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Abstract
Multivariate dispersion has proven to be a broad β-diversity measure that shows the heterogeneity of environmental conditions.
The dispersion patterns of pelagic ciliate communities were investigated at eight water depths in the northern Bering Sea of the
western Arctic Ocean and Chukchi Sea. Multivariate analysis indicated that (1) pelagic ciliates showed significant variability in
multivariate dispersion on a vertical scale, (2) dispersion patterns were shaped by both the species composition and individual
abundance, (3) vertical variation in species occurrence was significantly related to nutrients and chlorophyll a, and (4) the
dispersionmeasures at both species occurrence and species abundance resolutions were significantly negatively related to salinity
and dissolved oxygen. This suggests that multivariate dispersion measures driven by both species composition and the individual
abundance of pelagic ciliates may be a useful indicator of environmental heterogeneity in marine ecosystems.
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Introduction

Pelagic ciliates are the primary factors in the microbial food
webs in the ocean ecosystems (Cairns et al., 1972; Sherr and
Sherr 1987; Stoecker and McDowell-Cappuzzo 1990; Sime-
Ngando et al. 1995; Kchaou et al. 2009; Xu et al. 2017). They
are important in the ecosystem processes, as they transfer the
energy flux and carbon from the lower trophic levels to higher
ones in most marine biotopes (Finlay et al. 1979, 1988; Caron
and Goldmann 1990; Jiang et al. 2015). Thus, variation in the
ciliate community structure can lead to significant changes in
the ecosystem processes in marine environments (Yang et al.
2004, 2009, 2010; Jiang et al. 2013, 2014, 2015; Xu and Xu
2017). Furthermore, due to their sensitivity to environmental

changes, short and simple life histories, and ease of sampling,
they have been widely used to indicate water quality in marine
ecosystems (Jiang et al. 2011, 2013; Xu et al. 2014b).

Whittaker (1972) originally proposed the concept of α, β,
and γ components to represent different aspects of diversity.
Subsequently, Anderson et al. (2006) proposed that the β-
diversity can be measured as the variability in species compo-
sition among sampling units for a given area at a given spatial
resolution and that this concept of β-diversity can be used to
test the significance of differences in β-diversity among areas
or groups through multivariate tests of homogeneity in disper-
sion. This measure is currently widely applied to assess the
environmental heterogeneity of many ecosystems (e.g., Veech
and Crist, 2010). The Jaccard and Sorensen dissimilarities are
the classic measures for exploring the compositional pattern of
a community (Sørensen 1948; Jaccard 1900; Chao et al. 2005;
Anderson et al. 2006). Recent investigations have demonstrat-
ed that the Bray–Curtis dissimilarity is also a robust measure
for summarizing the β-diversity of a community, as it is cal-
culated from both relative abundance and compositional oc-
currence data (Bray and Curtis 1957; Ellingsen and Gray
2002; Magurran 2004; Olszewski 2004). However, a very
important ecological issue is how much of the dissimilarity
is driven by species composition and how much is driven by
the relative abundance of species in a community (Anderson
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et al. 2006). This is difficult to solve using the Bray–Curtis
dissimilarity matrix. Therefore, to articulate the degree of het-
erogeneity in species composition or in dispersions with great-
er specificity and confidence, it is better to use a range of
dissimilarity measures that cover the spectrum from composi-
tional change to changes in abundances (Anderson et al.
2006).

Anderson et al. (2006, 2008) proposed that multivariate
dispersion can explain the β-diversity of a community on a
broad scale and can be used as an index to assess the environ-
mental heterogeneity. As a multivariate measure, however,
multivariate dispersion has an advanced statistical property
that may affect the difference inβ-diversity of samples among
different regions compared with the traditional β-diversity
index (Anderson et al. 2008). Although studies indicate that
multivariate dispersion is useful for indicating environmental
heterogeneity (Ellingsen and Gray 2002; Xu et al. 2015a),
very few studies have applied multivariate dispersion based
on pelagic ciliate communities to the assessment of environ-
mental heterogeneity.

In this study, the multivariate dispersion of pelagic ciliate
communities was explored during a cruise in the western
Arctic Ocean. Our purposes were (1) to explore the dispersion
of pelagic ciliate assemblages at various water depths, (2) to
reveal the drivers that shape the homogeneity of the ciliate
communities, and (3) to assess the feasibility of using multi-
variate dispersion to assess the environmental heterogeneity in
marine ecosystems using pelagic ciliate communities.

Materials and methods

Study stations

The Korean icebreaker Araon conducted a comprehensive
scientific investigation on the Chukchi Sea and Northern
Bering Sea in the western Arctic Ocean (including the
Northwind Ridge and Chukchi Plateau) from 64°N to 80°N
during summer (August 5–24, 2016; Fig. 1). A total of 23
sampling stations were visited (Fig. 1).

Data collection

A total of 85 samples were collected from eight water depths
(from surface to 100 m) at 23 sampling stations during the
period of August 5–24, 2016 (Fig. 1). The temperature, salin-
ity, dissolved oxygen (DO), and density of water were mea-
sured in situ using a CTD rosette system (SBE 911+; Sea Bird
Electronics).

Water samples for nutrient analysis (including 24 10-L
Niskin bottles) were obtained from the CTD rosette sampler
and immediately stored in a 2 °C refrigerator. Following the
Joint Global Ocean Flux Study protocols, nitrite + nitrate

(NO2 + NO3), ammonium (NH4), phosphate (PO4), and silicic
acid [Si(OH)4] were measured with a continuous auto-
analyzer (QuAAtro, Seal Analytical). A 300–500 mL of water
samples were collected from each depth and grinding glass
fiber filters (47 mm; Gelman GF/F) for measurement of total
chlorophyll a (Chl a). With a Turner Trilogy fluorometer, Chl
awas concentrated after extractionwith 90% acetone (Parsons
et al. 1984). A 500-mLwater samples per layer were collected
to calculate the abundance of ciliates and stored at 4 °C after
being fixed with Lugol’s solution (4% v/v) (Kchaou et al.
2009; Pitta et al. 2001; Yang et al., 2016). A 20-mL concen-
trated sample was obtained by settling in a cylinder for 48 h by
removing the upper water (Choi et al. 2012; Xu et al. 2018).

According to the description byXu et al. (2018), the ciliates
were identified and enumerated. A 1-mL aliquot of concen-
trated samples was used to measure the individual abundance.
For species identification, the morphological features of the
ciliates were observed at magnifications of 200–400 × under a
light microscope (Olympus BX51). Species identification of
tintinnids was performed according to lorica morphology
based on the keys from Kofoid and Campbell (1929, 1939);
the non-lorica ciliates were identified according to the descrip-
tion by Montagnes and Lynn (1991) and Song et al. (2003).
The taxonomic scheme referred to Lynn (2008).

Data analyses

Estimation of species diversity at α, β, and γ levels was done
as described by Crist and Veech (2006), Xu et al. (2014a,
2015b). The β-diversity index was calculated following the
equation (Ricotta 2008):

β = 1–α/γ
where α is the α-diversity, β is the β-diversity, and γ is the

γ-diversity.
The analyses for multivariate dispersions and community

patterns of ciliate samples were conducted using the program
PRIMER (v. 7.0.13), in which the routine “PERMANOVA”
(v1.0.6) was hosted.

The measurement of multivariate dispersions ( ) was per-
formed according to the average distance of samples to “cen-
troid.” Three dissimilarity matrices were selected to evaluate
the weights of compositional occurrence (species composi-
tion) and/or relative abundance: Sorensen dissimilarity-based
dispersion ( S) was responsible for species composition,
Bray–Curtis dissimilarity-based dispersion ( BC) was for both
species composition and individual abundance, and the mod-
ified Gower dissimilarity-based dispersion ( MG) is for only
individual abundance (Anderson et al. 2006).

The community patterns were summarized using the metric
multidimensional scaling (MDS) ordinations. For this ordina-
tion, the analysis “bootstrap averages” was done at all three
resolutions above. The procedures RELATE and
BEST\BIOENV were used to test the correlations between
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biological and environmental matrices and determine the 10
best combinations of environmental variables to the commu-
nity patterns, respectively (Xu et al. 2015a).

Linear regression was used to detect the correlations be-
tween biological parameters and environmental variables
using the software SPSS v22.0 (Xu et al. 2014a).

Results

Environmental conditions

Table S1 shows the average environmental conditions for
eight depth ranges. There was clear vertical variability among
the eight environmental variables at the eight depths. For ex-
ample, the average water temperature decreased with increas-
ing depth, whereas the PO4, Si(OH)4, and NO2 + NO3 all
increased with depth. Chl a and NH4 were highest at 40–50
m and lowest at 100 m.

Species richness and distribution

The distribution and abundance of the 44 ciliate species ob-
served during this cruise are shown in Table S2. According to
the γ-diversity in Table 1, 47, 33, 28, 26, 29, 24, 20, and 21

species were recorded at 0–10, 10–20, 20–30, 30–40, 40–50,
50–60, 60–80, and 100 m, respectively.

Rarefied analysis implied that the total species richness (γ-
diversity) declined from the surface layer (46.7) to 100 m
(20.7), whereas the difference in species richness (β-
diversity) decreased from 0 to 60 m and then increased from
60 to 100 m, peaking at 100 m (Table 1). However, the aver-
age species richness (α-diversity) had a different pattern, de-
creasing from 0 to 30 m, increasing from 30 to 60 m with a
peak at 40–50 m, and then dropping at 60 m (Table 1).

Vertical variations in community structure

The metric multidimensional scaling ordinations based on
bootstrap average analyses for the ciliate community struc-
tures at three dissimilarity resolutions are shown in Fig. 2.
All three community structure patterns were similar along
the depth gradient. For example, the increase in samples at
100mwas distinct from that at other depths, andmost samples
showed lower variance at depths of 50–60 and 60–80 m than
at other depths (Fig. 2).

Vertical variations in dispersion measure

Figure 3 shows the average dispersion of the samples at all
three dissimilarity resolutions. All three dispersions generally

Fig. 1 Sampling stations: Korean
icebreaker Araon in the Chukchi
Sea of the western Arctic Ocean,
encompassing the area from the
Mendeleev Ridge to the Chukchi
Borderland (including the
Chukchi Plateau and Northwind
Ridge) during summer from
August 5 to 24, 2016

38771Environ Sci Pollut Res (2020) 27:38769–38775



leveled off from the surface layer to 50m, then dropped sharp-
ly until 80 m, and finally peaked at 100 m (Fig. 3). Linear
regression showed significant correlations between the disper-
sions S (R

2 = 0.539,P < 0.05) and BC (R
2 = 0.484,P < 0.05)

and the β-diversity index (Fig. 4).

Linkage between pelagic ciliate data and
environmental variables

The RELATE test demonstrated that the community patterns
were significantly correlated with environmental variables at
all three dissimilarity resolutions: species composition with a
correlation at P = 0.287 (P < 0.05), community structure with
P = 0.309 (P < 0.05), and individual abundance with P =
0.363 (P < 0.05).

The BIOENV analysis showed that the vertical change in
community patterns in species composition/occurrence and
community structure were driven by the combination of PO4

and sum of NO3 + NO2 and that individual abundance was
shaped by ammonia and chlorophyll a (Table 2).

Univariate correlation analyses revealed that the dispersion
index based on both species composition ( S) and community
structure ( BC) was remarkably positively related to the nutri-
ents NO2 + NO3 and SiO2 but negatively correlated with the
DO concentration and Chl a (P < 0.05), similar to the β-
diversity measure (Table 2). The dispersion index calculated
from the modified Gower dissimilarity matrix was significant-
ly correlated with the nutrient NH4 (Table 3).

Discussion

Many studies have shown that multivariate dispersion can
be used as a measure of β-diversity, but decisions about
how data are transformed before analysis and how dissim-
ilarity measures are chosen are crucial to the results (e.g.,
Ellingsen and Gray 2002; Anderson et al. 2006; Xu et al.
2015a). In this study, we used three different dissimilarity
measures to evaluate the weights of compositional occur-
rence and relative abundance. For species composition,
community structure, and abundance with an order of
magnitude change, the dispersion of ciliate communities
showed clear vertical variation along the depth gradient.
The correlation analysis revealed that the vertical shift in
community pattern at all three dissimilarity resolutions
was mainly driven by nutrients (PO4, NH4, and NO2 +
NO3), alone or in combination with temperature and sa-
linity. Otherwise, all of the dispersion measures based on
the three dissimilarity matrices were significantly correlat-
ed with the sum of NO2 + NO3 or NH4. This implies that

Fig. 2 Metric MDS ordinations based on the analysis of bootstrapped
averages, showing the vertical pattern of the pelagic ciliate communities
based on Sorensen (a), Bray–Curtis (b), and modified Gower (c) dissim-
ilarity matrices among eight water depths during the study period

Table 1 α-, β- and γ-diversity
indices of the pelagic ciliate
communities at eight layers in the
Chukchi Sea and the northern
Bering Sea of the western Arctic
Ocean during the summer sea ice
reduction period (August 5–24,
2016)

Parameters 0–10 m 10–20 m 20–30 m 30–40 m 40–50 m 50–60 m 60–80 m 100 m

α-diversity 8.6 7.3 5.5 6.9 8.4 7.8 4.6 0.8

β-diversity 0.82 0.78 0.80 0.73 0.71 0.67 0.77 0.96

γ-diversity 46.7 32.7 27.8 25.9 28.5 23.7 20.3 20.7
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the dispersion measures reflect the environmental hetero-
geneity in different water layers. For example, the highest
average dispersion measure occurred at 100-m depth, and
the lowest was found at 60–80 m. This means that the
dispersion of the phytoplankton communities can be used
to assess vertical heterogeneity in marine ecosystems.

Here, we used three different dissimilarity measures to
assess vertical heterogeneity of water columns in the
Pacific Arctic Ocean. The dispersion measures at both
community structure and species composition resolutions
(i.e., S and BC , respectively) were significantly

correlated with the traditional β-diversity index and
reflected the heterogeneity in water quality status among
different layers. This finding was consistent with Anderson
et al. (2006), who proposed that the β-diversity can be
measured as the average distance from each sample to the
group centroid based on an appropriate dissimilarity mea-
sure. Otherwise, the dispersions of compositional pattern
and community structure exhibit significant correspon-
dence to the traditional β-diversity index and are signifi-
cantly correlated with the concentrations of nutrients and
Chl a. These findings suggest that the distribution patterns

Fig. 3 Vertical variations in multivariate dispersions of the pelagic ciliate communities based on Sorensen (a), Bray–Curtis (b), and modified Gower (c)
dissimilarity matrices among eight water depths during the study period

Fig. 4 Linear relationships between the dispersion measures of the
pelagic ciliate communities based on Sorensen (a), Bray–Curtis (b), and

modified Gower (c) dissimilarity matrices and β-diversity index among
eight water depths during the study period
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of both species composition and community structure may
be used as a broad β-diversity index to indicate environ-
mental heterogeneity in marine ecosystems.

Note that the community pattern at the modified
Gower dissimilarity resolution was significantly correlat-
ed with the other two dissimilarity resolutions. This
suggests that the dispersion of pelagic ciliates is shaped
by both compositional occurrence and abundance.
Furthermore, the dispersion measure ( MG) based on
this dissimilarity matrix was strongly positively related
to NH4, but negatively related to the other nutrients.
Therefore, we suggest that the dispersions at a modified
Gower dissimilarity resolution can also be considered a
broad β-diversity measure.

Conclusions

In summary, the phytoplankton community showed gra-
dient heterogeneity in community structure, species
composition, and species abundance across the eight
water layers. Multivariate analytical methods showed
that the community dispersion was mainly driven by
species occurrence and cell numbers. The Mantel anal-
ysis showed that the spatial changes in community
structure, species abundance, and species composition
were significantly correlated with the changes in envi-
ronmental variables. The dispersion measures at both
numerical resolutions showed a close linear relationship
with the traditional β-diversity index, but the three res-
olutions were found to be remarkably related to nutri-
ents. This means that the dispersion measure of pelagic
ciliate communities can be applied to monitor the envi-
ronmental heterogeneity of marine ecosystems.
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