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A B S T R A C T

Traditionally, marine carbon monoxide (CO) models assume that the microbial oxidation of CO is only de-
pendent on the concentration of CO in the water column. However, CO oxidation rates in the ocean have been
reported to vary up to two orders of magnitude both spatially and temporally. Here, we developed a new model
assuming that CO microbial oxidation is dependent on bacterial carbon biomass other than CO concentration. In
addition to microbial oxidation, the model also describes CO photochemical production, vertical mixing, and air-
sea gas exchange. The new CO model has been embedded in the European Regional Seas Ecosystem Model
(ERSEM) and coupled with the General Ocean Turbulence Model (GOTM). The CO-GOTM-ERSEM model was
implemented at the Bermuda Atlantic Time Series (BATS) station to simulate CO concentrations observed in
March 1993 by Kettle (1994). The proposed second-order function describing CO microbial oxidation introduces
a new parameter, the bacteria biomass specific oxidation rate, which was estimated to be 5.7 ± 0.2 (μg C
m−3)−1 h−1. Statistical metrics indicates that the new CO model performs better than a previously published
model with a first-order decay function to describe microbial oxidation, acknowledging the dependence of
microbial oxidation on bacterial abundance is realistic. A long-term (1992 - 1994) simulation carried out with
CO-GOTM-ERSEM reproduced the spatial and seasonal variability of CO reported in the literature. Our model
provides a realistic description of the CO dynamics and is potentially usable in different environmental contexts
worldwide.

1. Introduction

Carbon monoxide (CO) plays two key roles in the atmosphere: 1) it
impacts on climate forcing by competing with the methane in the re-
action with the hydroxyl radical (Daniel and Solomon, 1998), the main
atmospheric oxidant, and 2) it is involved in the production of ozone
(Logan et al., 1981), which in turn leads to the photochemical smog,
reducing atmospheric visibility. Therefore, considering its impact on
the chemical properties of the atmosphere, CO is regarded as one of the
most important trace gasses (Stocker et al., 2013).

Although most of the atmospheric CO is emitted from the continent,
outgassing from the sea surface could be a significant source in the
remote marine environments and in the southern hemisphere where the
CO in the surface ocean is supersaturated with respect to the overlying
air (Bates et al., 1995; Conrad et al., 1982; Khalil and Rasmussen, 1990;
Logan et al., 1981; Rhee, 2000; Stubbins et al., 2006; Zafiriou et al.,
2003). Understanding CO dynamics in the marine upper layer is

thereby crucial to assess the role played by this gas in the global climate
regulation.

The concentration of dissolved CO in the surface ocean results from
the balance between photochemical production (Conrad et al., 1982;
Redden, 1982; Zuo and Jones, 1995), microbial oxidation
(Conrad et al., 1982; Jones and Amador, 1993; Jones and
Morita, 1984), air-sea gas exchange (Bates et al., 1995; Conrad et al.,
1982; Park and Rhee, 2016; Zuo and Jones, 1995), and vertical mixing
(Doney et al., 1995; Gnanadesikan, 1996; Johnson and Bates, 1996;
Kettle, 1994) (Fig. 1). Among these processes, photochemical produc-
tion and microbial oxidation are the major processes contributing to the
CO budget in the ocean (Zafiriou et al., 2003). Indeed, photolysis of
chromophoric dissolved organic matter (CDOM) in the euphotic zone is
the only known source of CO, while microbial oxidation is by far the
dominant sink, destroying more than 80% of the CO pool. Therefore, an
accurate parameterization of microbial oxidation is essential to esti-
mate CO flux from the upper ocean (Moran and Miller, 2007). Microbial
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CO oxidation is described conventionally as a first-order kinetics
(Conrad et al., 1982; Johnson and Bates, 1996; Jones, 1991; Jones and
Amador, 1993; Xie et al., 2005; Zafiriou et al., 2003), assuming that CO
oxidation rate increases linearly with the increase of dissolved CO
concentrations, regardless of microbial abundance and community
composition.

Several modeling studies of marine CO dynamics were carried out to
understand the CO budget in the ocean. Kettle (1994) developed a
model to understand the surface diurnal pattern of dissolved CO con-
centrations at the Bermuda Atlantic Time-series Study (BATS) station in
the Sargasso Sea. The model adopted the Price-Weller-Pinkel (PWP)
vertical mixing scheme (Price et al., 1986) to simulate the physical
mixing and transport in the surface mixed layer and subsurface layers.
CO production was simulated by using a modified version of the pho-
tochemical production module previously developed for dissolved hy-
drogen peroxide (H2O2) in the marine environments by Sikorski and
Zika (1993). In subsequent studies (Kettle, 2000, 2005b), an optimi-
zation technique was used to reduce the discrepancy between observed
and simulated dissolved CO concentrations. Based on the CO observa-
tion by Kettle (1994), Gnanadesikan (1996) developed a simple model
coupling CO dynamics with a bulk mixed layer model to identify nine
marine regimes corresponding to different interactions between phy-
sical mixing and (photochemical) productions. The regimes were de-
fined depending on the ratios between physical length scales, i.e. the
depths to which vertical mixing, ventilation, and photochemically ac-
tive radiation penetration occur. The critical difference between the
models of Gnanadesikan (1996) and Kettle (1994) is the way they de-
scribe CO photochemical production: while Kettle (1994) considered
the variation of CO photoproduction rate depending on the spectral
irradiance, Gnanadesikan (1996) assumed that the photoproduction is
proportional to a fraction of the total irradiance.

Simple box models were also used to determine the ratio between
photochemical production and microbial oxidation (Johnson and
Bates, 1996; Kitidis et al., 2011). Johnson and Bates (1996) determined
the photoproduction and oxidation rates using the exponential fits of
their observed diurnal variations of CO. Kitidis et al. (2011) took the
production and oxidation rates from their experimental measurements
and considered the vertical gradient of CO concentration due mainly to
the light attenuation with depth.

All the above mentioned modeling studies used a first-order kinetics
to describe CO microbial oxidation implicitly assuming that the CO
microbial oxidation rate is constant in the ocean. However, this as-
sumption is not consistent with experimental studies reporting that the
CO oxidation rates (kCO) varies dramatically (0.003 - 1.11 h−1) both

temporally and spatially (Johnson and Bates, 1996; Jones, 1991;
Jones and Amador, 1993; Kwon, 2015; Xie et al., 2005). Moreover,
Xie et al. (2005, 2009) reported complex influences of various biotic
and abiotic variables on this process showing that kCO is dependent on
temperature, primary production and salinity. These studies suggest
that previously used formulations can only be reliable in specific con-
ditions (i.e. specific location and time of the year), but cannot be used
in modeling work dealing with large spatial (e.g. global models) and
temporal scales (from seasonal upward).

The aim of this paper is to provide a novel model formulation able
to simulate the variability of CO oxidation rate described in literature.
To this end, we tested the hypothesis that microbial CO oxidation is a
function of not only dissolved CO concentration but also bacterial
biomass. Our CO model was implemented in a widely used marine
ecosystem model, the European Regional Seas Ecosystem Model
(ERSEM; Butenschön et al., 2016). Since ERSEM only accounts for
heterotrophic bacteria, we assumed that the activity of CO oxidizing
bacteria is proportional to the biomass of the heterotrophic bacteria
community. This assumption is supported by the several studies
(Gonzalez and Moran, 1997; Gonzalez et al., 2000; Moran et al., 2004;
Suzuki et al., 2001; Tolli et al., 2006) which show that CO oxidizing
bacteria (Roseobacter-associated clade) are ubiquitous in the ocean and
that account for a relatively constant fraction of the heterotrophic
bacterial biomass.

2. Methods

2.1. CO model with a new formulation of microbial oxidation

Temporal and spatial variability of dissolved CO concentrations
([CO]) in the water column was formulated as a function of depth (z)
and time (t) associated with photochemical production (J), air-sea gas
exchange (F,z = 0), vertical mixing (V), and microbial oxidation (M):

= + + +d
dt

J z t F t V z t M z t[CO] ( , ) (0, ) ( , ) ( , ) (1)

The detailed formulation of the four processes on the right hand side
of Eq. (1) are described in the following sections.

2.1.1. Photochemical production (J)
Photolysis rate of gas species in the atmosphere is determined by the

actinic flux of the sun, absorption property of a reactant, and the
quantum yield representing the production efficiency. Analogous me-
chanisms have been applied to the photochemical production of the CO

Fig. 1. Schematic diagram of marine carbon cycle (green
and blue arrows for organic and inorganic species, re-
spectively) and CO dynamics (yellow arrows) in the sur-
face mixed layer. The model developed in this study for
CO dynamics was incorporated in the carbon cycle using a
complex ecosystem model. (For interpretation of the re-
ferences to colour in this figure legend, the reader is re-
ferred to the web version of this article.)
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in the ocean taking into account the attenuation of the irradiance in the
water column (Kettle, 1994; Zafiriou et al., 1984):

=J z t E z t a d( , ) ( , , ) ( ) ( )g

2

1 (2)

where E(λ,z,t) indicates solar spectral irradiance at the given wave-
length (λ), depth (z), and time (t). ag(λ) and Φ(λ) indicate the ab-
sorption coefficient of CDOM and the apparent quantum yield of CO at
the given wavelength, respectively. In this study, 280 and 800 nm were
adopted as λ1 and λ2, respectively, as most of CO production occurs at
the wavelength shorter than the visible wavelengths (Kettle, 1994;
Valentine and Zepp, 1993).

E(λ,z,t) can be replaced by a fraction of the total surface irradiance,
ET(z,t). Therefore the right hand side of Eq. (2) becomes:

=J z t E z t a d( , ) 0.51 ( , ) ( ) ( )T g

800

280 (3)

where 0.51 is the solar irradiance penetrating the water surface and
consists of 42% of visible light and 9% of ultraviolet (UV) light on
average (Gibson, 2003).

ag(λ) can also be described as an exponential decrease of ag(λ0) with
slope S, where ag(λ0) is a reference absorption coefficient at λ0
(Bricaud et al., 1995, 1981; Green and Blough, 1994):

=a a e( ) ( )g g
S

0
( )0 (4)

While several experiments conducted in the coastal area
(Anderson and Stedmon, 2007; Asmala et al., 2012; Coble, 2007;
Ferrari, 2000; Ferrari et al., 1996; Mannino et al., 2008; Rochelle-
Newall and Fisher, 2002; Stedmon et al., 2000; Vodacek et al., 1997)
showed a linear relationship between dissolved organic carbon con-
centrations ([DOC]) and the absorption coefficient of CDOM at a spe-
cific wavelength, ag(λ0), Nelson et al. (1998) and Nelson and
Siegel (2013) found no relationship in the open ocean and in the Sar-
gasso Sea (Siegel et al., 2002) at Bermuda from 1996 to 1999. Thereby,
regardless of [DOC], we assumed ag(λ0) to be constant at the value of
0.2 m−1 as determined by Kettle (1994) in the same area by using a
reference wavelength of 300 nm (λ0) and the reference slope (S) of
−0.020 nm−1 (Kettle, 2005b; Kitidis et al., 2011).

We adopted the exponential fitting curve of Φ(λ) developed by
Kettle (2005b) based on experimental results at BATS (Kettle, 1994):

= e( ) 2.427 0.0302 (5)

2.1.2. Air-sea flux (F)
The air-sea CO flux was calculated by a mass transfer equation as

follows:

=F t k t L p(0, ) ([CO](0, ) CO)w (6)

where kw is the gas transfer velocity of CO, [CO](0, t) and pCO are the
concentration of CO at the sea surface at the given time and partial
pressure of CO in the overlying air, respectively, and L is the solubility
of CO (Wiesenburg and Guinasso, 1979).

We assumed that the CO is homogeneously distributed in the upper
layer in the model. Previous findings support our assumption that dis-
solved CO concentration is virtually constant in the first 5 m during the
day (Johnson, 1999). pCO was calculated as a product of the mole
fraction of atmospheric CO and the atmospheric pressure at BATS as-
suming that water vapor was saturated. The mean CO mole frac-
tion (169 ppb) observed in March 1993 by the atmospheric monitoring
station, BMW (Bermuda West), run by NOAA/ESRL (National Oceanic
and Atmospheric Administration/Earth System Research Laboratory;
https://www.esrl.noaa.gov/gmd/dv/data/), was used for our calcula-
tion.

kw was parameterized following Nightingale et al. (2000) because it

is indifferent from the recently suggested parameterizations (Ho et al.,
2011; Wanninkhof, 2014) implying its reliability, and it has already
been used to model air-sea CO2 and O2 exchange with ERSEM
(Butenschön et al., 2016). Accounting for the change in diffusivities of
both CO and momentum at different thermodynamic conditions of the
seawater from the reference condition (Temperature = 20 °C and
Salinity = 0), kw can be calculated as follows:

= +k U U Sc(0.333 0.222 )( /600)w 10 10
2 0.5 (7)

where U10 is the wind speed at 10 m high and Sc is the Schmidt number
which is the ratio between the diffusivity (Wise and Houghton, 1968) of
CO and the kinematic viscosity (Korson et al., 1969; Millero, 1974) of
seawater. The seawater temperature and salinity generated by a phy-
sical mixing model were used to calculate Sc.

2.1.3. Vertical mixing (V)
Due to sunlight attenuation through the water column, CO con-

centration should be higher at the sea surface, decreasing exponentially
with depth assuming uniform CDOM distribution. However, vertical
mixing may redistribute the dissolved CO molecules within the mixed
layer. In a one-dimensional (1-D) context, the vertical mixing of [CO]
within water column is described by:

= +V z t
z

D
z

( , ) ( ) [CO]z (8)

where Dz and ɛ are the eddy and molecular diffusivities, respectively.
The turbulent fluxes in the marine boundary layer can be calculated by
means of various different turbulence closure models, e.g., Kettle
(2005). Here, we have used the k-ɛ turbulence closure scheme in the
General Ocean Turbulence Model (GOTM, www.gotm.net) as pre-
viously done by Kettle (2005a) and Burchard and Petersen (1999).

2.1.4. A new formulation of microbial oxidation (M)
We assumed that microbial oxidation rate of CO (M) is better re-

presented by a second-order decay function of CO concentration and
bacterial biomass:

=M k [B][CO]bio (9)

where kbio is a new microbial oxidation rate coefficient and [B] is a
bacterial biomass concentration in carbon unit. It is worthwhile to note
that the kbio multiplied by [B] is the same to the conventional kCO
(h−1). Thus the unit of kbio is same to kCO divided by [B]. Since the
spatial and the temporal variabilities of kCO are implicitly represented
by those of [B], the new coefficient kbio can be assumed to be constant
in any environment.

It should be noted that the CO oxidized by bacteria is converted in
the model to dissolved inorganic carbon (DIC) since CO is used for
energy and not for carbon assimilation (Jones and Amador, 1993;
Moran and Miller, 2007; Tolli and Taylor, 2005).

2.2. Implementation of the coupled CO-GOTM-ERSEM model and set-up for
BATS

The new formulation of microbial CO oxidation requires the ex-
plicitly simulated bacteria biomass. For this reason, we have embedded
the proposed CO formulation in the European Regional Seas Ecosystem
Model (ERSEM, Butenschön et al., 2016) which is one of the few marine
ecosystem models that explicitly simulates bacterial biomass (Baretta-
Bekker et al., 1995; Blackford et al., 2004; Butenschön et al., 2016;
Polimene et al., 2006). ERSEM has been coupled with GOTM and im-
plemented at BATS as previously done to simulate bulk pelagic eco-
system properties and DMS(P) dynamics (Butenschön et al., 2016;
Polimene et al., 2012).

BATS is the only site where dissolved CO concentrations time-series
were measured along with physical and biological parameters allowing
to put CO dynamic in a wider ecosystem context.
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Since the maximum mixed layer depth (MLD) at BATS was not
deeper than 190 m during the year in 1993 (Steinberg et al., 2001), we
confined the model depth to 210 meter consisting of 60 equidistant
vertical layers. It is assumed that there is no upward flux across the
model's bottom boundary, while the downward flux such as particle
sinking is allowed. Model initial conditions and parameters were taken
from Butenschön et al. (2016). Atmospheric forcing data were obtained
from the European centre for Medium-Range Weather Forecast Re-
analysis data product (ERA-Interim, Dee et al., 2011).

The model without the CO module was run for 30 years to get semi-
steady state of ecosystem variables by assimilating the vertical profiles
of temperature and salinity (T/S) observed at BATS constrained by the
repeated atmospheric forcing in 1991. Since the interval of observed T/
S profiles in 1991 varied between 1 and 3 months, the relaxation time
scale of T/S was set at 30 days. The surface boundary conditions of the
model were forced by 6-hourly meteorology in 1991. Using the final
state of the 30-year spin-up as initial conditions, the model was further
integrated until March 15, 1993 with 6-hourly corresponding ERA-in-
terim forcing to generate the initial conditions for the ecosystem state
variable used in the 9-day simulation described in the next section.

2.3. Nine-day simulation for the determination of optimum kbio

Kettle (1994) measured the CO concentrations in the surface waters
at BATS for 9 days in March 1993. These data have been used to test the
new CO model and to estimate the value of kbio.

To compensate for missing hydrodynamic impacts of lateral ad-
vection and diffusion, simulated T and S were relaxed toward observed
profiles. For this short simulation we used the wind speed and irra-
diance observed by Kettle (1994) which offered a higher temporal

resolution (less than 1 min) with respect to ERA-Interim (6 h). A con-
stant CO profile (equal to the mean value observed on 15th March
1993) was given as initial condition to allow the model to redistribute
CO within the water column following its dynamics.

Bayesian optimization (Snoek et al., 2012) was employed to de-
termine the most appropriate kbio using the 9-day CO observations.
With each iterative calculation of the objective function (Root-Mean-
Square-Error (RMSE) of CO in this study) bounding the pre-specified
ranges of kbio, the algorithm updates the kbio and incorporates the new
kbio into the next estimate of RMSE until it converges to minimum.
Since the kCO suggested by Kettle (2005b) divided by simulated bacteria
biomass on 15 of March 1993 is order of 1E-03, we set the lower and
upper limit for the search space of kbio as 1E−04 and 1E−02 (mg C
m−3)−1 h−1, respectively.

The uncertainty of kbio was estimated by Monte-Carlo method by
generating 100 sets of the dissolved CO concentrations in time-series
that are randomly varied within 5% of the CO concentrations, which is
the analytical uncertainty (Kettle, 1994). Mean and standard deviation
of the 100 simulations were adopted as the optimal kbio and its error,
respectively.

To investigate how kbio value responds to the source and sink terms
of CO budget, sensitivity experiments were carried out with respect to
the photochemical production (J), air-sea gas exchange (F), and vertical
mixing (V) rates because they can be variable depending on the dif-
ferent parameterizations. Simulation without perturbation of J, F, and V
was assigned as ‘control’ simulation below. For the sensitivity runs, the
J, F, and V were individually perturbed by±20% and±10% of those
of the control simulation. Sensitivity of kbio for each term is defined as,

=
( )
( )SNl

k
k

T
T

l
l

bio
bio

(10)

where Tl denotes the budget term l of control run and ∆Tl the perturbed
Tl. l is one of J, F, and V and ∆Tl is one of 0.8Tl, 0.9Tl, 1.1Tl, and 1.2Tl.

2.4. Multiyear simulation

To investigate seasonal to inter-annual variability of CO, 3-year si-
mulation (from 1992 to 1994) was carried out. The bacterial biomasses
observed for the same period at BATS as part of US Joint Global Ocean
Flux Study (Steinberg et al., 2001) were used to validate the model
simulation and to see how the variation of bacterial biomass impacts

Fig. 2. Comparison of model simulations by Kettle (2005b) with the optimized source and sink terms and the dark production term (red dashed line), the present
study (black dashed line) with shade for uncertainties by standard deviation of kbio, and the observation (open circle, Kettle (1994)) of dissolved CO concentration.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
Statistical matrix of model performances in simulating surface CO concentra-
tions by Kettle (2005b) and the present study. The optimization means multi-
plication of a proper constant to the CO source and sink terms to obtain the best
simulating performance.

Kettle, 2005b without
optimization

Kettle, 2005b with
optimization

This study

RMSE 0.4 0.3 0.3
R 0.9 0.9 0.9
MBE 0.0 −0.1 0.0

Y.S. Kwon, et al. Ecological Modelling 432 (2020) 109203
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the microbial oxidation. To this purpose, observed bacterial cell density
(cells kg−1) was converted to carbon mass unit by a conversion factor of
10 fg C cell−1 (Steinberg et al., 2001).

For this simulation we used the optimum kbio determined in
Section 2.3. CO-GOTM-ERSEM was restarted from the 30-year spin-up
state of GOTM-ERSEM coupled model. The meteorology was forced by
the 6-hourly ERA-interim data and the model T/S profiles were relaxed
toward the observed profiles with the relaxation time scale of a month.

2.5. Model evaluation metrics

We used three quantitative metrics, root-mean-squared error
(RMSE), mean-bias error (MBE), and Pearson correlation coefficient (R)
to assess our CO model skill suggested by Jolliff et al. (2009). RMSE is
defined as the square root of the variance between simulated and ob-
served values, and MBE as the difference between the means of model
and of observation fields. RMSE and MBE measure the degree of dis-
crepancies between the model prediction and the observation. Thus, the
closer their values are to zero, the better the model accuracy is. The
Pearson correlation coefficient (R), defined here by the covariance of
model and of observation fields divided by the product of their standard
deviations, is a measure of the degree of linear association between
model and observations. RMSE, MBE, and R give quantitative in-
formation particularly when evaluating the sensitivity of a model to a
specific parameter to minimize the magnitude of fitness between model
and observation (Jolliff et al., 2009).

3. Results

3.1. Nine-day simulation with optimum kbio

The microbial oxidation rate coefficient, kbio, in the new CO-GOTM-
ERSEM model determined by the procedure described in Section 2.3
was 5.7± 0.2 (μg C m−3)−1 h−1. We present here the model perfor-
mance focusing on the surface CO concentrations as well as their ver-
tical distributions. Sensitivity results of the kbio to the perturbations of
CO sources and sinks are also presented.

3.1.1. Surface CO concentration
Simulated and observed (Kettle, 1994) surface CO concentrations

during the 9 days from Mar. 15 to 24, 1993 are displayed in Fig. 2. The
observed diel variations and the gradual increasing trend of surface CO
concentrations are well reproduced by the model. The good perfor-
mance of our new model was confirmed by a set of statistical metrics
(RMSE, MBE, and R). As shown in Table 1, our model performs slightly
better than a previously published model (Kettle, 2005b) regardless of
applying the optimization technique. However, R values from both
models are identical.

3.1.2. Vertical profiles of CO concentration
In Fig. 3, the simulated CO profiles are compared with the ob-

servations by Kettle (1994). Overall, the model underestimates the
observed CO especially below the MLD where the simulated CO con-
centrations are close to zero while the observations never fall below
0.2 nM. However, the high correlation between simulated and observed

Fig. 3. Comparison of a time series of simulated (solid line) and measured (open circle; from Kettle (1994)) depth profiles of dissolved CO concentrations. Individual
graphs include the time (local solar time) the profile was gained, and RMSE and Pearson coefficient, R. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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values (average R ~ 0.8) indicates that the model captures the general
trend of the observations as for example the depth where concentra-
tions rapidly decrease. Nevertheless, the aforementioned under-
estimation of the observed values at depth reduces the overall perfor-
mance of the model as highlighted by the relatively large RMSE values
(mean RMSE = 0.53± 0.26).

3.1.3. Sensitivity of kbio to CO source and sinks
Our experiments indicate that the air-sea gas exchange rate (F) has

negligible effects on the determination of kbio. Overall, kbio is more
sensitive to the photochemical production rate (J) than to the physical
mixing rate (V) (Fig. 4). kbio is inversely related to V because it acts as a
sink by dilution of dissolved CO. As shown in Fig. 4b, the SNJ was
calculated as 1.32, SNF as 0, and SNV as −0.5.

3.2. Multiyear simulation from 1992 to 1994

3.2.1. Bacterial biomass
The bacterial biomass measured at BATS varied between 3 and 8 mg

C m−3 with a slight decreasing trend of 0.4 mg C m−3 a−1 (Fig. 5). The
simulated bacterial biomass exhibits a clear seasonality with high va-
lues in spring and a gradual decrease toward fall and winter which is
consistent with the observations (Steinberg et al., 2001). In addition,
the model reproduced the gradual decreasing trend of 0.4 mg C m−3

a−1 observed between 1992 and 1994. However, simulated bacterial
biomass overestimates the observed values by 30% on average. While
the vernal bloom of bacteria was captured by the model for 1992 and
1993, the low values observed in spring of 1994 were not reproduced in
the simulations. If we exclude this period from the comparison, R and
MBE values are 0.7 and 1.3, respectively, confirming the general good
performance of the model.

3.2.2. Seasonal cycles of bacterial biomass and CO
The simulated seasonal cycles of bacterial biomass and surface CO

concentration are illustrated in Fig. 6a. CO concentrations display low
values (1 nM) in spring, concomitantly with high bacterial biomass. CO
starts to increase by the onset of stratification due to radiative heating
and by the reduction of bacterial biomass (~ 2.5 nM). From May to
August, CO remains high (4 - 5 nM) with a peak concentration in July
(mid-summer) driven by the combination of strong photochemical
production, weak vertical mixing, and reduced bacterial biomass. From
September (early fall) to January (winter), CO concentration declines to
below 1 nM in association with the decrease of photochemical pro-
duction, small increase of microbial oxidation, and deepened MLD.
Since the CO oxidation is a function of bacterial biomass, its seasonality
exactly follows bacterial biomass. The corresponding conventional
oxidation rate coefficient (kCO) shows its seasonal maximum in March
and minimum in August.

The mean vertical distributions of CO and kCO from the 3-year si-
mulation are displayed in Fig. 6b. The highest kCO appears at subsurface
between 30 m and 50 m depth, just above the MLD. On the other hand,
the simulated CO concentration maximum occurs at the surface because
of the high irradiance and slightly lowered bacterial biomass.

4. Discussion

4.1. Meaning of the second-order loss kinetics

Microbial oxidation is the dominant sink of CO in seawater over-
whelming air–sea gas exchange under normal turbulent conditions at
the sea surface (Gnanadesikan, 1996; Zafiriou et al., 2003). It is
therefore crucial to accurately parameterize this process if we want to
simulate dissolved CO concentrations in a reliable way. In this work, we
propose a new model including variable bacterial biomass in the for-
mulation of CO oxidation. Our model is supported by literature findings
showing that the conventional kCO is not constant in the ocean. Indeed,
kCO is higher in the coastal areas than in the open ocean (Jones and
Amador, 1993; Xie et al., 2005), in the subsurface layer than in the
bottom and surface layers (Jones, 1991; Kettle, 1994; Kwon, 2015), and
during phytoplankton bloom than during non-productive periods
(Johnson and Bates, 1996; Jones and Amador, 1993; Zhang and
Xie, 2012). All these studies suggest that it is unlikely that microbial
oxidation of CO is only dependent on CO concentration as assumed in

Fig. 4. (a) Variation of optimized values of kbio depending on the perturbation
of J (red), V (blue), and F (lime) terms. Numbers on the line represent relative
changes in kbio with respect to the control run. (b) Sensitivities of kbio (SN) to
photoproduction (J), air-sea gas exchange (F), and vertical mixing (V). Error
bars represent one standard deviation. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this
article.)

Fig. 5. Simulated (black) and observed (red) bacterial biomasses in the surface
mixed layer from 1992 to 1994. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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previously published models (Gnanadesikan, 1996; Kettle, 2005b;
Kitidis et al., 2011; Conte et al., 2018). We argue that, like other mi-
crobial processes, the microbial CO oxidation is affected by microbial
density and community composition, supply of organic and inorganic
substrates, and other conditions such as temperature and pH
(Rivkin and Anderson, 1997; Rivkin et al., 1996).

Our new model allows kCO to vary spatially and temporally, re-
flecting the dependency of bacterial growth on environmental condi-
tions and in this way connecting the marine CO cycle to broader eco-
system functions. The seasonal variability of CO in our model is
consistent with the observations reported by Jones (1991) who de-
scribed large CO variability in the Sargasso Sea between June of 1986
and September of 1987. Jones (1991) found that both CO concentration
and kCO in June were higher than in September (by 1.7 and 2 times,
respectively). Another observed kCO value at the Sargasso Sea in
summer (Aug. 1999) was reported as 0.02± 0.002 h−1 (Tolli and
Taylor, 2005), showing a similarity with our summer value
(~0.03±0.003 h−1; Fig. 6a). Johnson and Bates (1996) explained the
almost 4 times higher CO concentration observed in summer with re-
spect to winter by the synergetic effect of high irradiance and lower
oxidation rate due probably to low abundance of bacteria.

In addition to the temporal/seasonal variation, modelled kCO also
varies with depth following bacterial distribution (Fig. 6b). This is
consistent with previous studies reporting that kCO decreased gradually
with depth reaching its maximum at about 40 m deep (Jones, 1991) and
that bacterial biomass at BATS reaches its maximum between 30 and
80 meter depth (Steinberg et al., 2001).

Since primary production is likely to be affected by the global cli-
mate change (Cavan et al., 2019; Moore et al., 2018), further studies
should be designed to assess how global-warming driven alterations of
the planktonic ecosystem might affect the global CO budget and the
role of CO as a climate change driver.

4.2. Critical assessment of model assumptions

Inclusion of bacterial biomass in the new parameterization of CO
oxidation assumes that a constant fraction of the heterotrophic bacterial
community is involved in CO oxidation. This assumption is supported
by previous studies reporting that Roseobacter-associated clade cells
responsible for the fastest CO metabolism are ubiquitous in marine
environments accounting for 36±2.4 % of the total microbial assem-
blage (Tolli et al., 2006). However, since Tolli et al. (2006) only con-
sidered samples from coastal waters, further studies are necessary to
assess the validity of our assumption in wide range of marine en-
vironments.

Our model reproduced at least qualitatively the maximal bacterial
biomass in the subsurface layers (Fig. 7c) and the consequent maximum
of kCO (Fig. 6b). However, the model significantly overestimates both
bacterial biomass and kCO below 40 m. Indeed, Steinberg et al. (2001)
reported the bacterial biomass < 2.0 mg C m−3 at depths less than
150 m regardless of the season, while our model simulated circa 5 mg C
m−3 at the same depth except for winter (Fig. 7c). Fig. 7 illustrates that
bacterial biomass is coupled to dissolved organic carbon (DOC)
reaching their maxima at ~80 m near the subsurface Chl-a maximum

Fig. 6. (a) Monthly mean CO concentrations (black
solid circle) and bacterial biomasses (lime solid circle)
at the sea surface, and monthly mean MLDs (blue solid
circle) for model simulation from 1992 to 1994. Red
solid circles denote the monthly mean of CO oxidation
rates (kCO). Lime open circles indicate monthly mean
values of bacterial biomass observed. Error bars re-
present one standard deviation. (b) Simulated vertical
profiles of kCO (red) and of CO concentrations (black).
Broken lines represent their mean values simulated
from 1992 to 1994 and shade for uncertainties (one
standard deviation). Red solid line denotes the simu-
lated mean profile of kCO in June, and black and red
closed circles for measured CO and kCO in June 1987
by Jones (1991), respectively. Dotted horizontal lines
denote the 3-year mean values of MLD (blue) and eu-
photic depth (yellow). (For interpretation of the re-
ferences to colour in this figure legend, the reader is
referred to the web version of this article.)
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(Steinberg et al., 2001). This is consistent with previous findings and
theoretical modeling studies showing a correlation between phyto-
plankton (or Chl-a) and bacterial production, underlining the depen-
dence of bacterial growth on a pool of DOC ‘freshly’ produced by the
primary producers (Dumont et al., 2011; Wiebinga and de Baar, 1998;
Polimene et al., 2006).

The overestimation of bacteria in the subsurface layer can be mainly
explained by overestimation of DOC which is the main source of carbon
and energy for heterotrophic bacteria. Since total organic carbon (TOC)
observations in 1994 are available and it is dominated by DOC in BATS
(Hansell and Carlson, 1998), we compared TOC rather than DOC
(Fig. 8). The simulated TOC between 100 - 210 m depth was over-
estimated about 40%. Despite the overestimated bacterial biomass and
DOC, our model reproduced a realistic relationship among primary
production, DOC and bacteria. Indeed, the simulated DOC tends to
concentrate at the subsurface layers since phytoplankton populates the
subsurface layer to avoid nutrient-limited surface waters. The most
salient feature of our model is to connect CO dynamics and primary
production. This connection is established through bacterial abundance
and distribution and DOC production and fate.

Another element to be considered is that we did not resolve the
CDOM dynamics explicitly, assuming that the CDOM absorbance is
constant. However, Siegel et al. (2002) observed non-homogeneous
vertical distribution of CDOM absorbance at BATS with larger values
observed at the depths between 50 and 100 m suggesting that the
photochemical production of CO may differ depending on the depth.
Given that the kbio is highly sensitive to the change of photoproduction
rate (Fig. 4), additional studies are required to shed light on CDOM
absorbance variability and refine our model accordingly.

Fig. 7. Time-depth distribution of (a) Chl-a, (b) labile DOC concentration, and (c) bacterial biomass simulated for the 3-year (1992 - 1994) simulation at BATS.

Fig. 8. Comparison of observed and simulated total organic carbon (TOC)
during March to November of 1994 at BATS (Hansell and Carlson, 2001). Solid
line and the shaded range denote simulated mean and standard deviation, re-
spectively, and open circle the observations.
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5. Conclusions

A CO model was developed with a new parameterization of mi-
crobial oxidation, the dominant sink of CO in the ocean. We suggested a
new parameterization implying a second-order loss kinetics depending
on bacterial biomass other than CO concentration. The new para-
meterization introduces a universal constant kbio which describes the
bacterial biomass specific CO oxidation rate. By optimizing CO simu-
lations against the 9-day observations of surface CO concentrations at
BATS (Kettle, 1994), kbio was estimated to be 5.7 ± 0.2 (μg C m−3)−1

h−1. Using this kbio value, our simulations carried out with CO-GOTM-
ERSEM, reproduced the observed temporal (seasonal and inter-annual)
and spatial (vertical) variability of CO oxidation rate and CO con-
centrations. Further studies assessing the dependency of CO on bac-
terial biomass and DOC would be required to evaluate if the kbio derived
in this study is applicable in other oceanic contexts.
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