
1.  Introduction
Early theoretical works described that electromagnetic ion cyclotron (EMIC) waves are generated as 
transverse left-handed polarized waves near the magnetic equator by anisotropic (T⊥ > T∥) protons with 
energies of ∼10–100 keV, which are typical ion energies in the ring current (e.g., Cornwall, 1965; Kennel 
& Petschek, 1966). EMIC waves are excited during geomagnetically disturbed intervals associated with 
geomagnetic storms, substorms, and solar wind dynamic pressure variations (e.g., Fraser & McPher-
ron, 1982; Ishida et al., 1987; K.-H. Kim et al., 2017; Meredith et al., 2003; Ol'son & Lee, 1983; Usanova 
et al., 2008) and also occur under quiet geomagnetic conditions (K.-H. Kim et al., 2016a; Park et al., 2016) 
over a wide L range (∼4–12) at all local times in the Earth's magnetosphere (e.g., Allen et al., 2015; Ander-
son et al., 1992a, 1992b; Fraser & Nguyen, 2001; Keika et al., 2013; G.-J. Kim et al., 2016; Min et al., 2012; 
Saikin et al., 2015; Usanova et al., 2012). The frequency of EMIC waves observed in the magnetosphere 
falls in the Pc1-Pc2 geomagnetic pulsation band (frequency = ∼0.1–5 Hz). Ground magnetometers lo-
cated at low to high latitudes routinely detect geomagnetic pulsations in the Pc1-Pc2 band (e.g., Bortnik 
et al., 2008; Engebretson et al., 2002; Kwon et al., 2020; Mann et al., 2014; Nomura et al., 2011). These 
ground Pc1-Pc2 pulsations have been attributed to EMIC waves propagating to the ground through the 
ionosphere along the field lines from the source region in the magnetosphere (e.g., H. Kim et al., 2017; 
Usanova et al., 2008).

Studies of EMIC waves including cold heavy ions (He+ and O+) reported that the heavy ions play a signifi-
cant role in determining the spectral and propagation properties of EMIC waves even though in small con-
centrations of cold heavy ions (∼5%–10% for He+ and ∼1%–2% for O+) (Kozyra et al., 1984; Mauk et al., 1981; 
Roux et al., 1982; Young et al., 1981). In the presence of such cold heavy ions, EMIC waves can be generated 
in three distinct bands: a H-band between the local H+ gyrofrequency ( H

f ) and He+ gyrofrequency ( He
f ), 

a He-band between the local He+ gyrofrequency ( He
f ) and O+ gyrofrequency ( O

f ), and an O-band below 

O
f . In situ observations in the inner and outer magnetosphere have provided clear evidence for the cold 

heavy ion effects. Statistical studies of EMIC waves using AMPTE/CCE and THEMIS data showed that the 
He-band occurrence rate is high in the late afternoon at L = ∼9 and that the occurrence rate of H-band 
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waves is peaked in the dawnside sector at L = ∼10–12 (Anderson et al., 1992a, 1992b; Keika et al., 2013; G.-J. 
Kim et al., 2016; Min et al., 2012). Since low frequencies in O-band waves are overlapped with a frequency 
of background magnetic field oscillations, there are few observations of O-band EMIC waves (e.g., Fraser 
et al., 1980; Sakaguchi et al., 2013).

EMIC waves interact with energetic protons and relativistic radiation belt electrons. These resonant 
wave-particle interactions cause pitch angle scattering that leads to subsequent precipitation of energetic 
protons and relativistic electrons into the atmosphere. The EMIC wave scattering is currently considered 
one of the leading loss processes of energetic protons and relativistic electrons in the magnetosphere. Theo-
retical studies of the early 1970s suggested resonant pitch angle scattering of protons and electrons by EMIC 
waves (Lyons & Thorne, 1972; Thorne & Kennel, 1971). Evidence for EMIC wave-induced scattering has 
been reported from the observations of polar-orbiting POES and METOP spacecraft in the upper ionosphere 
(e.g., Bingley et al., 2019; Clilverd et al., 2007; Hendry et al., 2016; Hyun et al., 2014; K.-H. Kim et al., 2016b; 
Liu et al., 2018; Miyoshi et al., 2008; Rodger et al., 2008; Sandanger et al., 2009; Yuan et al., 2012; Zhang 
et al., 2016). Simultaneous appearance of isolated proton auroras and Pc1 geomagnetic pulsations at subau-
roral latitudes provides evidence for wave-particle interactions with EMIC waves generated near the plas-
mapause (Sakaguchi et al., 2008).

Previous numerical studies suggested that EMIC waves can preferentially heat cold He+ ions in the direc-
tion perpendicular to the ambient magnetic field (e.g., Gendrin & Roux, 1980; Mauk, 1982a, 1982b; Omidi 
et al., 2010; Omura et al., 1985; Qian et al., 1990). Earlier observations at geosynchronous orbit showed 
the acceleration of cold He+ ions up to suprathermal energies (tens of eV to a few hundred eV) (Mauk & 
McPherron, 1980; Roux et al., 1982; Young et al., 1981). AMPTE/CCE observations in the outer magneto-
sphere (L ∼ 6–9) also reported that cold He+ ions are transversely heated to average temperatures of about 
35 eV and sometimes above 100 eV through the interaction with EMIC waves (Anderson & Fuselier, 1994). 
Zhang et al. (2011) using data from the Cluster spacecraft in the outer magnetosphere (L ∼ 8–14) showed 
that the He+ ions resonantly interacted with EMIC waves and were perpendicularly energized to energies 
up to 1 keV. Although the EMIC wave-associated He+ ion heating has been reported using the data obtained 
in the outer magnetosphere, there are few spacecraft observations for cold He+ ion heating by EMIC waves 
in the inner magnetosphere (L < 6) (Yuan et al., 2016).

In this study, we have analyzed magnetic field and low-energy particles data acquired by the Radiation Belt 
Storm Probes-A spacecraft from L = ∼4.5–5.2. We observed EMIC waves just inside the plasmapause near 
the magnetic equator and a clear correlation between the EMIC wave activity and low-energy (<10 eV) 
He+ flux enhancement. We suggest that cold He+ ions are heated up to 10 eV through the interaction with 
EMIC waves and discuss which frequency band of EMIC waves contributes to heating the cold He+ ions in 
the plasmasphere. Using the magnetic field and energetic proton data obtained from the low-Earth orbit 
spacecraft in the upper ionosphere, we also show localized precipitation of energetic protons occurring near 
the magnetic footprint of the EMIC wave's source region.

2.  Data Sets
In this study, we use the magnetometer data (64 samples per second) obtained by EMFISIS (Electric and 
Magnetic Field Instrument Suite and Integrated Science) instrument package (Kletzing et al., 2013) on-
board the Van Allen Probe A to examine the properties of EMIC waves observed on April 17, 2018. The Van 
Allen Probe A magnetic field data are exactly resampled at 0.1 s intervals after interpolation and presented 
in a mean-field-aligned (MFA) coordinate system. In this system, ˆ ze  is in the direction of the mean magnetic 
field, which is defined by taking 5 min boxcar running averages of the 0.1 s data; ˆ ye  (eastward) is parallel 
to ˆ ze  r, where r is the radial vector pointing from the center of the Earth toward the spacecraft; and ˆ xe  
(radially outward) is given by ˆ xe  =  ˆ ˆy ze e . To be consistent, the perturbed parallel magnetic field component 
(δBz) is defined by Bz (0.1 s averages) minus Bz (5 min averages). The EMFISIS experiment includes a plasma 
wave spectrum analyzer, which provides information on the electron number density (Kurth et al., 2015). 
We have used the electron density to identify the plasmapause location. The Van Allen Probe A particle 
data used in this study include low-energy (<52 keV) ion fluxes measured by the Helium Oxygen Proton 
Electron (HOPE) instrument (Funsten et al., 2013). We also use the NOAA-15 spacecraft observations from 

KIM ET AL.

10.1029/2020JA028560

2 of 16



Journal of Geophysical Research: Space Physics

the Medium Energy Proton and Electron Detector (MEPED) (Evans & Greer, 2004) in Sun-synchronous 
near-polar orbits at ∼850 km altitude to examine the precipitating energetic protons into atmosphere due to 
pitch angle scattering associated with EMIC waves.

3.  Observations
3.1.  EMIC Wave Observations in the Inner Magnetosphere

Figures 1a–1c show the magnetic field dynamic spectra of the transverse (δBx and δBy) and compressional 
(δBz) field components of Van Allen Probe A from 10:50 UT to 12:20 UT on April 17, 2018. The spacecraft 
positions (the magnetic shell parameter L, magnetic local time [MLT], and magnetic latitude [MLAT]) are 
shown at the bottom using a centered dipole. During the time period Van Allen Probe A was very close to 
the magnetic equator (|MLAT| ≤ ∼0.5°) on the inbound leg, moving from L = 5.4 to L = 4.1, within a few 
hours of local dawn (MLT = 5.8–7.3 h). In the inner magnetosphere (L < 6) near the dawnside magnetic 
equator, Van Allen Probe A observed wave activity in all field components, but strong spectral intensity 
appears in the transverse δBx and δBy components in the frequency band between the local helium ( He

f )  

and oxygen ( O
f ) gyrofrequencies (i.e., He-band) for the interval of ∼11:10–11:55 UT. The compressional δBz 

component also exhibits a spectral enhancement in the He-band but with much lower spectral intensity. 
Van Allen Probe A also observed weak wave activity in the H-band above He

f  in the both transverse com-

ponents from 11:15 to 11:35 UT.
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Figure 1.  Dynamic spectra of the transverse components, (a) δBx and (b) δBy, and compressional component (c) δBz in 
a mean-field-aligned coordinate system at Van Allen Probe A for the interval from 10:50 to 12:20 UT on April 17, 2018. 
Two white lines indicate the local helium ( He

f ) and oxygen( O
f ) gyrofrequencies.
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3.2.  Low-Energy He+ Flux Enhancement During the EMIC Wave Event

Figure 2 shows the δBy dynamic spectra and local plasma conditions observed at Van Allen Probe A during 
the 10:50–12:20 interval seen in Figure 1. The plasma anisotropy (A = T⊥/T∥) for protons in the energy range 
of ∼10–33 keV are plotted in Figure 2b. The temperature anisotropy is about 2–3 for the 10:50–12:20 interval 
without an enhancement in wave activity. Since enhanced temperature anisotropies provide free energy for 
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Figure 2.  (a) δBy dynamic spectra. (b) The plasma anisotropies T⊥/T∥ for protons in the energy range of ∼10–30 keV. 
(c) Electron number density estimated from the upper hybrid resonance frequency. (d–f) Energy-time spectrograms 
of the omnidirectional differential fluxes of H+, He+, and O+ ions, respectively, measured by the HOPE instrument. 
HOPE, Helium Oxygen Proton and Electron.
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wave generation, the EMIC waves in Figure 2a may be observed during the time of decay phase of EMIC 
waves rather than growth and saturation phases (e.g., Fu et al., 2016). The anisotropies in Figure 2b were 
calculated using the definition given by Chen et al. (1998):




  

   





3
0 0 0 0

2
0 0 0 0 0

( )sin
2 ( )cos sin

f dA
f d

� (1)

where f is the particle phase space distribution function, and α0 is equatorial pitch angle of the particle. We 
used the relationship J(E, α) = (v2/m)f(v, α), where J is the measured differential proton flux, v is the proton 
velocity, and m is the proton mass.

In discussing EMIC wave's generation, it is important to determine where the wave's generation location is 
with respect to the plasmapause because the cold plasma density plays a significant role in determining the 
spectral properties of EMIC waves (e.g., G.-J. Kim et al., 2016; Kozyra et al., 1984; Summers & Thorne, 2003; 
Young et al., 1981). Data from the plasma wave experiment on Van Allen Probe A are used to estimate the 
electron number density (Ne) based on the relationship between the density and characteristic frequen-
cies in the spectrum: the plasma frequency cutoff of continuum radiation and the upper hybrid resonance 
(Kurth et al., 2015). To infer the location of the plasmapause, we have examined the plasma wave spectra 
data provided on NASA/GSFC Space Physics Data Facility Coordinated Data Analysis Web (https://cdaweb.
gsfc.nasa.gov) and found a clear upper hybrid resonance frequency (data not shown here). The electron 
plasma frequency (fpe) was extracted from the narrow-band emission at the upper hybrid resonance fre-
quency, and the electron number density was calculated from fpe using

  
   
 

2
pe3(cm )

8979.5Hze
f

N� (2)

The corresponding number density Ne is plotted in Figure 2c. Ne indicates that Van Allen Probe A crossed 
the plasmapause, which is defined to be an electron density change by a factor of 5 or more over an L dis-
tance smaller than 0.5 (e.g., Carpenter & Anderson, 1992), around 10:55–11:10 UT on the inbound leg at 
L = ∼5.2–5.3 before the onset of EMIC wave activity, representing that wave generation is not associated 
with crossing the plasmapause and that the EMIC waves are generated just inside the plasmapause.

Figures 2d–2f show the energy-time spectrograms of the omnidirectional differential fluxes of H+, He+, 
and O+ ions measured by the HOPE instrument on Van Allen Probe A. The fluxes of different ion species 
are plotted in the same range. The HOPE H+ data show enhanced fluxes of plasma sheet protons (<1 keV) 
from 10:50 UT to 11:15 UT when the spacecraft encountered the inner edge of the plasmapause. It has been 
reported that the inner edge of the plasma sheet coincides with the plasmapause location (e.g., Engebretson 
et al., 2015; Kwon et al., 2015). The HOPE H+ data also show weak fluxes in the energy range above 1 keV. 
They exhibit a band structure with two populations, one between 1 and 5 keV and the other between 20 keV 
and the instrument energy upper limit of 52 keV, and penetrated to the plasmasphere. This structure is sim-
ilar to ion nose structures, which are a common feature in the inner magnetosphere, reported by Ferradas 
et al. (2016). The spectrogram of He+ shows repeatedly enhanced fluxes in the low-energy population below 
10 eV from 11:15 UT to 11:35 UT. These low-energy He+ flux enhancements occur nearly simultaneously 
with the intense He-band and weak H-band wave activity interval. No enhanced flux was found in the 
HOPE O+ data for the interval.

Figure 3 shows the EMIC wave power integrated over the frequency range of 0.8–1.1 Hz for H-band wave 
and 0.25–0.7 Hz for the He-band wave, the difference between the observed magnetic field magnitude and 
model magnetic field magnitude (ΔBT), and He+ fluxes for pitch angles 72°, 54°, 36°, and 18°. We used the 
magnetic field model developed by Tsyganenko and Sitnov (2005) (TS05) at the position of Van Allen Probe 
A. For the input parameters of the model TS05, solar wind dynamic pressure Psw = 1.0 nPa, interplanetary 
magnetic field (IMF) By = 0 nT, IMF Bz = 0 nT, and Dst = 0 nT were used. The vertical dashed lines indicate 
the center of the interval of each He+ flux enhancement. As expected in Figure 2, the quasiperiodic appear-
ance of low-energy He+ flux enhancements after 11:10 UT has a clearly associated enhancement in He-band 
EMIC wave power greater than 10−1 nT2. There are enhancements in wave power lower than 10−1 nT2 at 
11:41 UT, 11:49 UT, and 11:56 UT. For these low wave power enhancements there is no corresponding 
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Figure 3.  (a) EMIC wave power integrated over the frequency range of 0.8–1.1 Hz for H-band wave and 0.25–0.7 Hz for the He-band wave. (b) Difference 
between the observed magnetic field magnitude and model magnetic field magnitude. (c–f) He+ fluxes for pitch angles 72°, 54°, 36°, and 18°. EMIC, 
electromagnetic ion cyclotron.
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He+ flux increase. It is likely that lower energy He+ ion (1–10  eV) en-
hancements are associated with He-band waves with power greater than 
10−1 nT2. The H-band wave power modulation is also correlated with the 
He+ flux enhancement even though its power is much smaller than the 
He-band wave power. Figures 3c–3f show that the low-energy He+ flux 
has no distribution at 18° pitch angle and that the enhanced He+ flux ob-
served in the EMIC wave interval corresponds to large pitch angle distri-
butions. That is, the flux is mostly enhanced in a direction perpendicular 
to the magnetic field. ΔBT is slightly reduced for the interval when the 
lower energy helium ions appear. The reduced ΔBT has no time-depend-
ent oscillations corresponding to the flux enhancements. Thus, we sug-
gest that the low-energy He+ flux enhancement is not driven by long-pe-
riod external force variations.

Figure 4a repeats the wave power from Figure 3a for easy comparison. 

Figure 4b shows proton ( H
J , blue), helium ( He

J , red), and oxygen ( O
J ,  

black) fluxes summed over the energy range of 1–10 eV. There are data 

gaps in He
J  and O

J . This is due to zero flux intensity of He+ and O+ in 

the energy band. As expected from Figure 2, H
J  is dominant through 

the time interval of 10:50–12:20 UT, and a gradual increase in H
J  started 

at ∼11:05 UT when the spacecraft moved into the plasmasphere. Clear-

ly, He
J  exhibits a well-pronounced modulation, corresponding to wave 

power enhancements, while there is no wave-associated modulation in 
H

J  and O
J . To examine the degree of He

J  enhancement relative to H
J ,  

we have taken the ratio of He
J  to H

J . The result is shown in Figure 4c. 

On the basis of the ratio, we find that the helium flux in the low-energy 
range is more intensified than the proton flux when the strong EMIC 
waves appear. This indicates that the EMIC waves strongly affect low-en-
ergy He+ ions rather than the H+ ions. Figure 4d shows the electron num-
ber density Ne obtained from EMFISIS and the number density of low-en-

ergy He+ ( He
N ), which is a summation of the density calculated for each 

energy step from 1 to 10 eV of the HOPE instrument using the formula 
given by Goldstein et al. (2014) and Sarno-Smith et al. (2015):




  
He

4 Δ
2

He
i i

i i

m
N J E

E
� (3)

where the quantity Ji = JHe+(Ei) is the He+ differential flux at the medi-
an of each energy channel Ei between 1 and 10 eV, ΔEi is the range of 
each energy channel, and He

m  is the helium mass. The peak values of 

He
N  during the enhanced He

J  interval are distributed in the range of 

∼0.3–0.8 cm−3 just inside the plasmapause with the local electron num-

ber density Ne of ∼150–180 cm−3, representing that He
N  in the energy 

range of 1–10 eV is ∼0.3–0.5% of the total density.

3.3.  NOAA Observations in the Upper Ionosphere

Figures 5b–5d show the differential flux for the 39, 115, and 332-keV proton channels of the precipitating 
(red) and trapped (blue) particles measured by the Medium Energy Proton and Electron Detector (MEPED) 
instrument on the low-altitude polar-orbiting NOAA-15 spacecraft. The MLAT and MLT of NOAA-15 and 
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Figure 4.  (a) EMIC wave power. (b) Proton ( H
J , blue), helium ( He

J , red), 
and oxygen ( O

J , black) fluxes summed over the energy range of 1–10 eV. 
(c) Ratio of He

J  to H
J . (d) Electron number density Ne obtained from 

EMFISIS and the number density of low-energy He+ ( He
N ), which is a 

summation of the density calculated for each energy step from 1 to 10 eV 
of the HOPE instrument. HOPE, Helium Oxygen Proton and Electron; 
EMIC, electromagnetic ion cyclotron.
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Figure 5.  (a) δBy dynamic spectra at Van Allen Probe A. (b–d) Differential flux for the 39, 115, and 332-keV proton channels of the precipitating (red) and 
trapped (blue) particles measured by the Medium Energy Proton and Electron Detector (MEPED) instrument onboard NOAA-15 spacecraft. (e) MLAT and (f) 
MLT of NOAA-15 and Van Allen Probe A. The positions of Van Allen Probe A in MLAT are the magnetic footprints calculated using the Tsyganenko model 
(1989). MLAT, magnetic latitude; MLT, magnetic local time.
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Van Allen Probe A are plotted in Figures 5e and 5f, respectively. The positions of Van Allen Probe A in 
MLAT are the magnetic footprints calculated using the Tsyganenko model (1989). During the interval of 
EMIC waves observed just inside the plasmapause near the magnetic equator by Van Allen Probe A (Fig-
ure 5a), NOAA-15 spacecraft passed the Southern Hemisphere and observed an isolated peak of the pre-
cipitating protons in the differential flux for the 39 and 115 keV proton channels at 11:18:46 UT when the 
NOAA-15 was located at MLAT = –63.1° and MLT = 5.8 h. The isolated peak region (marked by solid circles 
in Figures 5e and 5f) is located well equatorward of the isotropic zone, in which the 39-keV trapped and pre-
cipitating fluxes are comparable, encountered by NOAA-15 around 11:21 UT as moving higher (auroral) lat-
itudes and close to the projected location (MLAT = –66.5° and MLT = 6.2 h) of Van Allen Probe A with sep-
aration of ΔMLAT = ∼3.4° and ΔMLT = ∼0.4 h. The small separations in MLAT and MLT indicate that the 
precipitating energetic protons at NOAA-15 are due to pitch angle scattering associated with EMIC waves 
at Van Allen Probe A. (e.g., Hyun et al., 2014; K.-H. Kim et al., 2016b; Miyoshi et al., 2008; Yuan et al., 2012, 
Usanova et al., 2014). The flux ratio of precipitating protons to trapped protons at the isolated peak is 0.29 
for the 39-keV channel and 0.19 for the 115-keV channel, indicating that lower energetic protons are scat-
tered more efficiently than higher energetic protons through EMIC waves (Miyoshi et al., 2008).

4.  Discussion
Previous observations reported that there is a close correlation between the occurrence of strong EMIC 
waves and low-energy He+ heating. We make a brief comparison of previous and our observations. Young 
et al. (1981) observed an enhancement of suprathermal He+ ions (tens of eV to a few hundred eV) ∼10–
50 min after the onset of the EMIC waves with frequencies in the vicinity of the He+ gyrofrequency at ge-
osynchronous orbit. They showed that EMIC waves are clearly associated with the abundance of cold He+ 
and suggested that the enhancement in He+ concentration is a necessary condition to promote EMIC wave 
growth. Roux et al. (1982) reported that 68% of the geosynchronous EMIC wave events were accompanied 
by strongly or weakly enhanced He+ fluxes in the suprathermal energy range. They also found that cold He+ 
ions can be heated in the direction perpendicular to the background magnetic field up to a few hundred eV 
when EMIC waves were detected. Anderson and Fuselier (1994) provided clear evidence for a correlation 
between EMIC waves and perpendicular heated ion distribution by using AMPTE/CCE observations in 
the outer magnetosphere above geosynchronous orbit and showed that cold He+ ions are preferentially 
and transversely energized to average temperatures of about 35 eV and sometimes above 100 eV through 
the interaction with EMIC waves. There have been several numerical studies on the preferential heating 
of cold He+ ions by EMIC waves (e.g., Fu et al., 2016;Gendrin & Roux, 1980; Mauk, 1982a, 1982b; Omidi 
et al., 2010; Omura et al., 1985; Qian et al., 1990).

Unlike previous observations using the data in the outer magnetosphere we report EMIC wave-associated 
He+ heating inside the plasmasphere. Our observations provide a clear correlation between the EMIC wave 
activity and low-energy (1–10 eV) He+ flux enhancement (Figure 3). Comparing the ratio of the helium 
( He
J ) to proton ( H

J ) fluxes integrated over the energy range of 1–10 eV, we confirmed that He
J  is more en-

hanced than H
J  during EMIC wave activity and that the peaks of the enhanced He

J  appear at the time of 

the peaks of He-band and H-band wave power without a significant time delay (Figure 4). We also showed 
that He

J  is mostly enhanced in a direction perpendicular to the magnetic field rather than in a field-aligned 

direction (Figure 3). These observations indicate that the cold He+ ions below 1 eV are preferentially and 
transversely heated up to 10 eV by the EMIC waves.

To gain more information on pitch angle distribution characteristics of low-energy He+ ions during the 
wave activity, we plot differential He+ fluxes from selected energy channels below 10 eV, as a function of 
time and pitch angle, with the EMIC wave power in Figure 6. The thick white bar in Figure 6d indicates 
the interval when the He-band wave power is over 10−1 nT2 (see Figure 3). As noted above, there are strong 
fluxes during the interval when the H-band and He-band wave powers are enhanced. They occurred over a 
range of pitch angles from 45° and 120°, representing that the He+ flux has asymmetric pitch angle distribu-
tions about a pitch angle at 90°. For 1.0 and 1.5-eV He+ ions, the flux intensity above 90° pitch angle is larger 
than that below 90° pitch angle, and there is a flux gap near at 90° pitch angle. This pitch angle distribution 
is similar to previous observations of X-type He+ distributions reported by Anderson and Fuselier (1994), 
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who suggested that the X-type distribution is due to a gyroresonant interaction at a point off the magnetic 
equator where the wave frequency approached the local He+ gyrofrequency. However, the 3.0-eV He+ ions 
have strong flux at 90° pitch angle without a gap. Inspection of the selected low-energy He+ channels indi-
cates that pitch angle distributions of He+ ions heated by EMIC waves show different features at different 
energy channels.

There are previous theoretical studies of cold He+ heating by EMIC waves in the band below or above He
f  

(Gendrin & Roux, 1980; Omidi et al., 2010;Omura et al., 1985; Qian et al., 1990). Gendrin and Roux (1980) 
suggested that He-band waves could energize cold He+ ions by gyroresonant interaction ( He

Ω  = ω – kv∥, 

where k is the wave number and v∥ is the parallel velocity of the He+ ion). Fu et al. (2016) examined the 
excitation and saturation of EMIC waves using hybrid simulations. In their simulations, cold protons are 
weakly heated in the direction perpendicular to the background magnetic field when the generated EMIC 
waves saturate, and cold helium ions have been heated by more than 40 times in the perpendicular direction 
at the end of the simulation. These simulation results provide that EMIC waves contribute to the high-ener-
gy particle scattering and low-energy particle heating. Although Fu et al. (2016) suggest that the low-energy 
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Figure 6.  (a–d) Differential He+ fluxes from selected energy channels below 10 eV, as a function of time and pitch 
angle.
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particle heating is due to the cyclotron resonance at He
f , they did not discuss which band waves of EMIC 

waves are more effective contributor to the cold He+ ion heating.

AMPTE/CCE observations in the outer magnetosphere have shown that low-energy He+ ion heating occurs 
more frequently during periods of strong H-band EMIC wave activity rather than He-band wave activity 
interval (Anderson & Fuselier, 1994). For H-band waves, the gyroresonant heating of cold He+ ions would 
occur off the equator because the helium gyrofrequency increases with latitude in the real magnetosphere 
as the waves generated in the equatorial region propagate toward higher magnetic latitudes. These waves 
are left-handed from the cutoff frequency up to the crossover frequency and converted into the right-handed 
mode at the local crossover frequency (Roux et al., 1982;Young et al., 1981). The waves should penetrate the 
stop band between the cutoff frequency and the helium gyrofrequency to reach the helium gyrofrequency. 
Thus, they are observed as a right-hand mode near the equatorial region after reflecting at the bi-ion fre-
quency above the helium gyrofrequency (Kim & Johnson, 2016; Roux et al., 1982; Thorne & Horne, 1993). 
Supporting evidence for the resonant heating of He+ was provided from the ATS-6 satellite observations at 
geosynchronous orbit off the magnetic equator (MLAT = ∼10°) (Mauk & McPherron, 1980). The evidence 
includes that the He+ ion fluxes are gyrophase bunched by the EMIC wave events for which frequencies 
normalized to the local proton gyrofrequency were 0.1 (He-band) and 0.33 (H-band), representing that He+ 
ions are heated by H-band and/or He-band EMIC waves. The ATS-6 satellite observations provided that the 
He-band waves were left-handed and the H-band waves were right-handed.

To determine the properties of EMIC waves, which appeared coincidentally with low-energy He+ flux en-
hancement, we examine the polarization and ellipticity of transverse magnetic field perturbations δBx and δBy 
during the interval shown in Figure 3, and the results are plotted in Figure 7. We used the method described 
by Fowler et al. (1967) for the polarization analysis. The degree of polarization (Figure 7c) and ellipticity (Fig-
ure 7d) are defined in the two-dimensional spectral matrix constructed from the Fourier transform of the δBx 
and δBy time series. The ellipticity in Figure 7d is shown only for the frequency at which the degree of polari-
zation is higher than 80%. The ellipticity is defined to be negative (positive) if the magnetic field perturbation 
rotates clockwise (counterclockwise) in the δBx–δBy plane, that is, corresponding to left-handed (right-handed) 
polarization. The degree of polarization is enhanced in the band occupied by the He-band waves, but the high 
degree of polarization (>80%) is not shown in the entire band. The ellipticity corresponding to the high degree 
of polarization is mostly below zero, indicating left-handed polarization. The H-band wave does not show the 
high degree of polarization for the wave activity interval. This observation leads us to conclude that the He-
band EMIC waves are the effective contributor to the cold He+ ion heating.

Young et al.  (1981) observed that EMIC waves are clearly associated with the abundance of low-energy 
( ≤110 eV) He+ ions and suggested that the enhanced He+ concentration promotes EMIC wave growth. To 
examine whether the enhanced low-energy He+ ions observed at Van Allen Probe A play some sort of cat-
alytic role in the growth of EMIC waves, we calculate the growth rate of EMIC waves for a plasma compo-
sition assumed to be cold protons (89%), cold helium ions (10%), and energetic protons (1%). The energetic 
proton populations are considered to be T⊥/T∥ = 2.0 for two parallel energies of 10 and 33 keV. The observed 
values of the cold plasma density (Ne = 165 cm−3) and background magnetic field intensity (BT = 210 nT) for 
the interval of 11:24–11:25 UT at Van Allen Probe A are used for the calculation. It should be noted that 1% 
energetic protons assumed here is overestimated when the proton fluxes above 10 keV are compared with 
proton and helium fluxes below 10 eV in the HOPE data (see Figures 2 and 4).

In Figure 8a, the calculated growth rates are plotted against the frequency normalized to H
f . The magni-

tude of the peak growth rate in the He-band is significantly greater than that in the H-band for the parallel 
energy of 33 keV. This is consistent with the observations of strong He-band and weak H-band EMIC waves 
near the magnetic equator. The calculated frequency is 0.1 H

f  at the peak growth rate. As the parallel ener-

gy of the energetic protons is reduced to 10 keV, the He-band wave growth rate decreases, and the peak in 
the growth rate is shifted to higher normalized frequency of 0.14 H

f . The peak growth rate of the H-band 

for 10 keV is comparable to that for 33 keV with a small shift toward higher frequency. It is likely that the 
growth rate of the H-band wave is hardly affected by parallel energies of energetic protons.

Figure 8b shows the result considering 0.4% warm He+ ions, 88.6% cold protons, 10% cold helium ions, and 
1% energetic protons. BT, Ne, and the energy and anisotropy factor of the energetic protons are the same as 
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those used to calculate the result shown in Figure 8a. The warm He+ population consists of the enhanced 
low-energy He+ ions at temperatures of 10 eV and 0.7 cm−3 observed at Van Allen Probe A. The tempera-
ture anisotropy T⊥/T∥ for the warm He+ ions is assumed to be 5 because the enhanced He+ flux is mostly 
observed in the direction to the background magnetic field. The wave growth rate considering the presence 
of 0.4% warm He+ ions is nearly identical to the result calculated with only cold ions and energetic protons, 
indicating that the low-energy He+ ions do not promote wave growth. Thus, we suggest that the enhance-
ment of the low-energy He+ ions (∼10 eV) is due to preferential heating of cold He+ (<1 eV) by EMIC waves 
(Mauk, 1982a; Qian et al., 1990).

5.  Conclusions
Our case study showed a clear correlation between the EMIC wave activity and low-energy He+ flux en-
hancement in the direction perpendicular to the ambient magnetic field, providing evidence that cold He+ 
ions (<1 eV) are transversely heated up to 10 eV through the interaction with EMIC waves. The EMIC waves 
were observed at Van Allen Probe A with a strong spectral intensity in the He-band and weak intensity in 
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Figure 7.  Transverse (a) δBx and (b) δBy dynamic spectra. (c) The degree of polarization, and (d) ellipticity defined in 
the two-dimensional spectral matrix constructed from the δBx and δBy time series.
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the H-band when the spacecraft was just inside the plasmapause near the magnetic equator. Previous theo-
retical studies suggested that cold He+ ions can be heated by H-band and/or He-band EMIC waves. In our 
case it is likely that He-band waves play a key role in heating the cold He+ ions.

The case event in our study shows that the He+ ions heated up to 10 eV. This energy is lower than that in the 
previous studies. Since the present study is based on only one event observed on a single Van Allen Probe 
A pass inside the plasmasphere, we cannot generalize the quantitative argument for the question: What is a 
critical factor for the EMIC wave-driven He+ heating? To answer the question, we need to observe the EMIC 
wave-associated He+ heating events at various latitudes, longitudes, and radial distances and under various 
background plasma and magnetic field conditions. Currently, we statistically examine the relationship be-
tween EMIC He-band waves and cold ion heating, and the results will be presented in a related publication.

Data Availability Statement
The Van Allen Probe A EMFISIS data were obtained from the University of Iowa (http://emfisis.physics.
uiowa.edu), and the Van Allen Probe A HOPE data were obtained from the Van Allen Probes ECT web-
site (https://www.rbsp-ect.lanl.gov/science/DataDirectories.php/). NOAA-15 data are available at https://
cdaweb.gsfc.nasa.gov.
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