함으로써 국가역량 강화에 필요
 한 북극 연구네트워크 구성 및 북극권 국가와 연구 협력 기반 마련
- 본 연구 과제를 기반으로 NySMAC Flagship 육상 프로그램과 <니알슨 모니터링을 위 한 국제공동연구>에 주도적으로 참여
- 북극정책기본계획과 시행계획에 제시된 '북극다산기지 기반 연구·활동 확대'에 대한 성 과로 제시
- 온난화의 영향으로 전 지구상에서 육상 빙하가 빠른 속도로 사라지고 있음을 감안할
 때, 브뢰기반도 빙하 소멸지역을 대상으로 수행된 본 육상 생태계 천이 연구결과는 향후
 육상 빙하 소멸지역들을 대상으로 남북극 혹은 전 지구적 비교연구를 테마로 한 대형
 R&D 사업화에 큰 밑거름이 될 것임

제 6 장 연구개발과정에서 수집한 해외과학기술정보

- 해당사항 없음

제 7 장 참고문헌

- Brown, S.P. and Jumpponen, A. 2014. Contrasting primary successional trajectories of fungi and bacteria in retreating glacier soils. Mol. Ecol. 23: 481-497.
- de Carvalho, L.P.S. and Blanchard, J.S., 2006. Kinetic analysis of the effects of monovalent cations and divalent metals on the activity of Mycobacterium tuberculosis α -isopropylmalate synthase. Archives of biochemistry and biophysics, 451(2): 141-148.
- Dong, K., Tripathi, B., Moroenyane, I., Kim, W., Li, N., Chu, H. and Adams, J., 2016. Soil fungal community development in a high Arctic glacier foreland follows a directional replacement model, with a mid-successional diversity maximum. Scientific Reports, 6: 26360.
- Gadd, G.M., 2010. Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology, 156(3): 609-643.
- Meyer, F., Paarmann, D., D'Souza, M., Olson, R., Glass, E.M., Kubal, M., Paczian, T., Rodriguez, A., Stevens, R., Wilke, A. and Wilkening, J., 2008. The metagenomics RAST server-a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC bioinformatics, 9(1): 386.
- Moreau, M., Laffly, D., Joly, D. and Brossard, T. 2005. Analysis of plant colonization on an arctic moraine since the end of the Little Ice Age using remotely sensed data and a Bayesian approach. Remote Sens. Environ. 99: 244-253.
- Kim, M., Jung, J.Y., Laffly, D., Kwon, H.Y. and Lee, Y.K., 2017. Shifts in bacterial community structure during succession in a glacier foreland of the High Arctic. FEMS Microbiology Ecology, 93(1): fiw213.
- Kwon, H.Y., Jung, J.Y., Kim, O., Laffly, D., Lim, H.S. and Lee, Y.K. 2015. Soil development and bacterial community shifts along the chronosequence of the Midtre Lovénbreen glacier foreland in Svalbard. Journal of Ecology and Environment, 38:461-476.
- Schutte, U.M., Abdo, Z., Bent, S.J. Williams, C.J., Schneider, G.M., Solheim, B. and Forney, L.J. 2009. Bacterial succession in a glacier foreland of the High Arctic. The ISME J. 3: 1253-1268.
- Schutte, U.M., Abdo, Z., Foster, J., Ravel, J., Bunge, J., Solheim, B. and Forney, L.J. 2010. Bacterial diversity in a glacier foreland of the high Arctic. Mol. Ecol. 19: 54-66.
- Wierzchos, J., DiRuggiero, J., Vítek, P., Artieda, O., Souza-Egipsy, V., Skaloud, P., Tisza, M.,

Davila, A.F., Vílchez, C., Garbayo, I. and Ascaso, C., 2015. Adaptation strategies of endolithic chlorophototrophs to survive the hyperarid and extreme solar radiation environment of the Atacama Desert. Frontiers in microbiology, 6: 934.

Ziegelhoffer, E.C. and Donohue, T.J., 2009. Bacterial responses to photo-oxidative stress. Nature Reviews Microbiology, 7(12): 856-863.

Sample	RNA Conc. $(ng/ \mu l)$	A260/280	A260/230	cDNA Conc. $(ng/ \mu l)$
ML1M	4.1	4.08	0.20	739.1
ML2M	5.3	3.71	0.08	779.5
ML3M	4.5	2.59	0.06	624.0
ML4M	4.3	2.62	0.08	770.1
ML5M	3.4	2.17	0.06	644.6
ML6M	3.9	3.31	0.03	766.9
ML7M	3.5	3.24	0.08	668.1
ML8M	4.0	3.36	0.01	709.8
ML9M	2.8	1.94	0.01	807.5
ML10M	8.2	2.28	0.05	734.4
ML11M	5.9	2.41	0.02	731.0
ML12M	4.1	3.36	0.05	689.2
ML13M	4.9	1.98	0.22	719.3
ML14M	5.6	3.38	0.03	786.1
ML15M	1.0	1.13	0.06	812.1
ML16M	1.5	2.40	0.07	713.7
ML17M	3.2	2.44	0.16	658.3
ML18M	5.3	1.96	0.46	663.6
ML19M	2.4	2.13	0.02	687.7
ML20M	1.4	1.86	0.00	870.7
ML21M	15.4	1.50	0.52	691.9
ML22M	4.1	2.22	0.03	857.8
ML23M	4.0	2.48	0.08	824.6
ML24M	4.8	2.23	0.02	726.6
ML25M	4.6	3.12	0.43	832.2
ML26M	1.2	3.92	0.08	718.3
ML27M	6.4	2.32	0.05	645.9
ML28M	4.6	2.80	0.03	690.2
ML29M	4.5	2.15	0.01	691.8
ML30M	3.3	2.52	0.03	614.6
ML31M	1.2	2.78	0.01	621.7

부록 1. 중앙로벤 빙하후퇴지역 토양 샘플들에서 추출된 RNA 및 cDNA 정보 요약

부록 2. 중앙로벤 빙하후퇴지역 토양 샘플들에서 추출한 DNA 정보 요약

Sample	DNA Conc. (ng/ µ l)	A260 /280	Sample	DNA Conc. (ng/ µ l)	A260 /280	Sample	DNA Conc. (ng/ µ l)	A260 /280
ML1L	0.7	1.58	ML12L	6.4	1.33	ML23L	1.9	1.9
ML1R	8.5	1.31	ML12R	0.6	2.75	ML23R	2.3	1.54
ML1M	3.3	1.42	ML12M	6.6	1.35	ML23M	2.3	1.65
ML2L	1.9	1.76	ML13L	1.7	1.78	ML24L	1.2	2.1
ML2R	1.2	1.77	ML13R	7.7	1.4	ML24R	2.1	1.9
ML2M	2.4	1.73	ML13M	23.9	1.72	ML24M	2.1	1.64
ML3L	3.3	1.45	ML14L	0.5	1.17	ML25L	1.2	1.44
ML3R	1.4	1.98	ML14R	2.6	1.59	ML25R	1.7	1.43
ML3M	11.4	1.53	ML14M	2.2	1.77	ML25M	6.1	1.61
ML4L	1.9	1.88	ML15L	2.4	1.66	ML26L	2.5	1.10
ML4R	2.5	1.53	ML15R	2.6	1.85	ML26M	4.4	1.55
ML4M	2.6	1.63	ML15M	3	1.72	ML27L	1.3	1.56
ML5L	5.3	1.72	ML16L	3.3	1.06	ML27R	0.8	1.66
ML5R	1.1	1.94	ML16R	1.1	1.48	ML27M	8.2	1.72
ML5M	1.1	1.36	ML16M	1.4 P	1.41	ML28L	1.3	1.67
ML6L	0.7	1.36	ML17L	1.5	1.85	ML28R	0.5	1.82
ML6R	0.4	1.07	ML17R	0.8	1.53	ML28M	3.5	1.36
ML6M	4.9	1.76	ML17M	1.9	1.56	ML29L	1	1.26
ML7L	0.2	1.11	ML18L	3.7	1.55	ML29R	0.6	0.76
ML7R	5.6	1.35	ML18R	5	0.77	ML29M	5.2	1.74
ML7M	9.7	1.13	ML18M	4.5	1.63	ML30L	0.5	0.53
ML8L	0.5	0.83	ML19L	0.2	0.31	ML30R	1.2	0.53
ML8R	6.3	1.41	ML19R	1.2	1.58	ML30M	15.7	1.72
ML8M	2.6	1.3	ML19M	1.2	1.19	ML31L	0.3	1.17
ML9L	7.4	1.24	ML20L	0.6	0.92	ML31R	1.1	1.17
ML9R	2.7	1.15	ML20R	9.9	1.32	ML31M	3.3	1.48
ML9M	2.3	1.09	ML20M	4.1	1.65			
ML10L	3	2.1	ML21L	1.2	122			
ML10R	3.1	1.8	ML21R	3.2	0.98			
ML10M	4.1	1.54	ML21M	1.9	1.75			
ML11L	2.2	1.19	ML22L	3.8	1.35			
ML11R	2.1	1.84	ML22R	1.2	1.93			
ML11M	2.7	1.4	ML22M	2.4	1.67			

부록	3.	빙하	소멸	지역	세균	군집의	MiSeq	염기서열	분석	정보	요약
----	----	----	----	----	----	-----	-------	------	----	----	----

Austre	Austre Lovenbreen		randbreen	Midtre Lovenbreen			
Sample	Read Count	Sample	Read Count	Sample	Read Count		
A1L	28,613	B14L	49,638	ML1L	21,344		
A1M	25,584	B14M	51,154	ML1M	15,260		
A1R	28,949	B14R	43,500	ML1R	25,173		
A2L	28,819	B15L	25,626	ML2L	27,807		
A2M	23,043	B15M	51,151	ML2M	14,317		
A2R	31,701	B15R	26,387	ML2R	26,354		
A3L	26,712	B16L	30,203	ML3L	26,261		
A3M	35,015	B16M	33,513	ML3M	13,254		
A3R	31,868	B16R	40,949	ML3R	28,948		
A4L	33,575	B17L	33,595	ML4L	24,436		
A4M	38,298	B17M	24,329	ML4M	14,390		
A4R	46,576	B17R	23,705	ML4R	39,130		
A5L	32,127	B18L	30,199	ML5L	23,274		
A5M	33,175	B18M	22,827	ML5M	16,908		
A5R	35,882	B18R	14,671	ML5R	26,440		
A6L	29,612	B19L	17,824	ML6L	22,504		
A6M	28,652	B19M	36,392	ML6M	16,050		
A6R	38,314	B19R	21,656	ML6R	25,404		
A7L	41,834	B20L	18,525	ML7L	24,216		
A7M	37,624	B20M	22,012	ML7M	18,310		
A7R	27,442	B20R	26,325	ML7R	28,813		
A8L	33,429	B21L	27,980	ML8R	25,696		
A8M	33,332	B21M	23,227	ML10L	28,526		
A8R	33,397	B21R	28,020	ML10M	8,371		
A9L	50,258	B22L	24,372	ML10R	22,358		
A9M	35,305	B22M	23,092	ML11L	25,704		
A9R	25,444	B22R	26,001	ML11M	12,130		
A10L	27,885	B23L	24,730	ML11R	26,660		
A10M	33,713	B23M	32,059	ML12L	30,570		
A10R	30,457	B23R	21,165	ML12M	14,354		
A11L	26,982	B24L	16,099	ML12R	24,064		
A11M	33,890	B24M	24,178	ML13L	27,664		
A11R	17,412	B24R	19,932	ML13M	12,739		
A12L	36,738	B25L	31,210	ML13R	28,660		
A12M	38,007	B25M	26,798	ML14L	24,786		
A12R	33,564	B25R	21,965	ML14M	9,697		
A13L	47,696	B26L	25,800	ML14R	32,805		
A13M	36,810	B26M	21,441	ML15L	27,970		
A13R	30,391	B26R	29,919	ML15M	17,779		
A14L	45,548	B27L	35,256	ML15R	38,485		
A14M	38,176	B27M	22,444	ML16L	31,006		
A14R	31,692	B27R	27,701	ML16M	19,287		
A15L	33,755	B28L	20,232	ML16R	40,253		
A15M	18,343	B28M	15,023	ML17L	25,338		
A15R	29,652	B28R	30,199	ML17M	13,472		

Austre 1	Lovenbreen	Blomst	randbreen	Midtre Lovenbreen		
Sample	Read Count	Sample	Read Count	Sample	Read Count	
A16L	37,825	B29L	22,423	ML17R	23,577	
A16M	24,863	B29M	31,667	ML18L	22,256	
A16R	36,932	B29R	38,565	ML18M	17,244	
A17M	24,762	B30L	28,313	ML18R	27,349	
A18L	32,299	B30M	25,694	ML19L	26,488	
A18M	30,759	B30R	25,913	ML19M	19,195	
A18R	30,565	B31L	27,865	ML19R	28,805	
A19L	28,971	B31M	26,623	ML20L	24,711	
A19M	29,026	B31R	21,679	ML20M	15,250	
A19R	27,357	B32L	27,305	ML20R	8,820	
A20L	30,203	B32M	33,121	ML21L	25,776	
A20M	24,853	B32R	22,466	ML22L	29,370	
A20R	35,501	B33L	37,275	ML22M	14,230	
A21L	31,063	B33M	28,494	ML22R	30,310	
A21M	31,878	B33R	28,351	ML23L	32,194	
A21R	25,890	B34L	22,561	ML23M	15,432	
A22L	25,460	B34M	25,567	ML23R	28,019	
A22M	22,505	B34R	34,598	ML24L	32,230	
A22R	24,088	B35L	32,284	ML24M	20,410	
A23L	30,277	B35M	37,200	ML24R	27,848	
A23M	38,197	B35R	26,962	ML25L	15.862	
A23R	34,474	B36M	14.850	ML25M	9.802	
A24L	49,980	B37L	28,955	ML25R	27,450	
A24M	33,923	B37M	21.829	ML26L	29,465	
A24R	35,434	B37R	-26.302	ML26M	17,709	
A25L	30,303	B38L	27.394	ML26R	33,130	
A25M	33,491	B38M	25.316	ML27L	29,343	
A25R	32.032	B38R	41.715	ML27M	19.203	
A26L	36.432	B39L	41.636	ML27R	33,125	
A26M	33,693	B39M	39.385	ML28L	34.287	
A26R	50,786	B39R	27.409	ML28M	15.741	
A27L	52,111	B40L	32,000	ML28R	23,856	
A27M	58,247	B40M	25.211	ML29L	28,144	
A27R	35 791	B40R	49 879	ML29M	16 501	
A28L	30,621	B41L	41 079	ML29R	26,000	
A28M	44 659	B41M	41.035	ML30L	30 493	
A 28R	50,110	B41R	36 758	ML30M	18 492	
Δ 29Ι	42 482	Dint	50,750	MI 31R	5 393	
A29M	52 480			WIL5 IIX	5,575	
A 29R	39 775					
A 30I	34 712					
A 20M	30 521					
A 20D	37,331					
A 211	22,107 2 277					
AJIL AZIM	0,077					
	5,205 7 262					
AJIK	1,203					

	Austre Lover	nbreen		Blomstrandb	reen
Sample	Shannon	Invsimpson	Sample	Shannon	Invsimpson
A1L	6.13	112.10	B14L	6.41	255.87
A1M	6.29	205.24	B14M	6.47	264.92
A1R	6.12	110.83	B14R	6.34	237.48
A2L	6.26	156.75	B15L	6.40	254.24
A2M	6.44	228.13	B15M	6.24	131.11
A2R	6.36	224.36	B15R	6.37	245.31
A3L	6.14	173.21	B16L	6.45	195.47
A3M	6.40	247.68	B16M	6.53	301.90
A3R	6.27	210.79	B16R	6.44	225.45
A4L	6.12	171.15	B17L	6.51	273.21
A4M	6.46	268.31	B17M	6.54	302.46
A4R	6.07	150.72	B17R	6.58	323.38
A5L	6.52	254.50	B18L	6.37	197.66
A5M	6.49	255.29	B18M	6.23	139.03
A5R	6.33	184.57	B18R	6.23	141.93
A6L	6.46	201.21	B19L	6.34	218.14
A6M	6.43	243.54	B19M	6.17	201.79
A6R	6.24	174.92	B19R	6.33	231.10
A7L	6.58	302.92	B20L	6.37	161.04
A7M	6.69	350.17	B20E	6.39	163.34
A7R	6.55	246.98	B20R	6.49	203 52
	6.29	151 55	B21L	6.02	52.81
	6.54	263.86	B21E	6.02	195 59
ASR	6.62	265.00	B21R	6.46	209.84
A9L	6.04	107.35	B22L	6.49	237 38
A9M	6.52	288.00	B22E	6.37	187 78
AOR	5.42	83 53	B22IVI B22R	6.45	226.01
A 10I	6 30	191 73	B22R	6.45	254 67
AloM	6.66	324.17	B23E	6.29	200.19
ALOR	6.55	206 11	B23NI B23D	6.52	200.17
	6.55	205 77	D23K D24I	6.23	122.32
ATTL	6.44	109.49	D24L D24M	6.54	132.32
	0.44	196.46		6.34	234.48
ATTR	0.11	124.32	D24K	0.57	1/0.27
AIZL	6.21	155.59	B25L	0.00	324.39
A12M	6.41	230.78	B25M	6.68	315.33
A12R	6.24	186.96	B25K	6.63	270.15
AI3L	6.26	221.46	B26L	6.27	93.17
AI3M	6.15	1/0.16	B26M	6.49	216.65
A13R	6.19	204.74	B26R	6.59	283.46
A14L	5.81	67.65	B27L	6.27	113.30
A14M	5.92	110.61	B27M	6.41	225.08
A14R	5.72	101.33	B27R	6.40	185.46
A15L	5.67	95.01	B28L	6.36	163.16
A15M	5.70	117.51	B28M	6.34	135.99

	Austre Love	nbreen		Blomstrandb	reen
Sample	Shannon	Invsimpson	Sample	Shannon	Invsimpson
A15R	5.71	105.09	B28R	6.60	256.64
A16L	5.39	95.72	B29L	6.25	178.49
A16M	5.59	125.31	B29M	6.38	187.46
A16R	5.56	69.55	B29R	6.32	236.49
A17M	4.25	30.68	B30L	6.26	193.70
A18L	6.00	193.00	B30M	6.51	281.93
A18M	5.87	160.52	B30R	6.59	319.24
A18R	5.67	122.25	B31L	6.27	115.57
A19L	6.11	180.97	B31M	6.39	182.20
A19M	6.27	199.34	B31R	6.36	101.49
A19R	6.01	126.30	B32L	6.34	95.68
A20L	6.42	214.66	B32M	6.44	149.70
A20M	6.06	87.41	B32R	6.43	265.56
A20R	6.50	256.31	B33L	6.40	247.23
A21L	6.51	277.25	B33M	6.37	258.40
A21M	6.55	281.52	B33R	6 44	193.83
A21R	6.46	251.87	B34L	6.37	128.65
A211C	6.18	169.72	B34M	6.29	231.12
A 22M	6.23	173.81	B3/R	6.50	231.12
A 22D	6.23	117.05	D34K	6.45	221.02
A22K	6.12	245.28	D35L	6.42	217.10
A23L	0.43 6.41	243.28		6.40	1/0.43
	0.41	230.93	D35K	0.49 5.24	51.69
A23K	0.30	208.49	B30M D27I	5.24	260.20
AZ4L	6.27	200.75	B37L	0.09	209.50
A24M	6.39	237.65	B3/M	0.02	231.23
A24R	6.27	1/8.8/	B3/R	6.58	220.66
A25L	6.35	186.10	B38L	6.56	288.00
A25M	6.09	96.30	B38M	6.74	343.18
A25R	5.97	110.03	B38R	6.73	314.42
A26L	6.35	237.99	B39L	6.82	331.29
A26M	6.36	227.48	B39M	6.78	359.84
A26R	6.13	169.12	B39R	6.79	370.41
A27L	6.14	163.30	B40L	6.32	212.43
A27M	6.22	220.82	B40M	6.53	290.15
A27R	5.88	143.48	B40R	6.28	191.87
A28L	6.12	150.79	B41L	6.51	234.15
A28M	6.07	149.29	B41M	6.76	349.10
A28R	5.88	151.98	B41R	6.62	262.53
A29L	5.56	68.70			
A29M	6.03	165.89			
A29R	5.83	166.40			
A30L	5.83	165.13			
A30M	6.06	207.66			
A30R	5.86	59.83			
A31L	4.06	28.69			
A31R	5.17	93.47			

부록	5.	빙하	소멸	지역	진균	군집의	MiSeq	염기서열	분석	정보	요약
----	----	----	----	----	----	-----	-------	------	----	----	----

Austre	Lovenbreen	Blomstrandbreen		Midtre	Lovenbreen
Sample	Read Count	Sample	Read Count	Sample	Read Count
A1L	29485	B14L	15321	ML1L	20749
A1M	40075	B14M	22446	ML1M	40021
A1R	24506	B14R	28668	ML1R	27951
A2L	38325	B15L	34118	ML2L	19307
A2M	31127	B15M	18556	ML2M	30289
A2R	27332	B15R	33557	ML2R	23130
A3L	25549	B16L	8256	ML3L	38978
A3M	32295	B16M	39322	ML3M	50155
A3R	40936	B16R	4662	ML3R	46021
A4L	45086	B17L	43818	ML4L	42743
A4M	49321	B17M	38922	ML4M	38803
A4R	40623	B17R	33549	ML4R	41493
A5L	29729	B18L	25517	ML5L	21873
A5M	22451	B18M	56844	ML5M	50910
A5R	29217	B18R	25795	ML5R	18284
A6L	20211	B19L	54899	ML6L	28626
A6M	38175	B19M	40573	ML6M	54504
A6R	44719	B19R	39062	ML6R	34423
A7L	39966	B20L	50487	ML7L	36219
A7M	29457	B20M	31970	ML7M	35447
A7R	31287	B20R	44195	ML7R	6889
A8L	30986	B21L	33564	ML8R	22513
A8M	38408	B21M	52020	ML9M	165
A8R	15457	B21R	44164	ML10L	57568
A9L	12173	B22L	48563	ML10M	40099
A9M	32036	B22M	49664	ML10R	80752
A9R	3282	B22R	44654	ML11L	11386
A10L	28069	B23L	36564	ML11M	52907
A10M	27355	B23M	56530	ML11R	35519
A10R	21692	B23R	50196	ML12L	39073
A11L	27143	B24L	8834	ML12M	55681
A11M	51900	B24M	55693	ML12R	52590
A11R	19352	B24R	51027	ML13L	31494
A12L	16745	B25L	48772	ML13M	64987
A12M	23014	B25M	44767	ML13R	42850
A12R	29231	B25R	42390	ML14L	53345
A13L	25820	B26L	58978	ML14M	39169
A13M	46573	B26M	45320	ML14R	69673
A13R	26534	B26R	42105	ML15L	19883
A14L	22835	B27L	45511	ML15M	41508
A14M	21833	B27M	37385	ML15R	53759
A14R	25335	B27R	25220	ML16L	15475
A15L	27034	B28L	42858	ML16M	40351
A15M	40638	B28M	41610	ML16R	42912

Austre	Lovenbreen	Blomstr	randbreen	Midtre	Lovenbreen
Sample	Read Count	Sample	Read Count	Sample	Read Count
A15R	33129	B28R	24901	ML17L	18702
A16L	6191	B29L	64044	ML17M	32220
A16M	2973	B29M	45611	ML17R	51786
A16R	785	B29R	48487	ML18L	60920
A17M	549	B30L	47943	ML18M	42733
A18L	20699	B30M	14493	ML18R	25485
A18M	1638	B30R	17732	ML19L	76002
A18R	1815	B31L	12524	ML19M	43207
A19L	28231	B31M	33302	ML19R	49276
A19M	31405	B31R	22257	ML20L	60425
A19R	23539	B32L	13458	ML20M	6753
A20L	29312	B32M	8063	ML21L	1024
A20M	23536	B32R	39190	ML22L	38970
A20R	37730	B33L	21556	ML22M	68624
A21L	44038	B33M	30750	ML22R	58719
A21M	46955	B33R	21329	ML23L	56334
A21R	33036	B34L	14008	ML23M	56766
A22L	41421	B34M	33674	ML23R	61706
A22M	31370	B34R	6322	ML24L	25379
A22R	42917	B35L	21487	ML24M	69882
A23L	44167	B35M	44294	ML24R	49059
A23M	9226	B35R	9939	ML25L	4212
A23R	4992	B36M	4837	ML25M	43603
A24L	35106	B37L	48520	ML25R	21541
A24M	29443	B37M	41856	ML26L	31103
A24R	26857	B37R	43178	ML26M	3729
A25L	36344	B38L	24820	ML26R	8972
A25M	9106	B38M	33420	ML27L	49703
A25R	27777	B38R	23821	ML27M	1666
A26L	47032	B39L	34623	ML27R	45562
A26M	34153	B39M	47338	ML28L	38935
A26R	37307	B39R	45024	ML28M	44548
A27L	24033	B40L	67409	ML28R	59740
A27M	43296	B40M	45864	ML29L	34101
A27R	18336	B40R	36631	ML29M	67770
A28L	27675	B41L	57013	ML29R	67303
A28M	51239	B41M	46599	ML30L	33992
A28R	25284	B41R	31507	ML30M	51628
A29L	8185	•			
A29M	35768				
A29R	2623				
A30L	59642				
A30M	35754				
A30R	52829				
A31L	306				
A31M	255				

A	Austre Lovenbre	en		Blomstrandbreer	1
Sample	Shannon	Invsimpson	Sample	Shannon	Invsimpson
A1L	2.64	7.68	B14L	2.99	11.14
A1M	2.73	6.94	B14M	3.15	14.93
A1R	2.42	6.56	B14R	2.73	6.77
A2L	3.31	16.06	B15L	3.21	17.83
A2M	3.51	16.21	B15M	3.00	12.53
A2R	3.29	11.23	B15R	3.22	15.34
A3L	3.34	12.75	B16L	3.03	10.69
A3M	2.98	7.98	B16M	1.52	2.00
A3R	1.84	2.28	B16R	2.79	10.25
A4L	2.55	4.88	B17L	2.96	9.73
A4M	2.22	3.38	B17M	3.12	12.84
A4R	2.88	6.82	B17R	3.68	23.44
A5L	2.48	4.95	B18L	3.52	22.65
A5M	3.48	21.42	B18M	3.28	10.95
A5R	2.50	7.57	B18R	3.50	21.06
A6L	1.30	1.62	B19L	3.20	11.60
A6M	3.29	10.25	B19M	3.37	16.97
A6R	3.12	10.38	B19R	3.56	22.69
A7L	2.94	7.63	B20L	2.36	3.35
A7M	3.50	14.53	B20M	3.94	28.84
A7R	3.79	26.16	B20R	3.84	27.68
A8L	3.51	16.68	B21L	2.95	8.02
A8M	3.10	11.68	B21M	3.96	27.65
A8R	3.29	13.59	B21R	3.54	17.46
A9L	3.38	12.18	B22L	4.05	38.74
A9M	3.17	12.53	B22M	3.88	26.69
A9R	3.44	13.23	B22R	3.07	6.18
A10L	3.27	12.53	B23L	3.97	28.84
A10M	3.62	19.63	B23M	3.00	8.53
A10R	3.51	18.64	B23R	3.90	29.36
A11L	3.39	16.67	B24L	3.84	24.42
A11M	2.39	4.07	B24M	3.85	25.95
A11R	2.80	8.47	B24R	3.64	18.64
A12L	3.07	9.15	B25L	3.18	9.45
A12M	3.29	15.98	B25M	4.16	29.05
A12R	2.92	12.87	B25R	3.79	14.53
A13L	3.00	7.98	B26L	3.09	9.94
A13M	3.18	12.40	B26M	3.15	14.00
A13R	2.89	9.21	B26R	3.36	14.60
A14L	2.96	11.43	B27L	2.51	5.66
A14M	2 77	6.06	B27M	3 33	17.04

부록 6. 동로벤 및 블룸스트란 빙하 소멸지역 토양 진균 다양성 지수

	Austre Lovenbree	en		Blomstrandbreen	1
Sample	Shannon	Invsimpson	Sample	Shannon	Invsimpson
A14R	2.83	8.54	B27R	3.49	20.09
A15L	1.54	2.51	B28L	2.08	4.19
A15M	2.89	11.88	B28M	3.10	8.52
A15R	1.96	3.21	B28R	3.68	21.77
A16L	2.53	7.54	B29L	3.26	15.80
A16M	3.13	13.00	B29M	3.18	10.37
A18L	0.73	1.31	B29R	3.32	17.78
A19L	3.07	11.19	B30L	1.08	1.55
A19M	3.20	15.33	B30M	3.05	13.04
A19R	2.99	11.15	B30R	2.79	9.35
A20L	3.44	19.71	B31L	3.04	13.16
A20M	2.65	5.77	B31M	3.21	14.75
A20R	3.27	14.00	B31R	3.00	9.62
A21L	3.35	12.39	B32L	3.31	16.95
A21M	3.09	9.20	B32M	3.35	17.48
A21R	2.98	9.96	B32R	3.43	23.33
A22L	2.88	7.21	B33L	2.88	9.72
A22M	3.52	16.13	B33M	3.01	11.96
A22R	3.18	11.99	B33R	2.72	8.00
A23L	3.96	25.29	B34L	3.03	11.24
A23M	3.35	12.00	B34M	3.31	14.14
A23R	3.49	19.59	B34R	2.84	9.53
A24L	2.86	6.20	B35L	2.68	6.18
A24M	3.18	13.93	B35M	1.85	3.45
A24R	3.79	27.57	B35R	2.36	5.64
A25L	2.54	8.06	B36M	1.41	3.24
A25M	2.88	10.62	B37L	3.61	17.52
A25R	3.60	20.80	B37M	3.33	17.93
A26L	2.73	9.16	B37R	3.58	22.35
A26M	3.43	19.32	B38L	3.48	20.11
A26R	3.25	14.28	B38M	3.44	16.94
A27L	3.15	13.86	B38R	3.23	11.01
A27M	2.90	7.51	B39L	3.68	21.72
A27R	3.21	16.15	B39M	2.87	5.32
A28L	2.57	7.15	B39R	3.83	29.29
A28M	1.78	3.46	B40L	0.94	1.40
A28R	3.42	18.70	B40M	2.66	4.66
A29L	3.17	14.86	B40R	2.92	7.28
A29M	3.07	11.88	B41L	2.92	5.81
A29R	3.54	23.08	B41M	3.87	29.43
A30L	1.42	2.54	B41R	3.80	27.17
A30M	2.30	5.27			
A30R	1.92	4.00			

부록 7. FT-ICR-MS로 분석된 샘플별 토양 DOC 조성 요약

Sampling site		Assigned Peak	Mean DBE	Mean AI	Mean H/C	Mean O/C	Mean N/C
Transect	ML 01	$\begin{array}{r} 2361 \pm \\ 25 \end{array}$	6.48 ± 0.06	0.12 ± 0.002	1.43 ± 0.003	0.35 ± 0.001	0.085 ± 0.001
1	ML 02	$\begin{array}{r} 1 \\ 2283 \\ 62 \end{array} \pm$	6.00 ± 0.04	0.08 ± 0.002	1.52 ± 0.004	0.32 ± 0.001	0.082 ± 0.001
	ML 03	$\begin{array}{c} 2201 \\ 109 \end{array} \pm$	$\begin{array}{c} 6.32 \hspace{0.1cm} \pm \\ 0.08 \end{array}$	$\begin{array}{c} 0.10 \ \pm \\ 0.004 \end{array}$	$\begin{array}{r} 1.45 \ \pm \\ 0.009 \end{array}$	$\begin{array}{c} 0.35 \ \pm \\ 0.001 \end{array}$	$\begin{array}{c} 0.084 \hspace{0.1 cm} \pm \\ 0.001 \end{array}$
	ML 04	$\begin{array}{r} 1601 \\ 288 \end{array} \pm$	$\begin{array}{c} 6.15 \hspace{0.1cm} \pm \\ 0.24 \end{array}$	$\begin{array}{c} 0.10 \ \pm \\ 0.003 \end{array}$	$\begin{array}{r} 1.44 \hspace{0.1 in} \pm \\ 0.021 \end{array}$	$\begin{array}{c} 0.39 \ \pm \\ 0.010 \end{array}$	$\begin{array}{c} 0.094 \hspace{0.1 cm} \pm \\ 0.007 \end{array}$
	ML 05	$\begin{array}{r} 1663 \\ \pm \\ 82 \end{array}$	$\begin{array}{c} 6.24 \hspace{0.1cm} \pm \\ 0.04 \end{array}$	$\begin{array}{c} 0.10 \ \pm \\ 0.004 \end{array}$	$\begin{array}{r} 1.46 \ \pm \\ 0.005 \end{array}$	$\begin{array}{c} 0.37 \ \pm \\ 0.002 \end{array}$	$\begin{array}{c} 0.099 \hspace{0.1 cm} \pm \\ 0.001 \end{array}$
	ML 06	$\begin{array}{r} 2055 \ \pm \\ 79 \end{array}$	$\begin{array}{c} 6.11 \\ 0.04 \end{array}$	$\begin{array}{c} 0.10 \ \pm \\ 0.004 \end{array}$	$\begin{array}{c} 1.47 \hspace{0.1 cm} \pm \\ 0.006 \end{array}$	$\begin{array}{c} 0.35 \ \pm \\ 0.003 \end{array}$	$\begin{array}{c} 0.091 \hspace{0.1 cm} \pm \\ 0.000 \end{array}$
	ML 07	$\begin{array}{r} 1575 \ \pm \\ 21 \end{array}$	$\begin{array}{c} 5.77 \hspace{0.1 in} \pm \\ 0.06 \end{array}$	$\begin{array}{c} 0.07 \hspace{0.1 cm} \pm \\ 0.001 \end{array}$	$\begin{array}{r} 1.52 \ \pm \\ 0.003 \end{array}$	$\begin{array}{c} 0.36 \ \pm \\ 0.001 \end{array}$	$\begin{array}{c} 0.089 \ \pm \\ 0.001 \end{array}$
	ML 08	$\begin{array}{r} 1083 \ \pm \\ 17 \end{array}$	$\begin{array}{c} 5.31 \hspace{0.1cm} \pm \\ 0.04 \end{array}$	$\begin{array}{c} 0.06 \ \pm \\ 0.002 \end{array}$	$\begin{array}{r} 1.54 \hspace{0.1cm} \pm \\ 0.005 \end{array}$	$\begin{array}{c} 0.36 \ \pm \\ 0.005 \end{array}$	$\begin{array}{c} 0.056 \ \pm \\ 0.001 \end{array}$
	ML 09	$\begin{array}{c} 448 \ \pm \\ 20 \end{array}$	$\begin{array}{r} 3.94 \hspace{0.1cm} \pm \\ 0.04 \end{array}$	$\begin{array}{r} 0.04 \hspace{0.1 in} \pm \\ 0.004 \end{array}$	$\begin{array}{c} 1.66 \pm \\ 0.005 \end{array}$	$\begin{array}{c} 0.36 \ \pm \\ 0.004 \end{array}$	$\begin{array}{c} 0.033 \hspace{0.2cm} \pm \\ 0.002 \end{array}$
Transect 2	ML 10	1804 ± 81	$\begin{array}{c} 6.03 \pm \\ 0.01 \end{array}$	0.11 ± 0.001	$\begin{array}{c} 1.47 \ \pm \\ 0.001 \end{array}$	$\begin{array}{c} 0.35 \ \pm \\ 0.001 \end{array}$	$\begin{array}{c} 0.082 \hspace{0.2cm} \pm \\ 0.001 \end{array}$
	ML 11	1420 ± 59	$\begin{array}{c} 6.00 \pm \\ 0.03 \end{array}$	$\begin{array}{c} 0.10 \pm \\ 0.003 \end{array}$	$\begin{array}{r} 1.47 \ \pm \\ 0.004 \end{array}$	$\begin{array}{r} 0.35 \ \pm \\ 0.004 \end{array}$	$\begin{array}{c} 0.082 \hspace{0.1 cm} \pm \\ 0.001 \end{array}$
	ML 12	$ 1601 \pm 162 $	$5.88 \pm \\ 0.01$	$\begin{array}{c} 0.10 \pm \\ 0.002 \end{array}$	$\begin{array}{r} 1.50 \ \pm \\ 0.010 \end{array}$	$\begin{array}{c} 0.35 \ \pm \\ 0.002 \end{array}$	$\begin{array}{c} 0.081 \hspace{0.1 cm} \pm \\ 0.001 \end{array}$
	ML 13	$\begin{array}{r} 2218 \ \pm \\ 28 \end{array}$	$\begin{array}{r} 6.13 \hspace{0.1cm} \pm \\ 0.05 \end{array}$	$\begin{array}{c} 0.11 \ \pm \\ 0.002 \end{array}$	$\begin{array}{r} 1.48 \ \pm \\ 0.002 \end{array}$	$\begin{array}{c} 0.34 \ \pm \\ 0.001 \end{array}$	$\begin{array}{c} 0.081 \hspace{0.1 cm} \pm \\ 0.000 \end{array}$
	ML 14	$\begin{array}{r} 2395 \ \pm \\ 87 \end{array}$	$\begin{array}{c} 6.29 \hspace{0.1cm} \pm \\ 0.04 \end{array}$	$\begin{array}{c} 0.12 \ \pm \\ 0.003 \end{array}$	$\begin{array}{r} 1.46 \ \pm \\ 0.005 \end{array}$	$\begin{array}{c} 0.33 \hspace{0.1 cm} \pm \\ 0.002 \end{array}$	$\begin{array}{c} 0.083 \hspace{0.1 cm} \pm \\ 0.000 \end{array}$
	ML 15	$\begin{array}{r} 2253 \ \pm \\ 344 \end{array}$	$\begin{array}{c} 5.99 \ \pm \\ 0.13 \end{array}$	$\begin{array}{c} 0.10 \ \pm \\ 0.005 \end{array}$	$\begin{array}{r} 1.51 \ \pm \\ 0.012 \end{array}$	$\begin{array}{c} 0.32 \ \pm \\ 0.002 \end{array}$	$\begin{array}{c} 0.083 \hspace{0.1 cm} \pm \\ 0.001 \end{array}$
	ML 16	$\begin{array}{r} 1621 \ \pm \\ 15 \end{array}$	$\begin{array}{c} 5.66 \hspace{0.1cm} \pm \\ 0.04 \end{array}$	$\begin{array}{c} 0.09 \ \pm \\ 0.003 \end{array}$	$\begin{array}{r} 1.54 \hspace{0.1cm} \pm \\ 0.005 \end{array}$	$\begin{array}{c} 0.33 \ \pm \\ 0.001 \end{array}$	$\begin{array}{c} 0.084 \hspace{0.1 cm} \pm \\ 0.001 \end{array}$
	ML 17	$\begin{array}{r} 2099 \ \pm \\ 90 \end{array}$	$\begin{array}{c} 5.99 \hspace{0.1 cm} \pm \\ 0.11 \end{array}$	$\begin{array}{c} 0.10 \ \pm \\ 0.003 \end{array}$	$\begin{array}{r} 1.50 \ \pm \\ 0.009 \end{array}$	$\begin{array}{c} 0.34 \ \pm \\ 0.001 \end{array}$	$\begin{array}{c} 0.079 \hspace{0.1 cm} \pm \\ 0.001 \end{array}$
	ML 18	2516 ± 69	$\begin{array}{c} 6.03 \hspace{0.1 cm} \pm \\ 0.00 \end{array}$	$\begin{array}{c} 0.10 \ \pm \\ 0.002 \end{array}$	$\begin{array}{c} 1.50 \ \pm \\ 0.002 \end{array}$	$\begin{array}{c} 0.33 \ \pm \\ 0.001 \end{array}$	$\begin{array}{c} 0.077 \hspace{0.1 cm} \pm \\ 0.000 \end{array}$
	ML 19	$\begin{array}{r} 2340 \ \pm \\ 26 \end{array}$	$\begin{array}{c} 5.85 \ \pm \\ 0.01 \end{array}$	$\begin{array}{c} 0.10 \ \pm \\ 0.002 \end{array}$	$\begin{array}{r} 1.52 \ \pm \\ 0.001 \end{array}$	$\begin{array}{c} 0.31 \ \pm \\ 0.001 \end{array}$	$\begin{array}{c} 0.079 \hspace{0.1 cm} \pm \\ 0.001 \end{array}$
	ML 20	$\begin{array}{c} 1076 \ \pm \\ 5 \end{array}$	$\begin{array}{c} 5.04 \hspace{0.1cm} \pm \\ 0.01 \end{array}$	$\begin{array}{c} 0.07 \ \pm \\ 0.003 \end{array}$	$\begin{array}{c} 1.57 \ \pm \\ 0.001 \end{array}$	$\begin{array}{c} 0.33 \ \pm \\ 0.001 \end{array}$	$\begin{array}{c} 0.050 \ \pm \\ 0.000 \end{array}$
	ML 21	1154 ± 24	$\begin{array}{r} 4.54 \hspace{0.1cm} \pm \\ 0.03 \end{array}$	$\begin{array}{c} 0.06 \ \pm \\ 0.002 \end{array}$	$\begin{array}{r} 1.63 \ \pm \\ 0.003 \end{array}$	$\begin{array}{c} 0.33 \ \pm \\ 0.001 \end{array}$	$\begin{array}{r} 0.049 \hspace{0.1 cm} \pm \\ 0.001 \end{array}$

Sampli	ng site	Assigned	Mean	Mean AI	Mean	Mean	Mean
	6	Peak	DBE		H/C	O/C	N/C
Transect	MI 22	$1671 \pm$	$6.11 \pm$	0.11 \pm	$1.44 \pm$	0.37 \pm	0.076 \pm
3	IVIL 22	5	0.03	0.003	0.003	0.002	0.001
	MI 22	$1667\ \pm$	$5.79\ \pm$	$0.10\ \pm$	$1.52 \pm$	$0.34~\pm$	$0.090\ \pm$
	IVIL 23	42	0.02	0.005	0.002	0.003	0.002
	MI 24	$1422\ \pm$	$5.79\ \pm$	$0.10\ \pm$	1.50 \pm	$0.35~\pm$	$0.082\ \pm$
	IVIL 24	63	0.04	0.001	0.007	0.003	0.000
ML 2	MI 25	$1988\ \pm$	6.46 \pm	0.11 \pm	1.51 \pm	$0.33 \ \pm$	$0.114\ \pm$
	IVIL 23	89	0.05	0.001	0.003	0.000	0.000
	MI 26	$1082\ \pm$	5.27 \pm	0.07 \pm	$1.55 \pm$	$0.36~\pm$	0.074 \pm
	ML 20	13	0.03	0.002	0.003	0.004	0.002
	MI 27	$1840\ \pm$	6.04 \pm	0.10 \pm	1.46 \pm	$0.34~\pm$	$0.075~\pm$
	IVIL 27	75	0.02	0.003	0.004	0.003	0.001
	MT 20	$2227\ \pm$	$5.94 \pm$	0.10 \pm	$1.51 \pm$	0.32 \pm	$0.086~\pm$
	IVIL 28	33	0.03	0.001	0.001	0.001	0.000
	MI 20	$1997\ \pm$	5.80 \pm	0.10 \pm	$1.51 \pm$	$0.33~\pm$	$0.076~\pm$
	ML 29	71	0.03	0.002	0.003	0.005	0.002
	MI 20	$993~\pm$	$4.93\ \pm$	$0.07\ \pm$	$1.59\ \pm$	$0.33 \ \pm$	$0.063\ \pm$
	ML 30	17	0.05	0.004	0.004	0.002	0.002
	MI 21	875 ±	4.36 ±	$0.06 \pm$	$1.63 \pm$	$0.33~\pm$	0.042 ±
	WIL 31	20	0.06	0.006	0.008	0.004	0.001

극지연구소

* DBE : double bond equivalent, AI: aromaticity index

부록 8	즛앗로베	빙하후퇴지역	토얏	샌픅릯	지접	식생지수(NDVI)	요약
0.	ㅎㅎエ끤	아이무퍼지ㅋ	- <u></u> 0	020	110		<u>ш</u> ¬

Sampling site	Sampling date	Latitude(N)	Longitude(E)	Mean NDVI 50 cm square	Mean NDVI 100 cm square																						
ML01	2016-07-22	78.89832005	12.10786756	0.005815	0.00614																						
ML02	2016-07-22	78.89762897	12.10185032	0.019196	0.020249																						
ML03	2016-07-22	78.89668552	12.09690919	0.049158	0.042535																						
ML04	2016-07-22	78.89569427	12.09191293	-0.006769	-0.007484																						
ML05	2016-07-22	78.89458505	12.08777928	0.02076	0.01468																						
ML06	2016-07-22	78.89352276	12.08344234	-0.002594	-0.007545																						
ML07	2016-07-22	78.89250041	12.07875088	-0.003869	-0.002461																						
ML08	2016-07-22	78.89148389	12.07428331	NA	NA																						
ML09	2016-07-22	78.89050046	12.06948154	NA	NA																						
ML10	2016-07-26	78.90309691	12.07633338	0.025587	0.022491																						
ML11	2016-07-26	78.90204635	12.07530225	0.127613	0.114642																						
ML12	2016-07-26	78.90128394	12.07338477	0.010403	0.014052																						
ML13	2016-07-26	78.90043099	12.07199854	0.02843	0.034303																						
ML14	2016-07-26	78.89936798	12.07106183	0.051029	0.034845																						
ML15	2016-07-26	78.89864964	12.06943672	0.018402	0.038231																						
ML16	2016-07-26	78.89780192	12.06867552	0.010231	0.012212																						
ML17	2016-07-26	78.89719484	12.06655508	0.020787	0.026271																						
ML18	2016-07-26	78.89616065	12.06593696	0.005972	0.011384																						
ML19	2016-07-26	78.89546253	12.06311105	0.013336	0.005575																						
ML20	2016-07-26	78.89479656	12.06033296	0.033859	0.034717																						
ML21	2016-07-26	78.8937968	12.05822279	0.02884	0.032793																						
ML22	2016-07-27	78.90279717	12.03624506	0.048921	0.047327																						
ML23	2016-07-27	78.90200582	12.03421736	0.03517	0.045495																						
ML24	2016-07-27	78.90115409	12.03518769	0.011313	0.012914																						
ML25	2016-07-27	78.90057654	12.03850813	0.186706	0.183523																						
ML26	2016-08-03	78.8997685	12.03844163	-0.018982	-0.01773																						
ML27	2016-08-03	78.89867984	12.04087129	0.151044	0.119282																						
ML28	2016-08-03	78.89789786	12.04163616	0.003524	0.007586																						
ML29	2016-08-03	78.89706284	12.04039334	0.00595	0.013158																						
ML30	2016-08-03	78.89571004	12.04132894	0.018342	0.018053																						
ML31	2016-08-03	78.89447464	12.0447722	0.057311	0.060506																						
		Covera	ge (%)							Plant	species	abund	ance (S	um of	sample	squares	in eac	h 4 gri	ds per	site – n	naximur	n 24)					
-----------------------	--------	------------------------	---------------	-----------------	-------------------------------	---------------------------------------	----------------------------------	-----------------------------	-----------------------------	--------------------------	---------------------------------	------------------------------	--------------------------	--	---------------------------	---------------------------	----------------------	-----------------------------	--------------------------------	------------------------------	--	---------------------------	-----------------------------	------------------------------	------------------	----------------------------	----------------------------------
Samp- ling site	Lichen	Vasc -ular plant	Bryo phyte	Biotic crust	Cass iope tetra gona	Cer asti um arct icu m	Cer asti um rege lii	Cetr aria deli sei	Cetr aria niva lis	Dra ba spec ies	Dry as octo peta la	Minu artia rube lla	Oxy ria digy na	Poly gon um vivi par um	Poly tric um sp.	Sagi na niva lis	Salix pola ris	Saxif raga cern ua	Saxif raga cesp itosa	Saxif raga niva lis	Saxif raga opp ositi folia	Sile ne aca ulis	Sile ne ural ensis	Sany onia unci nata	Bry um sp.	Gra min ee_ Synth	Choc leria offici nalis
B14		1		10												13	1		4		1					1	
B15	2	1		6.67		1				1						14					6					3	
B16	5	2.25		8.75		1				1						12	1		1		4					4	
B17	5	8.75	5	27.5		2				1						12			3		12					2	
B18						4				2						19	1		9	3	16					6	
B19	5	25		13.75		7				1						4			2		13					1	
B20		42.5		32.5		3				8		6				12	7		1		23					7	1
B21		7.5		55			1			1				1		6	4		1		5					4	
B22	3	13.75	15	43.75		2				5		2		1			10	1			3					9	
B23	5	16.25	5	30													10				9			1		4	
B24	8.33	81.67	5	5	1				4		21			1	4		9				7			17		17	
B25	10	35	11.25	30										22	1		22				14			1		0	
B26	8.75	22.5	8.75	40		1				3		3		1	1	2	19				20			1		6	
B27		12.5		30		1				6		5			2	11	4		1		24					8	
B28	5	18.75		20		2				9		2			3	15	4		2		19					4	
B29		31.25		15		2				8						5			1		20					2	
B30		21.25		20		5				6					1	12					18					0	
B31		21.25		52.5		1				2						18	2				21					1	
B32		2		10		1				2						17			1		1					4	
B33				13.75						1						9										1	
B34	5	2		40											5	14			1		1					1	
B35				15		1				1					1	7					11					1	

부록 9. Blomstrandbreen 및 Austre Lovenbreen 빙하후퇴지역 식생피도 및 조성 조사결과

		Covera	age (%)							Plant	species	abund	ance (S	Sum of	sample	squares	s in eac	h 4 gri	ds per	site – r	naximur	n 24)					
Samp- ling site	Lichen	Vasc -ular plant	Bryo phyte	Biotic crust	Cass iope tetra gona	Cer asti um arct icu m	Cer asti um rege lii	Cetr aria deli sei	Cetr aria niva lis	Dra ba spec ies	Dry as octo peta la	Minu artia rube lla	Oxy ria digy na	Poly gon um vivi par um	Poly tric um sp.	Sagi na niva lis	Salix pola ris	Saxif raga cern ua	Saxif raga cesp itosa	Saxif raga niva lis	Saxif raga opp ositi folia	Sile ne aca ulis	Sile ne ural ensis	Sany onia unci nata	Bry um sp.	Gra min ee_ Synth	Choc leria offici nalis
B36				10											1	1			1		1					1	
B37						1				2						16					22					2	
B38	5	32.5	3	22.5		1	1			5		1				5	4		2	2	21			1	1	1	
B39	2	45	3	11.25		4	1			2		3			1	2	14		2	1	23		5	3		3	
B40		3.5		2.75						12		1									6					0	
B41	8.75	20	8.75	55		1				6		1		8	6	1	11				14			5		2	
AL1				10		1				1			1			11	1		1		13					1	
AL10	1	3.25	8.5			5		1		1		3				2	3				12					0	
AL11		7.5		13.5		1			1			3				4					24	1				1	
AL12	8.33	8.75		60		1										> 5	1	1	8		17					1	
AL13	2			5							1	1				9	2		2		3					0	
AL14	2			2		1																				0	
AL15	1			1																						0	
AL16																										0	
AL17																										0	
AL18																					1					0	
AL19	4.25		1	4.25																	10					0	
AL2	7.5	5		37.5		3		2		3	1						10		4	7	15	1		1		0	
AL20	2	1	1	2		1						3				9					13		1			0	
AL21	10	10	2.75	50										5		2	20				11	1		5		1	
AL22	10	25	10	55		4		7								3	16	1	1		10	1		6		4	
AL23	2	3	2	8.75		5		1		4						12	7		1		16	1		1		1	2
AL24	5	12.5	3	45		10				3				1		11	2		4	1	21		2			1	

		Covera	age (%)							Plant	species	s abund	ance (S	sum of	sample	squares	in eac	h 4 gri	ds per	site – r	naximur	n 24)					
Samp- ling site	Lichen	Vasc -ular plant	Bryo phyte	Biotic crust	Cass iope tetra gona	Cer asti um arct icu m	Cer asti um rege lii	Cetr aria deli sei	Cetr aria niva lis	Dra ba spec ies	Dry as octo peta la	Minu artia rube lla	Oxy ria digy na	Poly gon um vivi par um	Poly tric um sp.	Sagi na niva lis	Salix pola ris	Saxif raga cern ua	Saxif raga cesp itosa	Saxif raga niva lis	Saxif raga opp ositi folia	Sile ne aca ulis	Sile ne ural ensis	Sany onia unci nata	Bry um sp.	Gra min ee_ Synth	Choc leria offici nalis
AL25	6	4.75	6.75			1		2		1							6		3		18					1	
AL26	1	2.25	1.5	5.75		5				5		1				1			11		11					9	
AL27	1	1.5	1	10												21		4	4		7					1	
AL28			2	2														1			1					1	
AL29		3	7.25	10																						1	
AL3	2.75	7.5		18.75										3	1	1	19				7	1				4	
AL30																										0	
AL31																										0	
AL4	4	4.25		7.5										3			20				6	2		1		1	
AL5	12.5	20	45							1	1						23				10			2		0	
AL6	18.75	10	10			1		12	1								4				14	1		11		1	
AL7		4.75		2		3		1		2		3		1			9				14	2				0	
AL8	3	5.25	6.75			1		1			1	5		11			15				9					1	
AL9		2	5									1									13					0	
* B:	Bloms	trandb	reen,	AL: A	Austre	e Lov	enbre	en																			

부록 11. 암석 X-ray CT 분석 종합 보고서

1. Samples

		sandstone		J	limestone	
name	\$1	S2	\$3	L1	L2	L3
Diameter [mm]	15	11	6	11	5	5
Height [mm]	19	19	18	21	11	11

a. sandstone

b. limestone

2. X-ray CT Scan & analysis

2.1. scan conditions

		sandstone			limestone	
No.	S1	S2	\$3	L1	L2	L3
kV	120	120	120	120	120	120
μА	250	250	250	250	250	250
SOD [mm]	53.7	46.7	26	57.7	22	22
pixel pitch [mm]	0.021530	0.018712	0.010418	0.023108	0.008815	0.008815

*sod : source object distance

2.2. Analysis method

o Pore images are acquired by adaptive thresholding technique based on X-ray CT images.

2.3. Deliverables

o Images

- 3D view of cores
- 2D sliced images in horizontal and vertical directions
- 3D illustration of pore distribution
- Porosity

Sample	Rock type	Porosity	Average Pore Diameter	Median Pore Diameter	Bulk Density	Apparent Density
1	lime	5.5681	200.4	2244	2.6514	2.8078
2	lime	7.0243	209.7	6488.7	2.6058	2.8027
3	lime	5.6375	175.6	1203.1	2.6356	2.7931
4	lime	8.4504	398.7	2479.6	2.5738	2.8114
5	lime	8.6613	365.1	2130.8	2.5711	2.8149
6	lime	7.3126	364.4	2316.3	2.6036	2.809
7	lime	6.1272	292.3	1936.6	2.6521	2.8252
8	lime	8.7738	355.9	2235.2	2.5704	2.8176
9	lime	6.1677	234.8	1493.1	2.6449	2.8188
10	sand	6.1531	119	318.7	2.511	2.6757
11	sand	6.2413	116.6	299.8	2.5044	2.6711
12	sand	6.3592	132.8	326.6	2.4694	2.6371
13	sand	10.7164	122.9	598.1	2.3917	2.6787
14	sand	9.5528	107	436.6	2.4187	2.6742
15	sand	10.1576	113.6	508.7	2.4039	2.6757
16	sand	6.2102	69.8	437.3	2.4814	2.6457
17	sand	6.4805	77	479.9	2.4411	2.6102
18	sand	6.7619	88.4	544.9	2.4638	2.6425

부록 12. 암석 MIP 분석 결과

	SiO2	Al2O3	Fe2O3	Na2O	MgO	P2O5	K2O	CaO	TiO2	MnO
Limestone1	0.34	0.04	0.11	0.08	20.65	0.03	0.03	30.54	0.00	0.02
Limestone2	7.13	0.33	0.24	0.09	19.07	0.03	0.11	27.73	0.02	0.02
Limestone3	1.15	0.18	0.13	0.08	20.47	0.03	0.05	30.49	0.01	0.02
Sandstone1	80.82	5.82	3.94	0.37	1.21	0.16	0.85	1.70	1.20	0.08
Sandstone2	75.03	10.18	3.90	0.63	1.43	0.15	1.89	1.33	0.71	0.07
Sandstone3	83.46	6.55	3.79	0.50	0.76	0.13	1.00	0.42	0.35	0.07

부록 13. XRF를 이용한 암석 주요 구성성분 분석 결과

부록 14. ICP-MS를 이용한 암석 미량원소 분석 결과

	V	Cr	Со	Ni	Cu	Zn	Rb	Sr	Мо	Cd	Cs	Ba
sandstone1	75.5	65.7	8.5	20.8	12.7		28.1	44.3	0.2		0.6	193.0
sandstone2	49.9	55.7	9.0	23.1	11.6		55.4	50.6	0.3	_	1.2	315.9
sandstone3	45.8	34.2	6.4	16.9	8.6		33.4	39.2	0.2	_	0.7	193.4
limestone1		2.3		_	1.5	9.3	0.6	48.2	0.4	0.2	< 0.1	2.6
limestone2		7.6		_	1.8	12.1	3.1	53.5	0.3	0.2	0.2	14.5
limestone3	-	3.3	_	-	1.4	10.4	1.4	47.4	0.3	0.2	0.1	4.4

			Ar	chaea			
Sample	Reads	Nseqs	Coverage	Shannon	Invsimpson	Chao	Ace
Lime1	2770	522	0.649	4.08	14.57	2065.3	3111.3
Lime2	5790	522	0.770	3.42	11.30	510.0	524.2
Lime3	1583	522	0.745	3.85	11.83	535.1	490.8
Sand1	8988	522	0.707	3.84	10.27	664.1	1175.1
Sand2	519	522	0.805	3.30	5.52	355.0	689.3
Sand3	13899	522	0.716	3.51	6.82	1084.5	2819.7
			Ba	cteria			
Sample	Reads	Nseqs	Coverage	Shannon	Invsimpson	Chao	Ace
Lime1	8309	8300	0.948	5.27	61.97	1396.6	1585.8
Lime2	9117	8300	0.942	5.60	79.05	1555.9	1775.0
Lime3	20108	8300	0.926	5.80	129.89	2109.5	3114.3
Sand1	49011	8300	0.918	5.71	97.33	2455.1	3757.2
Sand2	46996	8300	0.940	5.20	53.61	1846.7	2681.4
Sand3	31957	8300	0.918	5.97	137.18	2380.6	3343.8
			Eukaryote	es (Protists)			
Sample	Reads	Nseqs	Coverage	Shannon	Invsimpson	Chao	Ace
Lime1	57102	15000	0.974	3.42	10.62	1333.9	2030.5
Lime2	46339	15000	0.968	3.91	17.47	1625.0	2147.3
Lime3	15156	15000	0.982	3.10	10.39	844.4	1361.0
Sand1	23867	15000	0.983	3.29	9.84	969.2	1356.7
Sand2	37505	15000	0.982	2.88	5.73	916.6	1299.6
Sand3	31865	15000	0.983	3.24	11.44	870.4	1154.9
			F	ungi			
Sample	Reads	Nseqs	Coverage	Shannon	Invsimpson	Chao	Ace
Lime1	79967	50000	0.994	3.65	15.99	1040.1	1142.9
Lime2	90607	50000	0.995	3.36	9.82	868.1	1108.9
Lime3	51129	50000	0.997	3.47	12.05	758.5	818.4
Sand1	82172	50000	0.997	3.20	8.35	656.8	734.1
Sand2	75453	50000	0.996	3.72	20.83	799.1	899.1
Sand3	93745	50000	0.995	3.59	18.21	967.8	1078.8

석회	암 및 사암	공통 OTUs	소	회암 특이적	OTUs	,	사암 특이적	OTUs
Domain	OTUs	Sequences per all samples (%)	Domain	OTUs	Sequences per limestone (%)	Domain	OTUs	Sequences per sandstone (%)
Archaea	Otu00001	22.93695464	Archaea	OTU00112	0.236639716	Archaea	OTU0015	0.623026372
	Otu00002	14.65201465		OTU00141	0.187339775		OTU0165	0.064009559
	Otu00008	1.054230323		OTU00162	0.157759811		OTU0215	0.051207647
	Otu00009	0.619434766		OTU00243	0.098599882		OTU0295	0.038405735
	Otu00011	0.503290747		OTU00298	0.088739894		OTU0328	0.034138431
	Otu00017	0.366300366		OTU00299	0.078879905		OTU0411	0.025603824
	Otu00018	0.363322315		OTU00379	0.069019917		OTU0416	0.025603824
	Otu00021	0.324607642		OTU00397	0.059159929		OTU0479	0.02133652
	Otu00023	0.318651538		OTU00464	0.059159929		OTU0504	0.02133652
	Otu00025	0.309717383		OTU00527	0.049299941		OTU0608	0.02133652
Bacteria	Otu00001	4.864149666	Bacteria	OTU00366	0.152339499	Bacteria	OTU00033	0.752376029
	Otu00002	3.414874304		OTU00519	0.087051143		OTU00063	0.365053486
	Otu00003	2.151450814		OTU00525	0.084330794		OTU00068	0.345965722
	Otu00004	1.95144466		OTU00570	0.073449402		OTU00072	0.327673281
	Otu00005	1.929905536		OTU00611	0.065288357		OTU00079	0.295860341
	Otu00006	1.683128712		OTU00698	0.051686616		OTU00110	0.233029785
	Otu00007	1.540970491		OTU01016	0.027203482		OTU00121	0.205988786
	Otu00008	1.313886581		OTU01021	0.027203482		OTU00127	0.197240227
	Otu00010	1.179728607		OTU01358	0.016322089		OTU00138	0.173380523
	Otu00011	1.092956706		OTU01683	0.013601741		OTU00141	0.170199229

부록 16. 석회암 및 사암에서 특이적으로 발견되는 OTUs 목록

석회	암 및 사암	· 공통 OTUs	석	회암 특이적	OTUs	,	사암 특이적	OTUs
Domain	OTUs	Sequences per all samples (%)	Domain	OTUs	Sequences per limestone (%)	Domain	OTUs	Sequences per sandstone (%)
Eukaryote	Otu00001	17.23613773	Eukaryote	OTU00058	0.198993229	Eukaryote	OTU00011	6.317234574
	Otu00002	10.95008356		OTU00075	0.121419597		OTU00017	4.078852816
	Otu00003	5.093611035		OTU00123	0.06155299		OTU00059	0.248828255
	Otu00004	4.640425994		OTU00124	0.06155299		OTU00061	0.215579652
	Otu00005	3.654276462		OTU00134	0.055650649		OTU00070	0.166243015
	Otu00006	3.52445783		OTU00151	0.047218732		OTU00078	0.142647232
	Otu00008	3.157661188		OTU00157	0.045532349		OTU00083	0.12870427
	Otu00010	2.785199732		OTU00161	0.044689157		OTU00085	0.123341592
	Otu00012	2.742713634		OTU00186	0.035414049		OTU00119	0.080440169
	Otu00013	2.669543133		OTU00193	0.034570858		OTU00121	0.079367633
Fungi	Otu00013	1.563395079	Fungi	OTU00008	4.216000686	Fungi	OTU00012	3.43278832
	Otu00016	1.371881295		OTU00034	1.577335444		OTU00043	1.095198313
	Otu00018	1.249912804		OTU00037	1.409543398		OTU00051	0.879182082
	Otu00027	0.908950627		OTU00039	1.354965878		OTU00059	0.726419223
	Otu00036	0.693127699		OTU00078	0.497963492		OTU00069	0.556550105
	Otu00038	0.659094897		OTU00103	0.341898847		OTU00070	0.541432947
	Otu00047	0.508166816		OTU00116	0.234548021		OTU00097	0.340931694
	Otu00062	0.343076016		OTU00131	0.165085723		OTU00105	0.270915384
	Otu00077	0.233367789		OTU00134	0.155162537		OTU00130	0.15117158
	Otu00096	0.184538116		OTU00163	0.10554661		OTU00133	0.137645702

부록 17. 석회암과 사암에서 추정된 미생물의 기능 유전자 목록과 암석시료별 풍부도

Function	lime1	lime2	lime3	sand1	sand2	sand3
1,1,1-Trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) degradation	553	637	768	2701	3743	2855
ABC transporters	407518	391412	1140507	2878342	2501688	1715418
Adherens junction	1	1	1	2	2	4
Adipocytokine signaling pathway	11437	11172	34298	98018	74071	50969
African trypanosomiasis	1305	1906	4600	10724	10056	6636
Alanine, aspartate and glutamate metabolism	108210	110263	291370	735587	644345	436077
Aldosterone-regulated sodium reabsorption	0	1	7	17	1	22
Alzheimer's disease	7211	8359	22085	49303	53459	33802
Amino acid metabolism	28710	31302	79612	196870	180115	120033
Amino acid related enzymes	136727	139930	367729	915332	818896	561873
Amino sugar and nucleotide sugar metabolism	134737	139692	341560	882758	767321	525559
Aminoacyl-tRNA biosynthesis	116228	115345	306457	767318	669245	465537
Aminobenzoate degradation	52567	54001	161726	431062	351510	241336
Amoebiasis	2780	2741	7034	21314	17282	11762
Amyotrophic lateral sclerosis (ALS)	2763	3568	9595	19825	21821	14774
Antigen processing and presentation	2052	2275	4855	9779	11843	8558
Apoptosis	1060	1468	4237	7185	12118	5601
Arachidonic acid metabolism	9591	10191	27137	67831	61716	42705
Arginine and proline metabolism	154006	155294	419395	1050166	918663	620878
Arrhythmogenic right ventricular cardiomyopathy (ARVC)	1	1	1	2	2	4
Ascorbate and aldarate metabolism	18542	21144	54034	137966	128263	87871
Atrazine degradation	5857	6682	16650	33605	38684	27100

Function	lime1	lime2	lime3	sand1	sand2	sand3
Bacterial chemotaxis	50473	51985	147707	382579	331560	212065
Bacterial invasion of epithelial cells	1165	956	1140	1913	2754	1970
Bacterial motility proteins	156236	155498	435179	1080074	952285	584156
Bacterial secretion system	63772	67933	180566	438746	405513	272872
Bacterial toxins	10014	10527	26474	66152	60771	44002
Basal transcription factors	186	395	1457	3256	2155	3251
Base excision repair	55462	55184	154922	411469	329900	232017
Benzoate degradation	55841	59223	183326	498468	422286	287953
Betalain biosynthesis	352	552	949	1720	1837	1240
Bile secretion	160	343	978	3952	2357	1835
Biosynthesis and biodegradation of secondary metabolites	6995	8199	18948	41514	42866	30217
Biosynthesis of 12-, 14- and 16-membered macrolides	663	1463	784	607	1196	940
Biosynthesis of ansamycins	6477	7541	18463	46058	42604	29526
Biosynthesis of siderophore group nonribosomal peptides	6487	6221	18265	47673	36236	26057
Biosynthesis of type II polyketide backbone	3	6	11	3	9	38
Biosynthesis of type II polyketide products	65	90	180	144	135	250
Biosynthesis of unsaturated fatty acids	35867	37503	100645	269059	223871	147403
Biosynthesis of vancomycin group antibiotics	7833	8149	20780	54871	44470	30916
Biotin metabolism	16068	16444	42260	101458	90812	59552
Bisphenol degradation	13551	13845	40643	109711	89748	66167
Bladder cancer	300	423	1458	2651	3054	2091
Butanoate metabolism	116763	115327	353600	965071	787645	543393
Butirosin and neomycin biosynthesis	8867	8870	22850	59724	48364	33660
C5-Branched dibasic acid metabolism	38626	37573	104272	258723	221723	156599

Function	lime1	lime2	lime3	sand1	sand2	sand3
CAM ligands	0	0	0	0	0	0
Caffeine metabolism	234	312	1176	1424	1539	2041
Calcium signaling pathway	873	804	1234	1258	3094	1357
Caprolactam degradation	28741	29304	96169	269750	210364	144188
Carbohydrate digestion and absorption	674	571	799	1798	2276	2111
Carbohydrate metabolism	23065	22801	50564	116024	122302	82185
Carbon fixation in photosynthetic organisms	62700	64779	157699	375376	359194	242670
Carbon fixation pathways in prokaryotes	120345	119702	330635	872631	727418	496421
Cardiac muscle contraction	2214	2879	7344	15866	19321	12095
Carotenoid biosynthesis	12804	13808	28359	60326	66437	38932
Cell cycle	1	7	24	69	0	171
Cell cycle - Caulobacter	52936	53133	139992	336149	309856	199613
Cell cycle - yeast	0	0	0	0	0	0
Cell division	6473	6715	17729	40907	40445	26300
Cell motility and secretion	26192	28982	69192	168586	161982	98037
Cellular antigens	10043	10843	27207	65513	64492	43204
Chagas disease (American trypanosomiasis)	1249	1767	4271	9284	8388	5142
Chaperones and folding catalysts	103245	106196	260058	634290	601477	397320
Chloroalkane and chloroalkene degradation	35578	37667	95918	234284	213806	146905
Chlorocyclohexane and chlorobenzene degradation	15068	17145	40895	92726	86498	60602
Cholinergic synapse	0	0	0	0	0	0
Chromosome	139092	142591	338884	816919	804506	536750
Chronic myeloid leukemia	92	147	643	1489	775	601
Circadian rhythm - plant	1880	1944	5549	16662	11498	7955

Function	lime1	lime2	lime3	sand1	sand2	sand3
Citrate cycle (TCA cycle)	88814	88444	255746	682150	547540	381077
Clavulanic acid biosynthesis	14	6	86	151	338	246
Colorectal cancer	958	1272	4107	6899	9754	4949
Complement and coagulation cascades	0	0	0	0	0	0
Cyanoamino acid metabolism	32325	32026	86081	219408	191601	132471
Cysteine and methionine metabolism	93752	98016	240861	603656	548075	370257
Cytochrome P450	2	7	70	50	94	74
Cytokine receptors	0	0	0	0	0	0
Cytokine-cytokine receptor interaction	0	0	0	0	0	0
Cytoskeleton proteins	28290	28769	69525	158362	164784	106923
Cytosolic DNA-sensing pathway	0	0	0	0	0	0
D-Alanine metabolism	9477	9465	25629	66864	57173	39958
D-Arginine and D-ornithine metabolism	688	842	2071	4525	7171	4470
D-Glutamine and D-glutamate metabolism	15641	15320	39759	105287	87210	57786
DNA repair and recombination proteins	275395	276527	725002	1830562	1617830	1107947
DNA replication	55056	55625	141280	353270	319148	221215
DNA replication proteins	94295	96353	234705	577795	537566	370464
Dilated cardiomyopathy (DCM)	1	1	1	2	2	4
Dioxin degradation	5905	6159	17956	44030	43573	26364
Drug metabolism - cytochrome P450	22299	23888	61149	140798	145108	89027
Drug metabolism - other enzymes	26763	26902	71128	186477	155315	108928
ECM-receptor interaction	0	0	0	0	0	0
Electron transfer carriers	2845	3201	7751	18555	19836	13750
Endocrine and other factor-regulated calcium reabsorption	0	0	0	0	0	1

Function	lime1	lime2	lime3	sand1	sand2	sand3
Endocytosis	1	6	19	11	45	7
Energy metabolism	83692	88769	235954	596492	540902	370712
Epithelial cell signaling in Helicobacter pylori infection	2508	2784	6248	14711	16073	10475
ErbB signaling pathway	0	0	0	0	0	0
Ether lipid metabolism	2825	3222	7536	24721	20000	14534
Ethylbenzene degradation	8383	9091	26568	66588	57844	40732
Fat digestion and absorption	0	0	0	0	0	0
Fatty acid biosynthesis	66946	67422	183840	456474	395950	269083
Fatty acid elongation in mitochondria	2	3	5	9	5	6
Fatty acid metabolism	84575	85221	264316	718023	578934	386702
Fc epsilon RI signaling pathway	0	0	0	0	0	0
Fc gamma R-mediated phagocytosis	1	6	19	11	45	7
Flagellar assembly	55852	56299	179907	471731	369302	237803
Flavone and flavonol biosynthesis	1775	1559	3811	14579	10000	6410
Flavonoid biosynthesis	6178	6308	15042	37574	32725	21443
Fluorobenzoate degradation	8966	10472	25960	58500	54339	38901
Focal adhesion	1	1	1	2	2	4
Folate biosynthesis	53105	53460	138450	338155	299554	203417
Fructose and mannose metabolism	74356	74369	186168	461048	424778	294792
Function unknown	170634	179056	449632	1117522	1032453	693302
G protein-coupled receptors	231	249	580	253	1316	141
GTP-binding proteins	0	0	0	0	0	0
Galactose metabolism	54538	54877	138943	378494	311333	223914
Gastric acid secretion	0	0	0	0	0	1

Function	lime1	lime2	lime3	sand1	sand2	sand3
General function prediction only	441445	446623	1145525	2898576	2548557	1726137
Geraniol degradation	41884	40487	135600	386896	298639	202606
Germination	12	12	254	1	0	329
Glioma	0	0	0	0	0	0
Glutamatergic synapse	11541	11349	32900	81609	66964	43023
Glutathione metabolism	45418	48934	122408	274548	288564	186180
Glycan bindng proteins	0	0	0	0	0	1
Glycan biosynthesis and metabolism	4818	5730	11505	26565	32255	19323
Glycerolipid metabolism	45199	43999	113719	287766	250470	172475
Glycerophospholipid metabolism	54944	56291	148205	390372	339813	230331
Glycine, serine and threonine metabolism	105890	110948	297719	754762	658297	450416
Glycolysis / Gluconeogenesis	133101	131283	356450	904008	771134	532551
Glycosaminoglycan biosynthesis - chondroitin sulfate	0	0	0	0	0	0
Glycosaminoglycan degradation	5451	5717	12603	41434	31657	22552
Glycosphingolipid biosynthesis - ganglio series	3001	3294	5678	18087	17302	12628
Glycosphingolipid biosynthesis - globo series	8146	7477	16539	53351	42760	32560
Glycosphingolipid biosynthesis - lacto and neolacto series	0	0	0	2	7	8
Glycosylphosphatidylinositol(GPI)-anchor biosynthesis	0	0	0	10	0	3
Glycosyltransferases	47616	50537	123247	309406	282654	183437
Glyoxylate and dicarboxylate metabolism	81074	85555	240140	608935	537871	364508
GnRH signaling pathway	1	6	19	11	45	7
Hedgehog signaling pathway	0	0	0	0	0	0
Hematopoietic cell lineage	0	0	1	0	0	11
Hepatitis C	1	7	24	69	0	171

Function	lime1	lime2	lime3	sand1	sand2	sand3
Histidine metabolism	68508	71109	183512	471017	414619	284828
Homologous recombination	78964	77346	198452	492074	446142	304603
Huntington's disease	8134	9428	24288	53031	57053	35871
Hypertrophic cardiomyopathy (HCM)	376	397	802	1337	1589	883
Indole alkaloid biosynthesis	336	444	912	1629	1757	1005
Influenza A	960	1280	4133	6970	9756	5125
Inorganic ion transport and metabolism	34925	39053	103318	255316	226675	150867
Inositol phosphate metabolism	25077	25735	71374	188882	149539	106725
Insulin signaling pathway	9579	9830	22311	48004	53191	33958
Ion channels	3639	3642	10166	25584	20296	14868
Isoflavonoid biosynthesis	24	38	149	508	402	338
Isoquinoline alkaloid biosynthesis	7685	8890	20668	54978	48500	34533
Leishmaniasis	0	2	4	2	15	14
Leukocyte transendothelial migration	1	1	1	2	2	4
Limonene and pinene degradation	44213	44082	141324	383036	299756	204871
Linoleic acid metabolism	6593	6823	18621	52731	46482	34553
Lipid biosynthesis proteins	100729	102106	280864	727520	607701	407546
Lipid metabolism	13810	13542	34759	89532	86623	54867
Lipoic acid metabolism	10339	10109	25684	59920	54316	35630
Lipopolysaccharide biosynthesis	35001	40385	93303	247878	230606	148803
Lipopolysaccharide biosynthesis proteins	42304	48639	111197	294705	276771	179915
Long-term depression	0	0	0	0	0	0
Long-term potentiation	0	0	0	0	0	0
Lysine biosynthesis	70923	70860	188540	478658	416220	287779

Function	lime1	lime2	lime3	sand1	sand2	sand3
Lysine degradation	52838	54471	167793	458507	374257	248512
Lysosome	9157	10186	21527	68071	55051	39200
MAPK signaling pathway	0	0	0	0	0	0
MAPK signaling pathway - yeast	3599	4096	9675	25573	25729	15694
Measles	1	7	24	69	0	171
Meiosis - yeast	8660	7805	18310	43921	37271	21594
Melanogenesis	16	108	36	91	80	240
Membrane and intracellular structural molecules	61278	70126	152182	380494	393803	253015
Metabolism of cofactors and vitamins	19590	21107	57109	139531	126794	87829
Metabolism of xenobiotics by cytochrome P450	19514	20859	54648	118838	127761	77893
Methane metabolism	125537	124259	343066	839572	735622	522889
Mineral absorption	3999	4203	6928	10257	18731	10696
Mismatch repair	71401	72265	182700	446877	410387	277600
N-Glycan biosynthesis	7362	8096	19361	45108	40236	26580
NOD-like receptor signaling pathway	2052	2275	4855	9779	11843	8558
Naphthalene degradation	28197	27871	83214	219282	182934	126057
Neuroactive ligand-receptor interaction	0	0	1	0	0	1
Neurotrophin signaling pathway	0	0	0	0	0	0
Nicotinate and nicotinamide metabolism	49149	49411	129363	316121	277790	192692
Nitrogen metabolism	79917	84060	209246	517578	466893	308829
Nitrotoluene degradation	14511	12728	45067	110145	88210	64889
Non-homologous end-joining	8018	8403	26195	72889	51835	37201
Notch signaling pathway	92	147	643	1489	775	601
Novobiocin biosynthesis	14423	15670	39369	97507	89297	61374

Function	lime1	lime2	lime3	sand1	sand2	sand3
Nucleotide excision repair	38511	38817	105511	271211	227461	158547
Nucleotide metabolism	2291	2448	6392	21338	17012	12682
Olfactory transduction	0	0	0	0	0	0
One carbon pool by folate	52090	52994	136275	340370	303011	210560
Oocyte meiosis	0	0	0	0	0	0
Other glycan degradation	15128	16544	32263	99786	89981	66576
Other ion-coupled transporters	98176	104448	264025	658397	587553	407657
Other transporters	24858	25849	63049	154935	148982	98106
Other types of O-glycan biosynthesis	0	0	0	0	0	0
Others	130622	147828	327946	791516	751747	517178
Oxidative phosphorylation	179885	185112	466239	1148408	1035697	690722
PPAR signaling pathway	25873	25080	75768	210087	165125	111487
Pancreatic cancer	0	0	0	0	0	0
Pancreatic secretion	0	0	1	0	0	2
Pantothenate and CoA biosynthesis	69439	69402	187942	468948	406641	278752
Parkinson's disease	3173	4152	11453	22767	29077	17047
Pathogenic Escherichia coli infection	1	1	1	2	2	4
Pathways in cancer	5412	6360	16822	37747	39561	25742
Penicillin and cephalosporin biosynthesis	10755	12181	27597	71963	67265	42949
Pentose and glucuronate interconversions	54689	57374	143214	387949	337721	237519
Pentose phosphate pathway	92767	96766	240627	614221	550645	376900
Peptidases	198459	206427	510371	1260947	1167280	777063
Peptidoglycan biosynthesis	75135	73298	188883	495802	427765	286073
Peroxisome	30972	31954	89717	238307	198559	137140

Function	lime1	lime2	lime3	sand1	sand2	sand3
Pertussis	2734	2859	6134	17612	18764	12624
Phagosome	1	1	1	2	2	5
Phenylalanine metabolism	45483	48697	138382	356012	302596	209834
Phenylalanine, tyrosine and tryptophan biosynthesis	84063	86284	217998	544041	487797	332939
Phenylpropanoid biosynthesis	15661	15110	39485	103481	89620	63084
Phosphatidylinositol signaling system	12453	12312	31356	76043	68311	46544
Phosphonate and phosphinate metabolism	4103	4786	12208	29445	29528	20115
Phosphotransferase system (PTS)	3617	5155	16343	37601	32784	33477
Photosynthesis	83138	81774	161433	299579	381033	217984
Photosynthesis - antenna proteins	14645	14315	21962	22130	54532	25430
Photosynthesis proteins	99621	97825	187537	329287	446812	250151
Phototransduction	0	0	0	0	0	0
Phototransduction - fly	1	1	1	2	2	4
Plant-pathogen interaction	13737	13383	36788	93855	78026	53483
Polycyclic aromatic hydrocarbon degradation	17743	19314	53608	135580	114544	83955
Polyketide sugar unit biosynthesis	21363	21780	55780	141115	122494	83971
Pores ion channels	45506	53108	112603	268912	298530	192099
Porphyrin and chlorophyll metabolism	129814	130594	326680	725667	710421	463852
Prenyltransferases	43744	44759	111585	271733	242517	162767
Primary bile acid biosynthesis	1731	1533	5829	16886	10470	8363
Primary immunodeficiency	5275	5145	14558	37954	30395	22088
Prion diseases	561	620	1452	2153	2554	2147
Progesterone-mediated oocyte maturation	2052	2275	4855	9779	11843	8558
Propanoate metabolism	104492	105148	313941	845747	699257	472019

Function	lime1	lime2	lime3	sand1	sand2	sand3
Prostate cancer	2052	2275	4855	9779	11843	8564
Proteasome	5227	4667	15436	38639	26430	22358
Protein digestion and absorption	1335	1957	4029	9653	9493	5973
Protein export	59139	59300	155748	387460	338757	234692
Protein folding and associated processing	94532	95590	236634	566774	534986	348300
Protein kinases	57439	60876	137215	319153	306483	190585
Protein processing in endoplasmic reticulum	10009	10123	26835	65395	57659	39111
Proximal tubule bicarbonate reclamation	5758	5741	16305	45720	32463	21918
Purine metabolism	223377	226201	581371	1431407	1291880	881659
Pyrimidine metabolism	155584	154943	398816	1004565	892245	613876
Pyruvate metabolism	129266	128153	353610	892837	779010	528904
RIG-I-like receptor signaling pathway	246	439	1122	2231	2787	2582
RNA degradation	51801	53439	131738	322264	295703	194922
RNA polymerase	15772	15494	40008	98475	86719	60546
RNA transport	8154	8174	18153	49503	47247	33043
Regulation of actin cytoskeleton	1	1	1	2	2	4
Renal cell carcinoma	2310	2664	7213	19578	17174	11620
Renin-angiotensin system	792	922	1890	3892	4647	3210
Replication, recombination and repair proteins	101990	109376	247685	564064	524610	345126
Restriction enzyme	11568	12488	24390	57636	63070	36676
Retinol metabolism	11991	11876	32683	81264	71213	48890
Rheumatoid arthritis	0	0	0	0	0	0
Riboflavin metabolism	30042	31996	81457	199891	180605	122052
Ribosome	207065	203544	533470	1331397	1167427	811615

Function	lime1	lime2	lime3	sand1	sand2	sand3
Ribosome Biogenesis	111748	112662	283733	698477	645447	437558
Ribosome biogenesis in eukaryotes	4731	4875	11904	27904	27232	19303
Salivary secretion	0	0	0	0	0	1
Secondary bile acid biosynthesis	86	157	499	609	404	648
Secretion system	155707	158305	430152	1029350	958395	609626
Selenocompound metabolism	41223	43220	114191	293362	254571	170999
Sesquiterpenoid biosynthesis	0	0	5	0	0	5
Shigellosis	1	1	1	2	2	20
Signal transduction mechanisms	50473	53999	129753	314505	289092	187982
Small cell lung cancer	958	1274	4111	6901	9769	4963
Sphingolipid metabolism	14567	15046	37408	118555	86535	62802
Spliceosome	0	0	1	0	0	1
Sporulation	6185	5614	16383	35370	31550	26338
Staphylococcus aureus infection	902	774	1866	4466	3361	2519
Starch and sucrose metabolism	89993	89329	214766	546528	495373	345256
Steroid biosynthesis	3461	4261	11142	27477	22808	14539
Steroid hormone biosynthesis	4549	4720	14124	40863	25647	18120
Stilbenoid, diarylheptanoid and gingerol biosynthesis	7569	6935	20353	53031	37373	27187
Streptomycin biosynthesis	41192	42107	110942	283290	237250	164217
Styrene degradation	13942	14535	44527	117519	92524	63159
Sulfur metabolism	36648	37842	95918	238275	214530	140181
Sulfur relay system	44109	44273	116737	279756	247875	168711
Synthesis and degradation of ketone bodies	16240	15840	49316	140042	112583	78289
Systemic lupus erythematosus	76	124	359	1178	380	333

Function	lime1	lime2	lime3	sand1	sand2	sand3
TGF-beta signaling pathway	0	0	0	0	0	0
Taurine and hypotaurine metabolism	14460	15321	40106	104385	92553	63629
Terpenoid backbone biosynthesis	60798	59819	160105	407157	346423	240422
Tetracycline biosynthesis	16855	16600	41555	94841	94658	62501
Thiamine metabolism	46147	45334	119452	294027	259969	181894
Tight junction	1	1	1	2	2	4
Toluene degradation	22407	23446	65210	161345	137044	96727
Toxoplasmosis	958	1272	4107	6899	9755	4949
Transcription factors	141741	145766	405745	1032412	888190	618947
Transcription machinery	108584	110868	305377	829254	645920	444256
Transcription related proteins	285	524	1550	3207	1310	2520
Translation factors	49445	48486	125623	317697	275233	189786
Translation proteins	89055	86742	216534	542656	495547	327196
Transporters	642237	634562	1809607	4541350	3949729	2720830
Tropane, piperidine and pyridine alkaloid biosynthesis	13927	15445	38445	97131	89466	61787
Tryptophan metabolism	70267	73635	219264	595936	480852	326036
Tuberculosis	23491	24381	56339	130552	126048	82529
Two-component system	221972	231398	592354	1465338	1354250	867924
Type I diabetes mellitus	6575	6612	18051	43138	37052	26011
Type II diabetes mellitus	5668	5299	12751	28607	28111	18361
Tyrosine metabolism	52138	56649	146305	364045	335004	230416
Ubiquinone and other terpenoid-quinone biosynthesis	46152	47650	115169	261244	254977	161117
Ubiquitin system	4459	4400	12156	31584	23234	16806
VEGF signaling pathway	0	2	4	2	15	14

Function	lime1	lime2	lime3	sand1	sand2	sand3
Valine, leucine and isoleucine biosynthesis	92330	90816	251218	640886	542805	375922
Valine, leucine and isoleucine degradation	97520	97897	302484	825491	677069	452330
Various types of N-glycan biosynthesis	4	8	41	446	20	182
Vascular smooth muscle contraction		0	0	0	0	0
Vasopressin-regulated water reabsorption	25	31	136	156	126	378
Vibrio cholerae infection		40	43	82	92	87
Vibrio cholerae pathogenic cycle		9361	21094	48854	51595	31130
Viral myocarditis	959	1273	4108	6901	9756	4953
Vitamin B6 metabolism	20728	20923	55675	134389	121692	86182
Wnt signaling pathway	92	147	643	1489	775	601
Xylene degradation	6161	5709	18667	50677	43232	28167
Zeatin biosynthesis		3758	9796	24703	21064	13933
alpha-Linolenic acid metabolism		4076	12368	33725	27924	19516
beta-Alanine metabolism	53485	53778	166164	445052	365632	244338
beta-Lactam resistance	6641	7757	16677	40803	40289	25179
mRNA surveillance pathway	529	213	1140	3293	2348	2047
mTOR signaling pathway	1	7	24	69	0	171
p53 signaling pathway	1090	1500	4315	7407	11007	5630

위치	기능 유전자	풍부도
Chasmo	Amino Acids and Derivatives	1524846
Chasmo	Carbohydrates	1917760
Chasmo	Cell Division and Cell Cycle	149149
Chasmo	Cell Wall and Capsule	506395
Chasmo	Clustering-based subsystems	1943768
Chasmo	Cofactors, Vitamins, Prosthetic Groups, Pigments	904508
Chasmo	DNA Metabolism	741645
Chasmo	Dormancy and Sporulation	26668
Chasmo	Fatty Acids, Lipids, and Isoprenoids	376459
Chasmo	Iron acquisition and metabolism	80938
Chasmo	Membrane Transport	496762
Chasmo	Metabolism of Aromatic Compounds	188968
Chasmo	Miscellaneous	927618
Chasmo	Motility and Chemotaxis	70530
Chasmo	Nitrogen Metabolism	173141
Chasmo	Nucleosides and Nucleotides	524836
Chasmo	Phages, Prophages, Transposable elements, Plasmids	150144
Chasmo	Phosphorus Metabolism	207852
Chasmo	Photosynthesis	26418
Chasmo	Potassium metabolism	93593
Chasmo	Protein Metabolism	1345547
Chasmo	RNA Metabolism	520870
Chasmo	Regulation and Cell signaling	133455
Chasmo	Respiration	619324
Chasmo	Secondary Metabolism	38406
Chasmo	Stress Response	374760
Chasmo	Sulfur Metabolism	106631
Chasmo	Virulence, Disease and Defense	352997
Epilith	Amino Acids and Derivatives	1459822
Epilith	Carbohydrates	1942259
Epilith	Cell Division and Cell Cycle	150695
Epilith	Cell Wall and Capsule	524754
Epilith	Clustering-based subsystems	1897725
Epilith	Cofactors, Vitamins, Prosthetic Groups, Pigments	968903
Epilith	DNA Metabolism	729785
Epilith	Dormancy and Sporulation	26189
Epilith	Fatty Acids, Lipids, and Isoprenoids	381970
Epilith	Iron acquisition and metabolism	79463
Epilith	Membrane Transport	493610
Epilith	Metabolism of Aromatic Compounds	178796
Epilith	Miscellaneous	949823

부록 18. 암석 위치별(chasmolith, epilith, hypolith) 기능 유전자 목록과 풍부도 (metagenome 분석 결과)

위치	기능 유전자	풍부도
Epilith	Motility and Chemotaxis	78847
Epilith	Nitrogen Metabolism	155309
Epilith	Nucleosides and Nucleotides	505393
Epilith	Phages, Prophages, Transposable elements, Plasmids	155775
Epilith	Phosphorus Metabolism	200286
Epilith	Photosynthesis	52896
Epilith	Potassium metabolism	119675
Epilith	Protein Metabolism	1314492
Epilith	RNA Metabolism	516934
Epilith	Regulation and Cell signaling	140546
Epilith	Respiration	615936
Epilith	Secondary Metabolism	39805
Epilith	Stress Response	374663
Epilith	Sulfur Metabolism	103298
Epilith	Virulence, Disease and Defense	365552
Hypolith	Amino Acids and Derivatives	2026834
Hypolith	Carbohydrates	2475311
Hypolith	Cell Division and Cell Cycle	205970
Hypolith	Cell Wall and Capsule	682146
Hypolith	Clustering-based subsystems	2593343
Hypolith	Cofactors, Vitamins, Prosthetic Groups, Pigments	1213510
Hypolith	DNA Metabolism	1009513
Hypolith	Dormancy and Sporulation	38826
Hypolith	Fatty Acids, Lipids, and Isoprenoids	491158
Hypolith	Iron acquisition and metabolism	100047
Hypolith	Membrane Transport	618784
Hypolith	Metabolism of Aromatic Compounds	231094
Hypolith	Miscellaneous	1217214
Hypolith	Motility and Chemotaxis	84158
Hypolith	Nitrogen Metabolism	244739
Hypolith	Nucleosides and Nucleotides	697288
Hypolith	Phages, Prophages, Transposable elements, Plasmids	202183
Hypolith	Phosphorus Metabolism	279801
Hypolith	Photosynthesis	24999
Hypolith	Potassium metabolism	107232
Hypolith	Protein Metabolism	1817878
Hypolith	RNA Metabolism	707715
Hypolith	Regulation and Cell signaling	175225
Hypolith	Respiration	822503
Hypolith	Secondary Metabolism	49422
Hypolith	Stress Response	489454
Hypolith	Sulfur Metabolism	127936
Hypolith	Virulence, Disease and Defense	455097

위치	기능 유전자	풍부도
Chasmo	Amino Acids and Derivatives	7123
Chasmo	Carbohydrates	14082
Chasmo	Cell Division and Cell Cycle	763
Chasmo	Cell Wall and Capsule	1672
Chasmo	Clustering-based subsystems	10211
Chasmo	Cofactors, Vitamins, Prosthetic Groups, Pigments	5039
Chasmo	DNA Metabolism	1471
Chasmo	Dormancy and Sporulation	69
Chasmo	Fatty Acids, Lipids, and Isoprenoids	3788
Chasmo	Iron acquisition and metabolism	1117
Chasmo	Membrane Transport	2956
Chasmo	Metabolism of Aromatic Compounds	555
Chasmo	Miscellaneous	4980
Chasmo	Motility and Chemotaxis	271
Chasmo	Nitrogen Metabolism	1052
Chasmo	Nucleosides and Nucleotides	2087
Chasmo	Phages, Prophages, Transposable elements, Plasmids	673
Chasmo	Phosphorus Metabolism	1213
Chasmo	Photosynthesis	9980
Chasmo	Potassium metabolism	258
Chasmo	Protein Metabolism	29501
Chasmo	RNA Metabolism	7944
Chasmo	Regulation and Cell signaling	795
Chasmo	Respiration	10822
Chasmo	Secondary Metabolism	176
Chasmo	Stress Response	2897
Chasmo	Sulfur Metabolism	461
Chasmo	Virulence, Disease and Defense	929
Epilith	Amino Acids and Derivatives	20671
Epilith	Carbohydrates	37623
Epilith	Cell Division and Cell Cycle	1488
Epilith	Cell Wall and Capsule	3980
Epilith	Clustering-based subsystems	24880
Epilith	Cofactors, Vitamins, Prosthetic Groups, Pigments	15392
Epilith	DNA Metabolism	3078
Epilith	Dormancy and Sporulation	154
Epilith	Fatty Acids, Lipids, and Isoprenoids	8939
Epilith	Iron acquisition and metabolism	518
Epilith	Membrane Transport	6261
Epilith	Metabolism of Aromatic Compounds	1817
Epilith	Miscellaneous	14037
Epilith	Motility and Chemotaxis	299

부록 19. 암석 위치별(chasmolith, epilith, hypolith) 기능 유전자 목록과 풍부도 (metatranscriptome 분석 결과)

위치	기능 유전자	풍부도
Epilith	Nitrogen Metabolism	4166
Epilith	Nucleosides and Nucleotides	5799
Epilith	Phages, Prophages, Transposable elements, Plasmids	1433
Epilith	Phosphorus Metabolism	3059
Epilith	Photosynthesis	26885
Epilith	Potassium metabolism	1028
Epilith	Protein Metabolism	76706
Epilith	RNA Metabolism	13243
Epilith	Regulation and Cell signaling	2411
Epilith	Respiration	24739
Epilith	Secondary Metabolism	755
Epilith	Stress Response	6843
Epilith	Sulfur Metabolism	1463
Epilith	Virulence, Disease and Defense	2528
Hypolith	Amino Acids and Derivatives	4060
Hypolith	Carbohydrates	14264
Hypolith	Cell Division and Cell Cycle	503
Hypolith	Cell Wall and Capsule	1202
Hypolith	Clustering-based subsystems	6301
Hypolith	Cofactors, Vitamins, Prosthetic Groups, Pigments	2810
Hypolith	DNA Metabolism	1548
Hypolith	Dormancy and Sporulation	104
Hypolith	Fatty Acids, Lipids, and Isoprenoids	935
Hypolith	Iron acquisition and metabolism	141
Hypolith	Membrane Transport	3161
Hypolith	Metabolism of Aromatic Compounds	1079
Hypolith	Miscellaneous	2842
Hypolith	Motility and Chemotaxis	174
Hypolith	Nitrogen Metabolism	641
Hypolith	Nucleosides and Nucleotides	1316
Hypolith	Phages, Prophages, Transposable elements, Plasmids	426
Hypolith	Phosphorus Metabolism	504
Hypolith	Photosynthesis	1805
Hypolith	Potassium metabolism	158
Hypolith	Protein Metabolism	8496
Hypolith	RNA Metabolism	6199
Hypolith	Regulation and Cell signaling	394
Hypolith	Respiration	3096
Hypolith	Secondary Metabolism	84
Hypolith	Stress Response	1563
Hypolith	Sulfur Metabolism	262
Hypolith	Virulence, Disease and Defense	573

