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A B S T R A C T   

Arctic sea ice is constantly moving and covered with low-textured surfaces, making it difficult to generate 
reliable digital surface models (DSMs) from drone images. The movement of sea ice makes georeferencing of 
DSMs difficult, and the low-textured surfaces of sea ice cause the uncertainty of image matching. This paper 
proposes a robust method to generate high-quality DSMs for drifting sea ice. To overcome the challenges, the 
proposed method introduces four improvements to the object-space-based image-matching pipeline: relative 
georeferencing to recover the horizontality and scale of sea-ice DSMs using a terrestrial light detection and 
ranging (LiDAR) dataset, match inspection to verify the matched points using several matching constraints, 
adaptive search-window adjustment to ensure distinct texture information through simple texture analysis, and 
robust vertical positioning to reduce the matching uncertainty via matching-indicator modeling. Performance 
evaluations were conducted with drone and LiDAR datasets obtained from a sea-ice campaign using the Korean 
Icebreaker Research Vessel (IBRV) Araon in the summer of 2017. The experimental results indicated that the 
proposed method can achieve significant quality enhancements compared with the existing matching method 
and that all the considerations contributed significantly to the enhancements.   

1. Introduction 

Arctic sea ice is an important factor affecting global climate change 
(Kim et al., 2019a; Nolin and Mar, 2019; Vihma, 2014). This is because 
the bright surfaces of sea ice reflect up to 80% of the incident sunlight 
back into space, whereas open water caused by ice melting absorbs up to 
90% of the sunlight (Eicken et al., 2004; Scharien and Yackel, 2005). 
Because of this positive ice-albedo feedback, a reduction in the amount 
of sea ice accelerates global warming (Vinnikov, 1999; Meier et al., 
2014; Pistone et al., 2014). Therefore, to evaluate the current status of 
global warming and predict its future impact, periodic monitoring of the 
Arctic sea-ice regime is essential. 

Sea ice can be characterized according to its concentration, extent, 
thickness, roughness, etc. (Vinnikov, 1999; Scharien and Yackel 2005; 
Lang et al., 2017). Although sea ice is widely distributed throughout the 
Arctic Ocean, these parameters can be derived and analyzed from 
various satellite data with wide coverage and repeatability (Karvonen 
et al., 2012). However, there are many difficulties in the development of 
satellite remote-sensing methods for this purpose. Arctic clouds and 
polar nights limit the use of satellite data. It is also difficult to distinguish 

between clouds, ice, and snow from satellite data. In particular, 
obtaining field data is the most significant challenge, owing to the 
limited accessibility to Arctic sea ice (Tschudi et al., 2008; Hong et al., 
2018). This makes it difficult to generate various sea-ice products. 

As a solution to this limitation, the utilization of manned and un-
manned aerial vehicles has recently emerged (Hagen et al., 2014; Divine 
et al., 2016). These observation platforms enable the acquisition of 
scientific data without unpredictable dangers on sea ice, such as the 
threat from wild animals and the collapse of ice. Although this approach 
may be inaccurate compared with manual field surveys, it can acquire 
denser and more extensive data, such as mosaic images and digital 
surface models (DSMs). DSMs are very useful in that they provide 
topographical information about sea ice. In a previous study, we found 
that sea-ice roughness estimation models based on synthetic aperture 
radar (SAR) satellites can be developed using sea-ice DSMs (Han et al., 
2020). In addition, Hendricks et al. (2010) reported the importance of 
sea-ice DSMs for verifying freeboard estimation models based on 
altimetry satellites. Yitayew et al. (2018) tried to verify the topo-
graphical information of sea ice derived from interferometric SAR data 
with height profiles obtained from helicopter-borne measurements. 
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These studies suggest that satellite remote-sensing methods for moni-
toring sea ice can be established and verified reliably using high- 
resolution sea-ice DSMs. 

However, despite the high utility of sea-ice DSMs, related studies are 
rare. The reason is associated with the inherent characteristics of sea ice. 
First, sea ice moves constantly, which makes georeferencing of DSMs 
difficult. In general, georeferencing can be divided into two methods: 
indirect and direct. The former method employs the absolute orientation 
from ground control points (GCPs) surveyed in the field (Toutin, 2004; 
Turner et al., 2012; Gonçalves and Henriques, 2015; Clapuyt et al., 
2016), and the latter is based on observations of a global navigation 
satellite system and inertial navigation system (GNSS/INS) sensor 
mounted on an aircraft (Chiang et al., 2012; Turner et al., 2014; Hel-
gesen et al., 2019). Recent advances in hardware and software tech-
nologies have significantly improved the performance of both 
georeferencing methods (Padró et al., 2019). However, the existing 
methods are limited in that the target objects or areas should not change 
during the image acquisition. 

Second, the surfaces of sea ice are covered with snow and ice. This 
indicates that sea ice has low-textured surfaces. This lack of texture in-
formation is likely to cause outliers in the resulting DSMs, because image 
matching requires distinct texture information to identify similarities 
between search windows on acquired images. In other words, low- 
textured surfaces of sea ice may cause ambiguity problems in 
comparing similarities between search windows (Veksler, 2003; Yang 
et al., 2009). The performance of image matching depends on the 
search-window sizes for collecting surface textures and the matching 
indicators for quantifying similarities using these textures (Veksler, 
2003; Hirschmuller and Scharstein, 2007). Therefore, to reliably 
generate sea-ice DSMs, the DSM generation should be preceded by the 
derivation of the optimized matching indicator and search-window size 
for low-textured surfaces of sea ice. Many studies have been performed 
on matching indicators. Among the matching indicators that have been 
developed, the sum of squared differences, normalized cross-correlation 
(NCC), zero-mean NCC (ZNCC), and mutual information are widely used 
in many applications (Elboher and Werman, 2013; Hirschmuller and 
Scharstein, 2009; Pluim et al., 2003). Additionally, performance com-
parisons between matching indicators have been well established (Banks 
and Corke, 2001; Hirschmuller and Scharstein, 2009). However, the 
performance for low-textured surfaces has not been comprehensively 
investigated. Search windows have also been studied steadily. Search- 
window methods can be classified into three: multiple-window 
methods, adaptive-weight methods, and adaptive-window methods. In 
the multiple-window methods, a matching indicator is evaluated using 
several predefined windows, and the window with the minimum (or 
maximum) cost is selected (Fusiello et al., 1997; Kang et al., 2001; 
Hirschmüller et al., 2002). In the adaptive-weight methods, a matching 
indicator is evaluated by assigning different weights to each pixel in a 
fixed-size window (Yoon and Kweon, 2006; Wu et al., 2019). These two 
types of methods have exhibited good performance—particularly for 
occlusion areas (i.e. elevation discontinuities)—but are not suitable for 
low-textured surfaces. On the other hand, the adaptive-window methods 
are designed for low-textured surfaces (Kanade and Okutomi, 1994; 
Veksler, 2003; Yang et al., 2009; Zhang et al., 2010; Shi et al., 2016). 
They segment an image into different areas according to color (or in-
tensity) similarity and allow pixels in the same area to have the same 
disparity. However, in practice, there can be surfaces with the same 
color and different elevations. Additionally, it is difficult to clearly 
determine the criteria for image segmentation. These are critical re-
strictions, particularly for application to sea-ice surfaces. 

For these reasons, this paper aims to solve the problems in geore-
ferencing and image matching, caused by the movement and low- 
textured surfaces of sea ice. If high-resolution sea-ice DSMs can be 
reliably constructed, it would be possible not only to develop new sea- 
ice products from satellite images but also to precisely analyze the 
topography of sea ice. To this end, in previous studies, we examined the 

feasibility of mismatch detection in sea-ice DSMs (Kim and Kim, 2018) 
and also investigated the matching costs optimized for sea-ice surfaces 
(Kim et al., 2019b). Based on these studies, this paper proposes a robust 
method to generate high-quality DSMs for drifting sea ice by using drone 
images. Owing to the low-textured surfaces of sea-ice, the proposed 
method introduces a coarse-to-fine matching strategy. The initial DSM is 
produced by image-space-based matching (ISBM), and then the result is 
improved by object-space-based matching (OSBM). In the OSBM pro-
cess, the search-window size is variably adjusted for each matching 
point through texture analysis, and its height is robustly estimated 
through matching-indicator modeling. The matched points are then 
verified according to several matching constraints. To consider the 
movement of sea ice, relative georeferencing is employed in the pro-
posed method. Here, the objective is to ensure the horizontality and 
scale of sea-ice DSMs on a real-world coordinate system rather than the 
geolocation accuracy. This is because the absolute orientation of ac-
quired images cannot be accurately achieved due to the constant 
movement of sea ice. Thus, the georeferencing is conducted by regis-
tering the drone DSM created on an arbitrary object-space coordinate 
system to a reference DSM with the horizontality and scale on a real- 
world coordinate system. As a reference DSM, we used a terrestrial 
light detection and ranging (LiDAR) dataset obtained for part of a target 
area. The performance of the proposed method was evaluated using real 
datasets collected during an Arctic sea-ice campaign in the summer of 
2017. We analyzed the quality of the sea-ice DSMs and the impacts of 
each of our considerations on the results. 

The remainder of this paper is organized as follows. In Section 2, we 
describe the proposed sea-ice DSM generation method. In Section 3, 
experimental datasets are presented, and the evaluation results are 
discussed. Finally, conclusions are drawn in Section 4. 

2. Methodology 

To resolve the problems caused by the constant movement and low- 
textured surfaces of sea ice, the proposed method includes four im-
provements: relative georeferencing, match inspection, adaptive search- 
window adjustment, and robust vertical positioning. The first 
improvement is introduced for georeferencing of sea-ice DSMs in 
response to the movement of sea ice, and the rest are adopted to mitigate 
the matching uncertainty due to the low-textured surfaces of sea ice. 
These are organically linked in three processing parts, as shown in Fig. 1. 
In the first part, matching constraints for match inspection are deter-
mined. This process involves relative georeferencing to obtain analysis 
points with true positions. In the second part, optimal search-window 
sizes are determined via texture analysis, and an initial DSM is 
enhanced via match inspection. In the third part, a sea-ice DSM is finally 
generated via robust vertical positioning. This process is conducted 
using the derived optimal search windows and the enhanced initial 
DSM. The match inspection also contributes to this process, by verifying 
matched points. The corrected sea-ice DSM is finally georeferenced to an 
absolute ground coordinate system. The initial DSM generation part 
corresponds to the existing ISBM method. In the following subsections, 
we first review the general principle of OSBM and then detail the pro-
posed method. 

2.1. Principle of OSBM 

ISBM methods extract tiepoints between adjacent images and then 
determine the three-dimensional (3D) positions of the object points 
corresponding to the tiepoints via space intersection. In contrast, OSBM 
methods first designate an object space plane (X-Y plane), which is 
partitioned into regular grids for a target area, and then determine the 
vertical positions of grids (Zhang et al., 2017; Zhang et al., 2018). 
Therefore, the key difference between the two types of methods lies in 
the matching primitive: image features for ISBM and ground features for 
OSBM. 
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As shown in Fig. 2, the vertical position (ZP) of a DSM grid (XP,YP) is 
determined by comparing matching-indicator values calculated for 
different heights (Zi = Zmin + i× ΔZ). Search windows in overlapping 
images are constructed around back-projected image points for a given 
height (Zi). Matching-indicator values are then calculated between a 
reference window and the remaining target windows, and the repre-
sentative value for the given height is set as the average of the matching- 
indicator values. Thus, if the vertical position of the DSM grid is 
correctly determined, the matching-indicator value at the determined 
height should be maximized (or minimized), and the back-projected 
image points for the height should be tiepoints to each other, as 

indicated by the two search windows for P in Fig. 2. Because of this 
principle, OSBM methods can avoid quality degradation due to inter-
polation in DSM generation (Zhang et al., 2018). Additionally, they can 
easily impose various matching constraints, because all the tiepoints can 
be handled simultaneously in the matching process. 

However, OSBM methods should predefine a height search range for 
vertical positioning. Therefore, these methods require an initial DSM to 
ensure high matching accuracy. Accordingly, the quality of the final 
results is inevitably dependent on the accuracy of the initial DSMs. For 
initial DSM generation, existing ISBM methods are effective. However, 
low-textured surfaces of sea-ice may cause ambiguity problems in image 

Fig. 1. Workflow of the proposed sea-ice DSM generation method.  

Fig. 2. Vertical positioning for each DSM grid in OSBM strategy.  
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matching, reducing the quality of DSMs. Therefore, to obtain improved 
results from incorrect initial DSMs, we derive a robust method for reli-
ably determining the 3D positions of object points based on the opti-
mized search-window sizes and matching constraints. 

2.2. Relative georeferencing using terrestrial LiDAR 

Georeferencing of sea-ice DSMs is difficult to achieve with structure- 
from-motion (SfM) photogrammetry methods, because sea ice is 
constantly drifting. To solve this problem, we use a terrestrial LiDAR 
dataset obtained for part of a target area. The sea-ice DSM derived from 
drone images is registered to the coordinate system of a LiDAR dataset. 
This approach focuses on recovering the horizontality and scale of the 
sea-ice DSM. Accordingly, we assume that the LiDAR datasets can 
contain the two properties. However, this requirement can be easily 
satisfied in practice, because terrestrial LiDAR systems can measure the 
distances to target objects while remaining level, and individual LiDAR 
datasets from different stations can be accurately merged using dedi-
cated targets. 

The proposed georeferencing method consists of approximation and 
optimization. In the first step, the transformation between the two 
datasets is approximately established from 3D tiepoints. Tiepoints are 
first extracted in 2D form from the drone mosaic and coloring point 
cloud, and then they are converted into 3D tiepoints using each DSM. 
The use of artificial targets such as checkerboards will make tiepoint 
extraction more reliable. In the second step, the approximated trans-
formation is optimized, because the tiepoints extracted may include 
positional errors. For the optimization, we use the iterative closest point 
(ICP) algorithm (Besl and McKay, 1992; Chen and Medioni, 1992). The 
two-step transformation modeling can be formulated as follows: 
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where (X,Y, Z) and (X’,Y’, Z’) represent object points in target system 
and reference system, respectively; ra and ro represent the elements of 
rotation matrices for approximation and optimization, respectively; ta 

and to represent the translation vectors for approximation and optimi-
zation, respectively; and λ represents the scale factor between the two 
coordinate systems. 

The ICP algorithm estimates a transformation by selecting the pairs 
of object points that are closest to each other from two point clouds. This 
procedure is repeated until the transformation error reaches an 
acceptable level. Thus, there are two prerequisites for the ICP algorithm 
to work properly. First, the misalignment between the two datasets 
should be small. Second, reliable object points should be paired for ac-
curate transformation estimation. The first requirement can be satisfied 
by the approximation step. However, the second one may not be satis-
fied, because initial DSMs created by the existing ISBM can contain 
considerable outliers. To dispel this concern, we use only reliable object 
points that are matched for three or more images in matching processes. 

2.3. Determination of matching constraints 

Match inspection aims to ensure the reliability of image matching on 
low-textured surfaces of sea ice by verifying matched points according to 
matching constraints. Match inspection regards as true matches only 
object points that satisfy all the constraints of matching indicators. Thus, 
to determine the matching constraints, measurements of matching in-
dicators for true object points are required. 

True object points are extracted from the LiDAR point cloud regis-
tered to the coordinate system of a drone dataset. After analysis-point 
extraction, matching indicators are measured with height errors using 

search windows of different sizes. The height error indicates the dif-
ference between the true height of an analysis point and the height 
estimated via vertical positioning. Measurements with large height er-
rors are assumed to be results with inappropriate search windows and 
are therefore excluded from the matching constraints determination. 
Finally, constraints for each matching indicator are calculated from the 
mean and standard deviation of the valid measurements. 

The location of a search window in each overlapping image is 
derived by a collinear equation. Among overlapping images, the image 
with the minimum relief displacement is defined as the reference image, 
to handle multiple drone images taken in unstable postures at low flight 
altitudes. The relief displacement is quantified as follows: 

d =

⃒
⃒
⃒PM̅→

⃒
⃒
⃒+

⃒
⃒
⃒PN̅→

⃒
⃒
⃒, (2)  

where P, M, and N represent the target object point, the ground principal 
point, and the ground nadir point, respectively, as shown in Fig. 3. 

The search window of a reference image is constructed with a larger 
area than the search windows of the remaining target images to measure 
the matching indicators. Accordingly, if the height of an object point is 
true, matches of target windows should be located at the center of a 
reference window. 

As matching indicators, the ZNCC, matching distance error (MDE), 
matching point distribution (MPD), and modeling error (ME) are 
introduced (Kim et al., 2019b). The ZNCC is a representative matching 
indicator used in many applications. It is robust to radiometric differ-
ences (i.e. gain and constant offset) and noise (Hirschmuller and 
Scharstein, 2009). A ZNCC value closer to 1 indicates a stronger 
correlation. 

The MDE and MPD are indicators of the accuracy and uncertainty, 
respectively, in image matching. Fig. 4 shows the concept of the two 
indicators. The MDE is defined as the mean of the error distances be-
tween matches of target windows (pi) and the center of a reference 
window (c), as indicated by Eq. (3). The MPD is defined as the mean of 
error distances between matches of target windows and their center (cp), 
as indicated by Eq. (4). Because the match of a target window is deter-
mined as the point with the maximum ZNCC value in a reference win-
dow, the MDE and MPD can be calculated in pixel units and should be 
zero for true object points. They can complement a limitation of the 
ZNCC: it is difficult to absolutely evaluate the validity of matches with 
the ZNCC. Thus, we use the MDE instead of the ZNCC as a key indicator 
for vertical positioning. 

MDE =

∑N
i=1| cpi

̅→|

N
, (3)  

MPD =

∑N
i=1

⃒
⃒cppi
̅̅→⃒

⃒

N
, (4) 

Fig. 3. Determination of a reference image to handle multiple drone images.  
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Here, N represents the number of target search windows. 
The ME is also introduced to evaluate the matching uncertainty. In 

contrast to the other indicators, the ME represents the overall uncer-
tainty in vertical positioning for a given object point. If the true height of 
an object point exists within a predefined height range, the matching- 
indicator values decrease as the height estimated via vertical posi-
tioning approaches the true height. However, the matching-indicator 
values fluctuate if the true height does not exist within the range, or if 
the matching uncertainty is large. Therefore, the ME is defined as the 
variation of the matching-indicator values, which is calculated using the 
differences between the measured and modeled matching-indicator 
values via Eq. (5). We use the MDE as a matching indicator for calcu-
lating the ME. 

ME =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑M

i=1
(vo

i − vm
i )

2

M
,

√
√
√
√
√

(5) 

Here, vo
i and vm

i represent the measured and modeled values of a 
matching indicator at the ith height step, respectively, and M represents 
the number of height steps between Zmin and Zmax. 

Matching-indicator values may be asymmetric with respect to a true 
height and may also include spikes depending on the surface texture 
conditions. Therefore, we model the matching-indicator values using a 
third-order polynomial with the random sample consensus algorithm 
(Fischler and Bolles, 1981). The ME is used only for match inspection in 
robust vertical positioning. 

2.4. Search-window size determination 

The matching performance depends on not only the matching in-
dicators but also on the search-window sizes. Thus, matching indicators 
should be calculated with sufficient textures for reliable image match-
ing. Larger search windows contain more textures, but the search- 
window sizes should be restricted so that variations in elevation are 
not included (Veksler, 2003). Additionally, in image matching, the 
distinction of textures is more important than the amount of textures. 
Therefore, the optimal size of a search window should be defined as the 
smallest size with discernible texture information, and the window size 
should be adaptively adjusted according to the surface textures on the 
DSM grids. This consideration is particularly essential for sea ice, 
because the surface textures of sea ice are typically rare and can vary 
significantly among regions. 

The proposed adaptive method derives and unifies optimal search- 

window candidates for each DSM grid. Optimal search-window candi-
dates are derived via texture analysis. In texture analysis, reference 
search windows with different sizes are constructed, and their textures 
are quantified via entropy calculations using Eq. (6). Among the con-
structed search windows, optimal candidates are determined as search 
windows corresponding to peaks on the entropy curve, as shown in 
Fig. 5. This assumes that search windows with entropy peaks have 
distinct texture information from other search windows. 

Entropy = −
∑

k
pklog2(pk), (6) 

Here, pk represents the probability associated with gray level k. 
The optimal window candidates are then unified via match inspec-

tion. Matching indicators are evaluated by applying the optimal window 
candidates in the order of size. During the match inspection, if a search 
window that satisfies the matching constraints is found, it is identified as 
a single optimal window for the DSM grid. Otherwise, all window can-
didates are considered in the subsequent vertical positioning. 

Optimal search-window determination is conducted with an initial 
DSM. Accordingly, this process can also improve the quality of the initial 
DSM by removing values of DSM grids identified as mismatches and 
filling the holes. Therefore, repeating this process can increase the 
number of DSM grids with a single optimal window and improve the 
initial DSM. 

2.5. Sea-ice surface reconstruction 

In OSBM, the vertical position of the DSM grid is determined as the 
height with the maximum (or minimum) matching-indicator value. 
However, this approach is likely to cause mismatches on sea-ice sur-
faces, because the matching ambiguity caused by low-textured surfaces 
can increase the uncertainty in the matching-indicator values. Fig. 6 
presents the MDE values measured along the vertical line on a grid of a 
sea-ice DSM. As shown, the height with the minimum value (yellow 
circle) may differ from the true height obtained from a LiDAR DSM, 
owing to the variations in the matching-indicator values. Therefore, to 
handle this uncertainty, we conduct vertical positioning using robustly 
modeled values instead of measurements (Kim et al., 2019b). As shown 
in Fig. 6, the MDE modeling consists of two steps: initial modeling and 
precision modeling. This two-step modeling aims to estimate the most 
probable height by reducing the height range for vertical positioning. 
The initial model is established from measurements for a full height 
range (blue line). The precision model is then established from mea-
surements for a narrower height range around the minimum point of the 
initial model (red line). 

After vertical positioning from the precision model, match inspection 
is performed. Therefore, a sea-ice DSM is constructed with only inlier 

Fig. 4. Matched points of target windows on the reference window.  

Fig. 5. Determination of optimal window candidates from entropy peaks.  
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grids. Holes in the sea-ice DSM are filled via inverse-distance-weighted 
interpolation from neighboring inlier grids. Finally, the sea-ice DSM is 
registered to the LiDAR DSM for georeferencing. To this end, the inverse 
of the transformation derived for selecting analysis points can be used. 

2.6. Implementation and evaluation 

The proposed method was implemented in the C++ language using 
OpenCV library (ver. 2.4.9) and GDAL library (ver. 2.0.2). The two li-
braries were mainly used for matrix computation and image handling. 
Experiments were conducted on a 64-bit Windows 10 platform with an 
Intel Core i9-9900 K central processing unit (clock speed of 3.6 GHz, 64 
GB of random-access memory). 

The performance of the proposed method was evaluated according to 
the height errors between the generated sea-ice DSM and the observed 
LiDAR point cloud. From the height errors, we calculated the mean 
error, RMS error (RMSE), standard deviation (SD), median, linear error 
(LE), and normalized median absolute deviation (NMAD). In contrast to 
the first three measures, the median, LE, and NMAD are effective if 
normality of the error distribution cannot be assumed due to outliers 
(Höhle and Höhle, 2009). The median indicates the 50th percentile. The 

Fig. 6. Robust vertical positioning based on two-step MDE modeling.  

Fig. 7. Overview of the dataset acquisition on the drifting sea ice: (a) Study site and data-acquisition plan; (b) Terrestrial LiDAR scanning; (c) Deployed sphere target.  
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LE represents the absolute vertical accuracy at a specific confidence 
level. For example, the LE at 95% confidence (LE95) means that a 
minimum of 95% of DSM grids has a height error less than the deter-
mined LE95 value. The NMAD can be considered as a robust estimate for 
the SD. 

3. Results and discussion 

3.1. Study site and datasets 

Datasets for DSM generation were obtained during an Arctic sea-ice 
campaign in August 2017 using the Korea Icebreaker Research Vessel 
(IBRV) Araon. The Araon vessel was anchored to drifting sea ice for 2 d. 
Fig. 7 shows the location of the sea-ice camp and an overview of data 
acquisition on the drifting sea ice. 

For aerial image acquisition, a lightweight drone (DJI Phantom 4, 
DJI, Shenzhen, China) with a total weight of 1.4 kg and a maximum 
flight time of 28 min was used. The camera sensor mounted on the drone 
was an FC330, with an image size of 4000 × 3000 pixels, a focal length 
of 3.6 mm, and a pixel size of 1.58 μm. We collected 25 images by 
manually controlling the drone at an altitude of 50 m and a velocity of 3 
m/s. Due to the drift of sea ice, automated drone flight and geotagging of 
images based on real-time kinematic (RTK) or post-processed kinematic 
(PPK) could not be considered. On the other hand, we tried to obtain 
images with high overlaps in the flight route of a regular grid pattern. 
Accordingly, 77% frontal overlap and 55% side overlap were established 
between the acquired images. 

The Araon vessel was equipped with various observation sensors, 
such as GNSS/INS, temperature, and wind sensors. According to the 
measurements during the image acquisition time of 3 min and 33 s, the 
sea ice moved linearly at a velocity of 0.16 m/s, and the average air 
temperature and wind speed were − 0.86 ◦C and 13.3 m/s, respectively. 

The drone images were processed by the commercial software Pix4D 
4.1.24 (Pix4D SA, Lausanne, Switzerland). The interior and exterior 
camera parameters were estimated without GCPs. The mean repro-
jection error in the bundle adjustment was approximately 0.2 pixels for 
the 40,563 matched object points. In general, the GNSS/INS data tagged 
in images should be corrected to the drift of sea ice before estimating the 
camera parameters. However, in our case, there was no significant dif-

ference in the results before and after the correction, because the drift of 
the sea ice was not large during the image acquisition. Mosaic and DSM 
were produced through dense image matching. The spatial-resolution 
and total area of the products were 4 cm and 0.062 km2, respectively. 
Fig. 8 presents the resulting mosaic and DSM. 

For LiDAR data acquisition, a terrestrial laser scanner (Focus3D 
X130, FARO, Lake Mary, FL, USA) with a distance range of 0.6–130 m, a 
precision of 2 mm, a vertical rotation range of 300◦, and a horizontal 
rotation range of 360◦ was used. This laser scanner provides colored 
point clouds. We collected point clouds from five stations near the Araon 
vessel for 2 h 15 min, as shown in Fig. 7(a) and (b). Since the sea ice was 
large enough not to be affected by wind and tide, the scanner could be 
precisely leveled at each station. The attitude variations of the sea ice, 
measured during the acquisition time, were approximately 0.005◦ and 
0.003◦ for the roll and pitch angles, respectively. 

LiDAR point clouds were processed by the software FARO SCENE 
6.2.4.30. Using sphere targets deployed on the sea ice (Fig. 7(c)), the 
point clouds were accurately registered and merged. The horizontal and 
vertical errors were 2.4 mm and 1.2 mm, respectively. The coloring 
point cloud and DSM were produced with a spatial-resolution of 1 cm 
from the merged point cloud. Fig. 9 shows the resulting coloring point 
cloud and DSM defined in a local coordinate system. Holes in the two 
products were filled by interpolating neighbor pixels for efficient 
registration between the LiDAR dataset and the drone dataset. 

3.2. Results of sea-ice DSM generation 

Registration of the LiDAR dataset to the drone dataset preceded the 
determination of the matching constraints. Because of the low-textured 
surfaces of the sea ice, we selected tiepoints mainly from footprints in 
the snow and blocks of ice, as shown in Fig. 10(a) and (c). Unfortunately, 
we did not deploy checkerboards at the time of the data acquisition. 
After two-step transformation modeling, the LiDAR point cloud (instead 
of the LiDAR DSM) was registered. This was intended to avoid selecting 
analysis points from filled holes in the LiDAR DSM. The horizontal and 
vertical errors of the registration were 2.7 cm and 2.6 cm, respectively. 
This registration accuracy was considered acceptable in that the ground 
sampling distance (GSD) of the drone images was 4 cm. 

To avoid subjective intervention in selecting surface textures for 

Fig. 8. Drone image processing results: (a) Mosaic; (b) DSM.  
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Fig. 9. LiDAR data-processing results: (a) Coloring point cloud; (b) DSM. This figure was formulated by editing Fig. 5 from the work of Kim et al. (2019b).  

Fig. 10. Registration of the LiDAR point cloud and extraction of analysis points: (a) LiDAR point cloud registered and tiepoints used; (b) Analysis points extracted in 
search grids; (c) Locations of the extracted tiepoints. This figure was formulated by editing Fig. 5 from the work of Kim et al. (2019b). 
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matching-indicator analysis, we partitioned the LiDAR scanning area 
into search grids with the same size and selected the points closest to the 
center of each grid as analysis points (Fig. 10(b)). Accordingly, 39 
analysis points were automatically extracted, and the matching in-
dicators were measured at these points. Different search-window sizes 
ranging from 7 × 7 to 301 × 301 pixels with 2-pixel intervals were 
applied. Measurements with height errors larger than twice the GSD of 
the drone images were excluded from the matching-indicator analysis. 
Fig. 11 shows the scatterplots between measurements of matching in-
dicators and height errors. These scatterplots show that the matching 
indicators were closely related to the matching errors and that the MDE 
better reflected the matching errors than the ZNCC, which has tradi-
tionally been used. 

Constraints of the matching indicators were finally determined in the 
95% confidence interval for the accepted measurements (i.e. mean ± 2 
sigma). Table 1 presents the statistics and constraints for each matching 
indicator. Considering the allowed value ranges for the matching in-
dicators, the minimum and maximum values of the constraints were 
adjusted. 

After determination of the matching constraints, a sea-ice DSM was 
generated through optimal search-window determination and sea-ice 
surface reconstruction. Fig. 12 shows the intermediate and final re-
sults for the LiDAR scanning area of 0.0091 km2. As an initial DSM for 
vertical positioning, the drone DSM, which was produced by the com-
mercial software, was used (Fig. 8(b)). Predictably, the initial DSM 
contained many matching errors compared with the LiDAR point cloud, 
which were distributed mainly on low-textured surfaces (Fig. 12(a) and 
(b)). Additionally, the initial DSM appeared to be horizontally tilted. 
This may be because the established object-space coordinate system did 
not correctly reflect the real world, owing to the exterior orientation 
without GCPs. 

The optimal search-window sizes were determined through surface- 
texture analysis. Optimal window-size candidates for each DSM grid 
were derived from entropy peaks and unified via match inspection. 
During this process, mismatches in the initial DSM were detected and 
removed (Fig. 12(c)), and the remaining holes were filled from neigh-
boring inlier pixels (Fig. 12(d)). A comparison between Fig. 12(b) and 
(c) indicates that the detection results responded well to perceptible 
matching errors in the initial DSM. To quantitatively evaluate the 
detection results, we calculated the confusion matrix and several per-
formance indicators using the registered LiDAR point cloud, as shown in 
Table 2. Grids of the initial DSM with height errors larger than twice the 
GSD were regarded as mismatches. The recall (sensitivity), i.e., the ratio 
of the number of correctly detected true matches to the total number of 
true matches, was approximately 92%. However, the precision, i.e., the 
ratio of the number of correctly detected true matches to the number of 
detected true matches, was relatively low (approximately 74%). In 
addition, the accuracy, which is the ratio of the number of correctly 
detected matches to the total number of matches, was similar to the 
precision. Thus, numerous mismatches were classified as inliers. These 
results may not satisfy the required performance for an error detector. 

Fig. 11. Scatterplots between measurements of matching indicators and errors of vertical positioning for different search-window sizes: (a) MDE; (b) ZNCC; (c) MPD; 
(d) ME. 

Table 1 
Constraints of matching indicators determined from the accepted 
measurements.   

Statistics Constraints 

Indicators Mean SD Minimum Maximum 

MDE (pixels) 0.98 0.51 0.00 2.00 
MPD (pixels) 0.63 0.39 0.00 1.41 
ZNCC 0.65 0.16 0.32 1.00 
ME (pixels) 0.21 0.17 0.00 0.56  
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Fig. 12. Sea-ice DSMs generated for the LiDAR scanning area: (a) LiDAR point cloud; (b) Initial DSM; (c) Initial DSM filtered for mismatches; (d) Enhanced initial 
DSM; (e) Corrected DSM; (f) Georeferenced final DSM; (g) Height profile 1; (h) Height profile 2. 
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However, they are acceptable in our case, because the hole-filled result 
is only used as an initial DSM for vertical positioning. 

The sea-ice DSM was generated through robust vertical positioning 
from the derived optimal windows and the enhanced initial DSM. Since 
the proposed method involves the match inspection to verify the 
matched points, we did not carry out an additional process to deal with 
outliers. Compared with the initial DSM in Fig. 12(b), the quality 
improvement of the resulting DSM was remarkable. Even compared with 
the enhanced initial DSM in Fig. 12(c), we identified noticeable im-
provements, such as smooth transitions in elevation. Detailed compar-
isons are presented in Fig. 12(g) and (h). The corrected DSM well 
reflected the height changes of the LiDAR point cloud and also produced 
reliable matching results even for low-textured surfaces. This was also 
confirmed in the quantitative evaluation, as indicated by Table 3. We 
calculated height error statistics using all the object-point pairs between 
the sea-ice DSM and the registered LiDAR point cloud, as in the evalu-
ation of the mismatch detection results. For both the initial DSM and the 
corrected DSM, the mean errors were close to zero, and the differences 
between the mean and median errors were also small. Although the 
corrected DSM showed slightly better results, the differences were not 
significant. These results indicate that both the DSMs were not system-
atically shifted and that the registration for relative georeferencing was 
accurately established. On the other hand, the RMSEs revealed consid-
erable differences. The RMSE, which was approximately 26 cm in the 
initial DSM, decreased to approximately 8 cm in the corrected DSM. 
Both the minimum and maximum height errors were significantly 
reduced. Furthermore, the SD and NMAD were approximately the same, 
and the LE95 converged to 1.96 times the SD. These results indicate that 
the height errors of the corrected DSM follow a normal distribution 
without outliers. 

The sea-ice DSM was finally registered to the LiDAR dataset for 
georeferencing. Accordingly, the tilted sea-ice DSM was restored 
correctly to sea level, as shown in Fig. 12(f). The georeferenced sea-ice 
DSM consisted of negative heights, because the heights of the LiDAR 
point cloud were measured by a barometric height sensor embedded in 
the laser scanner. Therefore, to obtain the freeboard of the sea ice, the 
resulting DSM should be translated vertically to sea level. The sea-level 
height can be measured from open water exposed by the icebreaker. The 
sea-ice DSMs for the whole imaging area are shown in Fig. 13. These 
results also indicated high-quality matching without significant errors. 
From the derived freeboard of the sea ice, the mean and maximum 
thicknesses were 1.02 m and 3.04 m, respectively. The roughness of the 
sea ice, defined as the standard deviation of elevations, was 32 cm. 
These measurements suggest that the study site was probably first-year 
sea-ice (Han et al., 2020). 

The total processing time was approximately 41.56 h. This indicates 
that the proposed method is time-consuming compared to the processing 
time of Pix4D, which took approximately 0.44 h. However, the proposed 
method would still be valuable for applications that need to prioritize 
the quality of DSMs. Moreover, there is still room for improvement, such 
as graphics processing unit (GPU)-based parallel processing. 

3.3. Performance analysis 

To create DSMs of drifting sea ice with low-textured surfaces, the 
proposed method introduced four new considerations: relative geore-
ferencing, match inspection, optimal window selection, and robust 
vertical positioning. Accordingly, the proposed method produced a 
significantly improved DSM compared with the initial DSM. The height 
error statistics quantitatively demonstrated the improvement. 

The performance of the individual considerations was evaluated 
using the 39 analysis points (Fig. 10(a)). In this analysis, relative 
georeferencing was excluded, because it is not directly related to the 
performance of image matching. Table 4 presents the results of the 
performance evaluation. Here, the height errors corresponding to the 
mean represent RMSEs, in contrast to the results for the search-window 
sizes. 

We first analyzed the performance of match inspection by applying 
different combinations of the matching indicators. The height errors 
gradually decreased as additional matching indicators were used (top to 
bottom in Table 4). These results indicate that all the matching in-
dicators contributed to the validation of the matches. Thus, the match 
inspection can improve not only the initial DSM, as shown in Fig. 12(d), 
but also the results of vertical positioning. Thus far, matching methods 
have used only a single matching indicator (Banks and Corke, 2001; 
Hirschmuller and Scharstein, 2009). However, the comparison results 
suggest that various matching indicators should be considered for 
reducing the matching uncertainty, particularly in generating sea-ice 
DSMs. 

The optimal window selection was analyzed through comparison 
with a simple adaptive method (Zhang et al., 2010). This simple adap-
tive method identified the optimal window size by sequentially applying 
all the window sizes from the smallest to the largest. Accordingly, the 
optimal window sizes derived by the simple adaptive method were 
smaller than those derived by the proposed method. However, the 
height errors were significantly larger. These results indicate that 
although the optimal window sizes can be minimized by considering all 
the window sizes, windows with matching ambiguity may also be 
selected as optimal windows. The proposed method, which can derive 
optimal window candidates or unify them, exhibited better results. The 
comparison revealed that our method can more clearly determine search 
windows with distinct texture information, improving both its efficiency 
and accuracy in image matching. 

Lastly, robust vertical positioning was analyzed via comparison with 
the existing method of determining the height of a DSM grid using the 
minimum matching-indicator value (Zhang et al., 2017, 2018). The 
existing method yielded larger height errors. The degradation was most 
severe when all window sizes were considered (the first case in Table 4). 
This was probably due to the negative effects of search windows with 
matching ambiguity on the measurement of the matching indicators. 
The results of the second case using our window selection method 
support this argument. Additionally, the fourth case exhibited better 
results than the second case. Overall, these findings indicate that the 
proposed vertical positioning method correctly handled the matching 
uncertainty for low-textured surfaces. According to the evaluation re-
sults, among our considerations, the robust vertical positioning method 
made the most significant contribution to the quality enhancement. 

4. Conclusions 

Arctic sea-ice DSMs can be effectively used not only for developing 

Table 2 
Confusion matrix and performance indicators for the mismatch detection results.  

N = 1832878 Detected: Yes Detected: No Recall 0.92 

Actual: Yes 1,084,923 88,819 Precision 0.74 
Actual: No 386,092 273,044 Accuracy 0.74  

Table 3 
Height error statistics of sea-ice DSMs for the LiDAR scanning area (unit: meters).  

DSMs Minimum Maximum Mean SD RMSE Median NMAD LE95 

Initial –3.9697 2.1306 0.0167 0.2612 0.2618 0.0228 0.0790 0.3341 
Corrected –0.7990 0.5586 0.0127 0.0828 0.0838 0.0143 0.0743 0.1610  
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satellite-based remote-sensing methods as ground truth but also for 
precisely analyzing sea-ice topography. This paper proposes a robust 
DSM generation method for drifting sea ice. To overcome the problems 
in georeferencing and image matching, caused by the movement and 
low-textured surfaces of sea ice, the proposed method includes four 
improvements: relative georeferencing to recover the horizontality and 
scale of sea-ice DSMs, match inspection to verify the matched points, 
adaptive search-window adjustment to ensure distinct texture infor-
mation, and robust vertical positioning to reduce the matching uncer-
tainty. Experimental results indicated that the proposed method can 
achieve significant quality improvements (the RMSE of approximately 8 
cm) compared with the existing ISBM method (the RMSE of approxi-
mately 26 cm) and that all our considerations contributed significantly 
to the improvements. 

Although this paper proposes effective considerations for generating 

Arctic sea-ice DSMs, the basic matching strategy of the proposed method 
is based on that of the traditional method. This suggests that the pro-
posed method can be improved with regard to efficiency and reliability 
by applying recent advances in image-matching techniques. Addition-
ally, we will utilize the proposed method for various cryosphere studies. 
As our method is capable of generating high-quality sea-ice DSMs, we 
will first analyze the effects of topographical characteristics on changes 
in the sea ice, such as the creation and development of melt ponds. We 
also expect that the proposed method can be used not only in other 
cryosphere regions such as glaciers, ice sheets, and ice shelves but also in 
other special regions such as deserts. 
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Search-window sizes (w) and height errors (h) derived by different matching methods (unit: pixels for search-window sizes and meters for height errors). Height errors 
corresponding to the mean represent RMSEs.  
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