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Surface roughness signatures of summer arctic snow-covered sea ice in X-band
dual-polarimetric SAR
Hyangsun Han a,b, Jae-In Kim b, Chang-Uk Hyunb, Seung Hee Kim b, Jeong-Won Parkb, Young-Joo Kwon b,
Sungjae Lee b, Sanggyun Leec and Hyun-Cheol Kim b

aDivision of Geology & Geophysics, Kangwon National University, Chuncheon, Republic of Korea; bUnit of Arctic Sea–Ice Prediction, Korea Polar
Research Institute, Incheon, Republic of Korea; cCentre for Polar Observation and Modelling, University College London, London, UK

ABSTRACT
Surface roughness of sea ice is primary information for understanding sea ice dynamics and air–
ice–ocean interactions. Synthetic aperture radar (SAR) is a powerful tool for investigating sea ice
surface roughness owing to the high sensitivity of its signal to surface structures. In this study, we
explored the surface roughness signatures of the summer Arctic snow-covered first-year sea ice in
X-band dual-polarimetric SAR in terms of the root mean square (RMS) height. Two ice campaigns
were conducted for the first-year sea ice with dry snow cover in the marginal ice zone of the
Chukchi Sea in August 2017 and August 2018, from which high-resolution (4 cm) digital surface
models (DSMs) of the sea ice were derived with the help of a terrestrial laser scanner to obtain the
in situ RMS height. X-band dual-polarimetric (HH and VV) SAR data (3 m spatial resolution) were
obtained for the 2017 campaign, at a high incidence angle (49.5°) of TerraSAR-X, and for the 2018
campaign, at a mid-incidence angle (36.1°) of TanDEM-X 1–2 days after the acquisition of the DSMs.
The sea ice drifted during the time between the SAR and DSM acquisitions. As it is difficult to
directly co-register the DSM to SAR owing to the difference in spatial resolution, the two datasets
were geometrically matched using unmanned aerial vehicle (4 cm resolution) and helicopter-borne
(30 cm resolution) photographs acquired as part of the ice campaigns. A total of five dual-
polarimetric SAR features―backscattering coefficients at HH and VV polarizations, co-
polarization ratio, co-polarization phase difference, and co-polarization correlation coefficient
―were computed from the dual-polarimetric SAR data and compared to the RMS height of the
sea ice, which showed macroscale surface roughness. All the SAR features obtained at the high
incidence angle were statistically weakly correlated with the RMS height of the sea ice, possibly
influenced by the low backscattering close to the noise level that is attributed to the high incidence
angle. The SAR features at the mid-incidence angle showed a statistically significant correlation
with the RMS height of the sea ice, with Spearman’s correlation coefficient being higher than 0.7,
except for the co-polarization ratio. Among the intensity-based and polarimetry-based SAR fea-
tures, HH-polarized backscattering and co-polarization phase difference were analyzed to be the
most sensitive to the macroscale RMS height of the sea ice. Our results show that the X-band dual-
polarimetric SAR at mid-incidence angle exhibits potential for estimation of the macroscale surface
roughness of the first-year sea ice with dry snow cover in summer.
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1. Introduction

Surface roughness is a key indicator of the type and
thickness of sea ice (Scharien and Yackel 2005; Von
Saldern, Haas, and Dierking 2006; Peterson,
Prinsenberg, and Holladay 2008; Kim, Kim, and Hwang
2012; Fors et al. 2016a). Sea ice surface roughness also
impacts ice-albedo feedback and contributes to the
changes in the solar energy input to sea ice and the
formation of melt ponds, which are common features
of the summer Arctic sea ice surface (Eicken et al. 2004;
Scharien and Yackel 2005). The surface roughness of sea
ice is related to the air–ice and ice–water drag coeffi-
cients (Andreas et al. 1993; Fisher and Lytle 1998; Lu et al.

2011; Castellani et al. 2014), which are important para-
meters for determining the momentum balance of sea
ice and improving global climate prediction models
(Lüpkes et al. 2012, 2013; Castellani et al. 2018).
Therefore, observing the surface roughness of sea ice is
crucial for a better understanding of the dynamics of sea
ice cover and its impact on global climate change.

Satellite remote sensing has been widely used in the
observation of sea ice surface roughness. In optical
remote sensing, surface roughness is one of the factors
influencing the spectral signatures of sea ice (Nolin,
Fetterer, and Scambos 2002; Nolin and Mar 2019).
However, these optical images are useless on cloudy
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days and at night. Microwave remote sensing can
observe the earth’s surface, regardless of the weather
conditions and the altitude of the sun; thus, it can be
more useful in investigating sea ice surface roughness
than optical remote sensing. In several studies, sea ice
roughness has been analyzed with passive microwave
sensors owing to the fact that it impacts the properties
of microwave radiation (Stroeve et al. 2006; Hong 2010;
Hong and Shin 2010; Bi et al. 2013; Gupta et al. 2014; Kim
et al. 2015). Although passive microwave sensors can
cover the whole Arctic and Antarctica every day, their
low spatial resolution (~25 km) is a limiting factor in
spatially precise investigation of sea ice surface
roughness.

Synthetic aperture radar (SAR), an active microwave
remote sensing system, can be useful in the investiga-
tion of sea ice surface roughness because the backscat-
tered radar signals are sensitive to surface structural
characteristics. SAR can provide information regarding
sea ice with a higher spatial resolution (<100 m) than
passive microwave sensors and other spaceborne active
microwave remote sensing sensors, such as scatterom-
eters (a few kilometers) and radar altimeters (a few
hundred meters). Spaceborne microwave scatterom-
eters and radar altimeters also measure the radar return
signals from sea ice and provide information on the ice
surface characteristics (Swift 1999; Swan and Long 2012;
Kurz, Galin, and Studinger 2014), but their lower spatial
resolution is insufficient for an accurate investigation of
surface roughness.

Current SAR satellites acquiring multi-polarization
data, such as TerraSAR-X, TanDEM-X, Radarsat-2, and
ALOS-2, have provided various polarimetric parameters
that represent the physical properties of targets. In the
field of sea ice, polarimetric SARs have been widely used
for ice/water discrimination (Geldsetzer and Yackel 2009;
Leigh, Wang, and Clausi 2014; Zakhvatkina et al. 2017),
classification of sea ice type (Gill and Yackel 2012;
Dabboor and Geldsetzer 2014; Ressel, Frost, and Lehner
2015; Fors et al. 2016a; Ressel et al. 2016), estimation of
sea ice thickness (Nakamura et al. 2006, 2009; Kim, Kim,
and Hwang 2012; Zhang et al. 2016), and detection of
melt ponds (Scharien, Landy, and Barber 2014; Han et al.
2016; Ramjan et al. 2018). Several studies have used
airborne (Wakabayashi et al. 2004; Nakamura et al.
2006) and shipborne (Gupta, Scharien, and Barber
2013) polarimetric SAR data in sea ice surface roughness
investigations, but few studies have been performed
based on satellite polarimetric SAR. A recent study inves-
tigated the sea ice surface roughness by using the fully
polarimetric Radarsat-2 C-band SAR (Fors et al. 2016b).
Most of the studies on sea ice roughness based on
satellite SARs were conducted using single-polarization

data (Scharien and Yackel 2005; Dierking and Busche
2006; Peterson, Prinsenberg, and Holladay 2008; Toyota
et al. 2011; Liu et al. 2015). Although radar backscatter-
ing is sensitive to ice surface morphology, single-
polarized signals are less efficient in investigating sea
ice roughness than multi-polarized ones because they
provide insufficient information about the surface struc-
tures of the ice. Moreover, most of the previous studies
were conducted near the coast, and offshore sea ice was
hardly investigated. This is because it is difficult to access
offshore sea ice and acquire the in situ surface rough-
ness, which is essential for validating the remote sen-
sing-based estimation.

X-band polarimetric SAR can be more useful for the
investigation of sea ice surface roughness than C- and
L-band SARs because it involves shorter wavelengths
and the measured radar signals reflect more ice surface
structures owing to the smaller penetration depth of the
electromagnetic radiation. However, few studies on the
interactions of X-band polarimetric SAR signals with sea
ice surface roughness have been conducted so far. An
operational spaceborne X-band SAR, such as TerraSAR-X
or TanDEM-X, is capable of making polarimetric observa-
tions, and its use in sea ice observations is increasing
(Eriksson et al. 2010; Fors et al. 2016a; Han et al. 2016;
Ressel et al. 2016; Ressel and Singha 2016; Johansson
et al. 2018). Through the use of spaceborne X-band
polarimetric SAR, we can obtain a greater knowledge
of sea ice surface roughness.

Radar backscattering signatures of sea ice can vary
depending on the radar incidence angle, which signifi-
cantly influences the investigation of sea ice based on
SAR data (Mäkynen et al. 2002; Mäkynen and Hallikainen
2004; Moen et al. 2015; Fors et al. 2016b; Han et al. 2016;
Lang et al. 2016; Mäkynen and Karvonen 2017).
Therefore, it is important to analyze the effects of the
different radar incidence angles on the radar backscat-
tering signatures of sea ice roughness. However, to the
best of our knowledge, no study has yet been performed
with spaceborne X-band polarimetric SAR signals for sea
ice surface roughness based on different radar incidence
angles.

In this study, we analyzed the surface roughness
signatures of snow-covered first-year sea ice in terms
of the root mean square (RMS) height, which is defined
as the standard deviation of the vertical profile of the
surface elevation from the mean, in X-band dual-
polarimetric SAR, at offshore marginal ice zone (MIZ) in
summer by using TerraSAR-X (TSX) and TanDEM-X (TDX)
dual-polarization (HH and VV) scenes with different inci-
dence angles and a terrestrial laser scanner. RMS height
is a representative measure of sea ice surface roughness
in remote sensing with SAR (Fors et al. 2016b). In X-band,
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the backscattering signals are more significantly depen-
dent on the RMS height than on the surface correlation
length which is another representative surface rough-
ness parameter (Singh et al. 2003), except at low inci-
dence angles. The in situ RMS height of sea ice measured
from the laser scanner was compared to the X-band
dual-polarimetric SAR features. We then investigated
the relationship between the X-band dual-polarimetric
SAR features and the RMS height of sea ice, and evalu-
ated the potential of X-band dual polarimetry in the
estimation of the surface roughness of snow-covered
first-year sea ice in MIZ in summer.

2. Materials

2.1. Digital surface models (DSMs) of sea ice
derived using a terrestrial laser scanner

To obtain the in situ RMS height of the sea ice surface,
we explored the MIZ in the Chukchi Sea in August 2017
and August 2018 (Figure 1) by using the Korean ice-
breaking research vehicle (IBRV) Araon, and performed
experiments with a terrestrial 3D laser scanner, FARO

Focus3D X130, on the snow-covered sea ice floes
(Figure 2). The terrestrial laser scanner measures the
distance to the target and produces the 3D geometry
from an assembly of millions of measurement points.
Photorealistic true-color 3D images of the measurement
target are simultaneously captured by an integrated
camera. The maximum scan range and the systematic
ranging error of the FARO Focus3D X130 are 130 m and
within ±2 mm at 25 m distance, respectively (Table 1;
FARO Technologies Inc 2014). The distance between
scan points is dependent on the number of points
(point cloud) measured during a scan, and is typically
a few millimeters, at a distance of 10 m. FARO Focus3D
X130 uses a laser of wavelength 1550 nm (shortwave
infrared), for which the reflectance of ice and snow is less
than 10% owing to strong absorption (Deems, Painter,
and Finnegan 2013). Nevertheless, the reflected signals
of the shortwave infrared radiation mostly originate
from the snow/air interface, which represents an
advancement in the measurement of the surface rough-
ness of snow-covered sea ice, compared to the other
wavelengths used for laser scanning such as visible and
infrared (Deems, Painter, and Finnegan 2013).

Figure 1. Map of the locations of the two sea ice campaigns conducted in August 2017 and August 2018. The yellow and white boxes
correspond to the imaging areas of TerraSAR-X (TSX) in 2017 and TanDEM-X (TDX) in 2018, respectively. The black dots inside the
boxes indicate the locations of the sea ice campaigns.
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The 3D laser scanner experiments were conducted
from 13 August 2017 22:55 Coordinated Universal Time
(UTC) to 14 August 2017 01:11 UTC for the 2017 ice
campaign, and from 22:08 UTC to 23:48 UTC on
16 August 2018 for the 2018 ice campaign. The 3D
measurement points were acquired within an area of
approximately 150 m × 100 m in both the campaigns.
The height values of the 3D measurements were deter-
mined by the altitudes of point clouds, which were
measured by the embedded barometric height sensor
of the laser scanner. We carried out several scans at
different locations, with the distance between succes-
sive locations being less than 50 m, and mosaicked them
to cover the whole investigated area. This is because the
maximum scan range of the used laser scanner is 130 m,
but the reflectance of the shortwave infrared radiation of
snow and ice is low, and the signals reflected from far
away could not be measured. In addition, this procedure
can minimize the occluded areas behind ice ridges,
where the slope is steeper than the laser depression
angle. Each scan was conducted for approximately
20 min, and it took about 1.5 h to cover the whole
investigated area in each ice campaign. The mosaic of
the scans was produced by matching the 3D points of
the reference objects (white spheres with a high reflec-
tance) measured in different scans that overlapped with

each other. In this mosaic process, the changes in the
absolute locations and heights of the scanner between
experiments due to sea ice drift and tidal variations can
be neglected.

The distributions of the surface heights of sea ice
measured by the terrestrial 3D laser scanner in 2017
and 2018 are shown in Figure 3, where they are pre-
sented as probability density functions. The surface
height represents the height above the ice level. Most
surface height values varied between 0 and 0.8 m for
2017, with a mode of 0.16 m (Figure 3(a)). Meanwhile,
the surface height values for 2018 were mainly distrib-
uted between 0 and 0.4 m, with a mode of 0.15 m (Figure
3(b)). A DSM of the snow-covered sea ice was generated
with a grid spacing of 4 cm from the 3D measurement
points for each ice campaign (Figure 4). The DSMs
derived from the 3D measurements revealed several
gaps with no data. The gaps are attributed to the sparse
3D measurement points on occluded areas and melt
ponds, which display very low reflectivity of shortwave
infrared radiation.

2.2. TSX and TDX dual-polarimetric SAR data

TSX and TDX, operated by the German Aerospace
Center, are equipped with X-band SAR with a center
frequency of 9.65 GHz. The TDX is a twin of the TSX
and used to measure the accurate elevation of the
earth by supplementing the TSX observations. TSX and
TDX provide high-resolution images in six different ima-
ging modes with different spatial resolutions: 0.25 m in
staring spotlight, 1 m in high-resolution spotlight, 2 m in
spotlight, 3 m in the stripmap, 18 m in ScanSAR, and
40 m in ScanSAR wide mode (Werninghaus and
Buckreuss 2010). The different imaging modes exhibit

Figure 2. Pictures of (a) the terrestrial 3D laser scanner experiment during the sea ice campaigns and (b) a snow pit with a width and
length of ~10 cm and a depth of 15 cm for the hand test of the snow.

Table 1. Specifications of the terrestrial 3D laser scanner FARO
focus3D X130 (FARO Technologies Inc 2014).
Parameter Value

Range 0.6–130 m
Maximum measurement speed 976,000 points/s
Ranging error ±2 mm at 25 m
Vertical/horizontal field of view 300°/360°
Vertical/horizontal step size 0.009°/0.009°
Observation wavelength 1550 nm
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different spatial coverages, and the coverage is larger for
a lower resolution mode. The nominal revisit cycle of the
satellites is 11 days. Among the six imaging modes, high-
resolution spotlight, spotlight, and stripmap mode can
provide dual-polarimetric data, whereas the others pro-
vide single-polarization data only. In this study, TSX and
TDX dual-polarimetric (HH and VV) SAR images were
acquired in the stripmap mode for the 2017 and 2018
sea ice campaigns on 16 August 2017 and
22 August 2018, respectively (Figure 5). Table 2 shows
the details of the TSX and TDX SAR data used in this
study. The TSX and TDX SAR data were acquired at
different incidence angles: a high incidence angle of
49.5° at the location of the center of the 2017 campaign,
and a mid-incidence angle of 36.1° at the location of the
center of 2018 campaign.

The TSX and TDX dual-polarimetric SAR data were
delivered in single look slant range complex (SSC) for-
mat. We applied a 5 × 5 Lee filter to the SSC data in order
to reduce speckle noise. Then, the backscattering coeffi-
cients and polarimetric features were computed from

the filtered data. Pixels with a backscattering coefficient
below the noise equivalent sigma zero (NESZ) were dis-
carded from the analysis. A detailed description of the
computation of the polarimetric features is given in
Section 3.

2.3. Helicopter-borne and unmanned aerial vehicle
(UAV) photographs

The TSX and TDX SAR data were acquired 1–2 days after
the 3D laser scanning experiments. As sea ice continu-
ously drifted, the locations of ice floes during the laser
scanning experiments and during SAR data acquisition
were different owing to the time differences. The SAR
features and DSMs should be co-registered to investi-
gate the surface roughness of sea ice, which is reflected
in the polarimetric SAR. However, co-registration
between the two datasets is difficult because the fine
surface features observed in the DSMs (or in true-color
images with the same geometry as the DSMs derived

Figure 3. Distributions of surface heights above the ice level for the investigated sea ice, measured by a terrestrial 3D laser scanner as
part of (a) 2017 and (b) 2018 sea ice campaigns.

Figure 4. DSMs of the investigated sea ice, generated from the (a) 2017 and (b) 2018 sea ice campaigns. The surface heights of the
DSMs show the elevations above the sea ice level.
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from the scanner) are invisible in the SAR images, which
is attributed to the much lower spatial resolution (3 m).

We obtained helicopter (BELL 206 L-3)-borne and
UAV (DJI Phantom 4) true-color images with spatial
resolutions of 30 and 4 cm, respectively (Hyun et al.
2019; Kim et al. 2019), for the sea ice of each campaign
(Figure 6). These airborne images were ortho-mosaicked
and used for the co-registration between the DSMs and
the SAR data. Tables 3 and 4 show the specifications of
the helicopter-borne and UAV imaging setups, respec-
tively (Hyun et al. 2019; Kim et al. 2019). Small sea ice

surface features, such as small ridges, are observed in the
3D laser scanning measurements, whereas ponds that
are several tens of centimeters in length and width
appear in the UAV images; larger features can be seen
in both the UAV and helicopter-borne images.
Furthermore, large surface features that are several
tens of meters in length and width, such as large melt
ponds, channels of the melt ponds, cracks, and the IBRV
Araon, can be observed in both the helicopter-borne
and SAR amplitude images. This shows that co-
registration between SAR and helicopter-borne images,
helicopter-borne and UAV images, and UAV images and
DSMs is possible. This consecutive image co-registration
process enables geometric registration between DSMs
and SAR data.

2.4. Sea ice conditions

Figure 7 shows the temporal changes in the air tempera-
ture, wind speed, and relative humidity for the two ice
campaigns that were measured by a meteorological sen-
sor mounted at the foremast of IBRV Araon and pre-
dicted by ERA-Interim reanalysis data (Dee et al. 2011).
After ice campaign on 14 August 2017, the IBRV Araon

Figure 5. (a) TerraSAR-X HH-polarized backscattering coefficient image acquired on 16 August 2017. (b) TanDEM-X HH-polarized
backscattering coefficient image obtained on 22 August 2018. The red dots represent the locations of the two sea ice campaigns.

Table 2. Specifications of the TSX and TDX dual-polarimetric SAR
data used in this study.

Parameter
2017 sea ice
campaign

2018 sea ice
campaign

Satellite TSX TDX
Center frequency (GHz) 9.65 GHz (X-band)
Date 16 August 2017 22 August 2018
Time (UTC) 18:49 03:47
Acquisition mode Stripmap
Polarization HH/VV
Incidence angle
(at the center of the study area)

49.5º 36.1º

Noise equivalent sigma zero
(NESZ)

−19.86 dB −23.63 dB
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left the investigated ice floe, and the weather conditions
in the area of study could not be measured by using the
meteorological sensor. Therefore, we used the 6-hr fields
of the ERA-Interim reanalysis data with a grid size of
0.125° × 0.125°. The meteorological parameters pre-
dicted by the ERA-Interim reanalysis data for the 2017
ice campaign are depicted as dotted lines in Figure 7.
The ERA-Interim reanalysis data have been widely used
to study weather conditions and their changes in the
Arctic (Bengtsson et al. 2011; Maksimovich and Vihma
2012; Kapsch et al. 2014; Mortin et al. 2016; Han and Kim
2018). Even though the ERA-Interim reanalysis data have
coarse spatial and temporal resolutions, the predicted
summer wind speed (Lindsay et al. 2014; Wesslén et al.
2014), relative humidity (Wesslén et al. 2014), and air
temperature when it is higher than −25°C (Wang et al.
2019) in the Arctic Ocean were reported to be in good
agreement with in situ observations. For the 2017 ice
campaign, the reanalysis fields showed small root mean
square deviations of 0.76°C, 5.95%, and 2.17 m/s for air
temperature, relative humidity, and wind speed, respec-
tively, when compared with measurements of the
meteorological sensor before 15 August 2017.
Therefore, the ERA-Interim reanalysis fields can be ade-
quately used for weather analysis during the period
without in situ meteorological measurements. The rela-
tive humidity on 13 August 2017 from the reanalysis
fields was 10–15% higher than that measured by the

Figure 6. (a and d) Mosaics derived from UAV images, (b and e) mosaics derived from helicopter-borne images, and (c and f) TSX and
TDX HH-polarized backscattering coefficient images corresponding to the areas of the helicopter-borne mosaics. The upper and lower
images were acquired for the 2017 and 2018 sea ice campaigns, respectively. The red and blue polygons in (b), (c), (e), and (f)
correspond to the areas of 3D laser scanning experiments and UAV imaging, respectively.

Table 3. Specifications of the helicopter-borne imaging
setup.
Helicopter-borne imaging
setup

2017 sea ice
campaign

2018 sea ice
campaign

Start time of image
acquisition (UTC)

13 August 2017
23:48:37

21 August 2018
22:28:59

End time of image acquisition
(UTC)

14 August 2017
01:03:00

21 August 2018
23:06:16

Altitude of imaging location Up to 2407 m Up to 622 m
Digital camera Canon EOS M6
Image acquisition interval 1 s
Focal length 22 mm
Aperture F11
Shutter speed Varies between

1/1000 and
1/3200

Varies between
1/250 and
1/2000

ISO 400

Table 4. Specifications of the UAV imaging setup.

UAV imaging setup
2017 sea ice
campaign

2018 sea ice
campaign

Start time of image
acquisition (UTC)

13 August 2017
22:13:38

22 August 2018
00:55:56

End time of image acquisition
(UTC)

13 August 2017
22:17:11

22 August 2018
01:00:02

Altitude of imaging location Up to 53 m Up to 45 m
Digital camera DJI FC330 DJI FC6310
Image acquisition interval 9 s 2 s
Focal length 3.6 mm 8.8 mm
Aperture F2.8 F7.1
Shutter speed 1/3333 s 1/1250 s
ISO 100
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meteorological sensor mounted at the IBRV Araon. This
was possibly due to the low temporal resolution of the
ERA-Interim data. The relative humidity was higher than
80% during the ice campaigns. Nevertheless, the air was
dry because the saturated water vapor was low at the
low temperatures.

The drilling-derived sea ice thickness was 1.00 and
1.01 m in the 2017 and 2018 ice campaigns, respectively,
which suggest that it was most likely first-year sea ice.
The ice floes in the study area in both ice campaigns
were covered with 10–37 cm depth of snow, which was
measured using a ruler at the locations of the laser
scanning experiments. We could not quantitatively
determine the wetness of the snow cover on sea ice
because the snow properties were not measured, except
for the depth. The snow condition in both ice campaigns
was estimated by hand test. The hand test was con-
ducted both at the surface and in a snow pit (Figure 2
(b)). The snow was loose from the surface to the bottom
of the pit and did not stick together well, suggesting that
the entire snow cover on the sea ice was dry. Snow on
the sea ice can melt rapidly in summer and become wet.
However, if the air temperature drops sharply, the snow
can refreeze and have a very low level of wetness. During
the sea ice campaigns, the air temperature tended to
decrease the day prior to the field survey (Figure 7(a-b)).
In particular, during the 2018 sea ice campaign, the air
temperature was observed to drop sharply from 0°C to
−4°C for 12 hours the day prior to the field survey (Figure

7(b)). This suggests the possibility that the snow cover
on the sea ice refroze prior to the survey and, therefore,
became dry.

3. Methodology

This section presents the methodology for computing
the SAR features from the TSX and TDX dual-polarimetric
data and a comparison of these features with the RMS
height of the snow-covered first-year sea ice measured
by the terrestrial 3D laser scanner. Figure 8 shows
a flowchart of data processing.

3.1. Computation of SAR features from TSX and
TDX dual-polarimetric data

For this study, we used a 2 × 2 coherency matrix (T2) for
the TSX and TDX dual-polarimetric SAR data (Lee and
Pottier 2009):

T2 ¼ 1ffiffiffi
2

p < SHH þ SVVj j2 > < SHH þ SVVð Þ SHH � SVVð Þ� >
< SHH � SVVð Þ SHH þ SVVð Þ� > < SHH � SVVj j2 >

� �

(1)

where SPP is the element of the complex scattering
matrix and the superscript * indicates complex conjuga-
tion. The subscript PP indicates transmitted and received
polarizations and < > represents the ensemble average
of the complex product. The backscattering coefficients
for HH (σ0HH) and VV (σ0VV ) polarizations in the decibel

Figure 7. Temporal variations in the (a and b) air temperature, (c and d) wind speed, and (e and f) humidity for the 2017 and 2018 sea
ice campaigns. In (a), (c), and (e), the solid and dotted lines indicate the measurements of the meteorological sensor mounted on IBRV
Araon and the predictions based on the ERA-Interim reanalysis fields, respectively. The gray-colored shadowing boxes and the vertical
dotted lines indicate the times of terrestrial 3D laser scanning experiments and SAR data acquisitions, respectively.

8 H. HAN ET AL.



scale (dB) were derived from the filtered SSC data. In
addition to σ0HH and σ0VV , three features―co-polarization
ratio in dB, co-polarization phase difference, and co-
polarization correlation coefficient ―were derived from
the TSX and TDX dual-polarimetric SAR data. The co-
polarization ratio (γVVHH), co-polarization phase differ-
ence (φ), and co-polarization correlation coefficient (ρ)
were calculated as

γVVHH ¼ < SVVS�VV >
< SHHS�HH >

(2)

φ ¼ tan�1 im< SHHS�VV >
re< SHHS�VV >

� �
(3)

ρ ¼ < SHHS�VV >ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
< SHHS�HHSVVS

�
VV >

p
�����

����� (4)

where | | stands for the modulus of the complex product.
The SAR features for the two ice campaigns derived

from the X-band dual-polarimetric data are shown in
Figure 9. All the SAR features were projected onto
a Universal Transverse Mercator (UTM) projection (Zone
60 North for the 2017 campaign and Zone 3 North for
the 2018 campaign) with a spatial resolution of 3 m.

3.2. Co-registration of DSMs and SAR features

TheDSMsderived from the3D laser scannerwereprojected
onto the same geometry as the SAR features using the
information of scanner positions that were determined by
a ground-positioning system sensor that was integrated

into the scanner. Although the DSMs and SAR features
were projected onto the same projection, they should be
co-registered owing to the continuous drift of sea ice dur-
ing the time between the two data acquisitions.

As the surface features observed in the DSMs are not
easily seen in the SAR intensity images, owing to the
difference in spatial resolution, we used the helicopter-
borne and UAV images to enable co-registration of the
two datasets. In this study, the thin plate spline method
(Goshtasby 1988) was used for co-registration of differ-
ent images in 2-D (x- and y-coordinate). The thin plate
spline method, which has been widely used for image
transformation, interpolates a surface that passes
through a set of control points (CPs) with high accuracy
and speed. The thin plate spline method is appropriate
for the transformation of remote sensing images with
nonlinear and local geometric distortions and can
achieve high performance when a small number of CPs
are used (Bentoutou et al., 2005; Zagorchev and
Goshtasby 2006; Du et al. 2008). First, the helicopter-
borne and UAV images were ortho-mosaicked using
PhotoScan software (Agisoft LLC, St. Petersburg, Russia)
and Pix4D 4.1.24 software (Pix4D SA, Lausanne,
Switzerland), respectively, and projected onto the UTM
projection (e.g. the same projection with the DSMs and
SAR data for each ice campaign). Through visual inspec-
tion, we selected several CPs of textured ice surface
features (e.g. edges of melt ponds, cracks, and the IBRV
Araon) from the helicopter-borne mosaics and the TSX/
TDX HH-polarized amplitude images (6 CPs for 2017 and
8 CPs for 2018). The helicopter-borne mosaics were co-
registered to the SAR images using the thin plate spline

Figure 8. Process flow of the investigation of the surface roughness signatures of sea ice in TSX/TDX X-band dual-polarimetric SAR
features.
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method and the CPs. The RMS values of the residuals of
the CPs between the two datasets were calculated as
1.76 and 1.53 m for the 2017 and 2018 ice campaigns,
respectively. We then co-registered the UAV mosaics to

the helicopter-borne mosaics, which were geometrically
matched to the HH-polarized SAR amplitude images by
selecting 9 CPs for 2017 and 5 CPs for 2018, in which the
RMS values of the residuals of the CPs were calculated as

Figure 9. The SAR features investigated in this study. (a and b) Backscattering coefficient in HH polarization, (c and d) backscattering
coefficient in VV polarization, (e and f) co-polarization ratio, (g and h) co-polarization phase difference, and (i and j) co-polarization
correlation coefficient. The SAR features on the left are for the 2017 ice campaign and those on the right are for the 2018 ice campaign.
The red polygons correspond to the areas of 3D laser scanning experiments.
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0.44 and 0.13 m for 2017 and 2018, respectively. Finally,
the DSMs were co-registered to the transformed UAV
mosaics by selecting 15 CPs for 2017 and 12 CPs for
2018. The RMS values of the residuals of the CPs
between the DSMs and the UAVmosaics were calculated
as 0.36 and 0.06 m for the 2017 and 2018 ice campaigns,
respectively.

Through the consecutive co-registration process, the
DSMs were geometrically matched to the geometry of
the SAR features. The final errors of co-registration
between the DSMs and SAR data were estimated as
1.85 m for 2017 and 1.54 m for 2018 by considering
the propagated RMS values of the residuals of CPs that
were calculated from the consecutive image co-
registration process.

3.3. Correlation analysis of DSM-derived RMS
height and SAR features

The values of the RMS height of the snow-covered sea
ice were computed from the DSMs using a 375 × 375
pixel non-overlapping stepping window, which corre-
sponds to a rectangular area of 15 m × 15 m. If more
than 20% of no-data pixels were included in the
375 × 375 pixel window of the DSMs, the RMS height
was not computed for the given window and not used in
the analysis. We subsequently compared the RMS height
with each of the averaged SAR features that were com-
puted within a 5 × 5 pixel non-overlapping stepping
window for the corresponding area. We could have
made the grid size of the RMS height finer than
15 m × 15 m based on the very high resolution of the
SAR images and DSMs. Nevertheless, in the RMS height
investigation, the reasons for setting the grid size to
15 m × 15 m and not to the grid size of the SAR features
(3 m × 3 m) were to extract the number of samples
necessary for the analysis and to reduce the effect of co-
registration error of ~2 m between the DSMs and SAR
features in the comparison of the two datasets.

The RMS height measured by the terrestrial 3D laser
scanner represents the surface roughness of the snow
cover on sea ice and not that of the snow/ice interface.
The roughness of the snow cover may be different from
that of the snow/ice interface, especially for very smooth
or very rough ice (Manninen 1997; Johansson et al.
2017). Nevertheless, the RMS height of the snow cover
is strongly correlated with that of the ice under it and
can be used as an effective measure of the surface
roughness of snow-covered sea ice (Andreas et al.
1993). In this study, we assume that the surface rough-
ness of the snow cover on sea ice is equal to that of the
snow/ice interface, i.e. sea ice surface roughness. The
snow cover on sea ice in both ice campaigns was

estimated as dry based on hand test. For dry snow-
covered sea ice, microwave backscattering from a snow
surface can be negligible because of a very small differ-
ence in permittivity between air and snow (Kim, Onstott,
and Moore 1984; Nghiem et al. 1995). The volume scat-
tering from the snowpack is very small under dry snow
condition. Meanwhile, the permittivity contrast of the
snow/ice interface is much higher than that of the air/
snow interface and snowpack, and dominant microwave
backscattering occurs on the snow/ice interface (Kim,
Onstott, and Moore 1984; Nghiem et al. 1995). Dierking
(2013) and Paul et al. (2015) showed that the X-band
microwave is transparent to dry snowpack due to low
dielectric permittivity. The penetration depth of micro-
wave at X-band is about 1 m for dry snow (Dierking,
Lang, and Busche 2017; Ulaby, Moore, and Fung 1982).
The snow depth of both ice campaigns was measured at
10–37 cm, which could be transparent in the TerraSAR-X
and TanDEM-X observations. Therefore, the X-band SAR
signals can reflect the surface structure of sea ice and
can be compared to the RMS height measured by the
laser scanner.

The characteristics of the X-band dual-polarimetric
SAR features on the surface roughness of the snow-
covered sea ice were investigated by analyzing the 1:1
correlation between the RMS height values of the sea ice
surface and the SAR features. In this study, Spearman’s
rank correlation coefficient (R) was computed to estab-
lish the relationship between RMS height and SAR fea-
tures. Spearman’s rank correlation coefficient is a non-
parametric statistic for measuring the degree of associa-
tion between two variables that are not normally dis-
tributed and is appropriate for the correlation analysis of
variables that are measured on a scale that is at least
ordinal. This coefficient is based on the assumption that
two variables exhibit a monotonic relationship. By
selecting this coefficient, assumptions of a linear rela-
tionship between RMS height and SAR features can be
avoided, and the non-linear aspect of the relationship
can be explored.

4. Results and discussion

4.1. Correlations between intensity-based features
and RMS height

The RMS heights derived from the terrestrial 3D laser
scanner ranged from 1.5 to 17.9 cm for the 2017 cam-
paign and from 2.2 to 6.9 cm for the 2018 campaign, as
shown in the scatterplots of the RMS height and SAR
features (Figure 10–13). In microwave remote sensing,
surface roughness can be scaled based on RMS height
and microwave wavelength. If the RMS height is much
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lower than the observation wavelength, a surface is
defined as having microscale roughness, which is
a governing factor of the radar backscattering from the
surface (Fors et al. 2016b). Surface roughness with an
RMS height similar to or larger than the observation
wavelength is defined as macroscale roughness, which
also exhibits a great influence on radar backscattering
(Fors et al. 2016b). Most of the values of the RMS height
of the snow-covered sea ice investigated in both the
campaigns were larger than the wavelength of the TSX
and TDX X-band SAR (3.1 cm), and we could confirm that
the sea ice surface roughness is depicted as macroscale
roughness.

If there are hoar or brine layers with high permittivity
in the snow cover, the penetration depth of microwave
decreases (Kim, Onstott, and Moore 1984; Nghiem et al.
1995; Fuller et al. 2014) and the backscattering in HH
polarization is significantly greater than that in VV polar-
ization (Geldsetzer and Yackel 2009). We could not mea-
sure the physical properties of the snow cover, except its

depth, and thus the influence of the snowpack on the
X-band backscattering was estimated by analyzing the
scatterplots of backscattering coefficient in HH and VV
polarizations (σ0HH and σ0VV ) for both ice campaigns
(Figure 10). The values of σ0HH and σ0VV are similar for
both ice campaigns. Based on this, we estimated that
the scattering from the snow surface and in the snow-
pack is smaller than that on the snow/ice interface
because of dry snow conditions, and the measured back-
scattering can reflect the roughness of the sea ice sur-
face under the snow cover.

We analyzed the correlation between the RMS height
of the snow-covered sea ice and the corresponding SAR
features. Figure 10(a-b) show the scatterplots of the RMS
height and the co-polarization backscattering coeffi-
cients for the 2017 ice campaign. In the scatterplots,
a p-value below 0.05 means that the correlation is sta-
tistically significant at a confidence level of 95%. σ0HH and
σ0VV show low correlations with the RMS height, with
R values of −0.583 and −0.585, respectively. However,

Figure 10. Scatterplots of backscattering coefficients in HH (σ0HH) and VV polarizations (σ0VV ) versus RMS height for the (a and b) 2017
and (c and d) 2018 sea ice campaigns. The values enclosed within parentheses in figures (a) and (b) represent the R and p values for
RMS heights lower than 6.9 cm. The horizontal dotted line indicates the level of NESZ of SAR data.
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a decreasing trend is observed for the RMS height up to
5 cm. Radar backscattering typically increases with
increasing surface roughness of sea ice owing to double-
or multi-bounce scattering (Mäkynen and Hallikainen
2004; Gill and Yackel 2012; Moen et al. 2013; Zhang
et al. 2016). This positive relationship is mainly attributed
to the microscale surface roughness (Fors et al. 2016b;
Zhang et al. 2016). On the other hand, for a surface with
macroscale roughness, the intensity of radar backscat-
tering can decrease with increasing RMS height, because
the angular curve of scattering is expected to be more
isotropic and the magnitude of the backscattered power
is smaller than that of a surface with microscale rough-
ness (Fung and Chen 2010). Therefore, the negative
relationship between the co-polarized backscattering
coefficients and the RMS height could be attributed to
the macroscale surface roughness of the snow-covered
sea ice.

For an RMS height larger than 5 cm, σ0HH and σ0VV
hardly change with an increasing RMS height. This is
possibly attributed to the high incidence angle of the
TSX SAR data (49.5°). The radar backscattering power
decreases as the incidence angle increases when the
physical and structural properties of a target do not
change, and higher incidence angles lead to higher
NESZ values. The scatterplots in (Figure 10(a-b)) show
that σ0HH and σ0VV decrease and then approach the NESZ
value of the TSX SAR data (−19.86 dB) around the RMS
height of 5 cm. This implies that the large roughness of
the snow-covered sea ice cannot be characterized based
on the magnitude of backscattering of X-band SAR data
at high incidence angles.

In the location of the 2017 campaign, the air tempera-
ture was above 0°C 1 day before the TSX SAR data
acquisition, and the wind speed was about 10 m/s.
These might have changed the wetness and

Figure 11. Scatterplots of co-polarization ratio (γVVHH) versus RMS height for the (a) 2017 and (b) 2018 sea ice campaigns. The values
enclosed within parentheses in figure (a) represent the R and p values for RMS heights lower than 6.9 cm.

Figure 12. Scatterplots of co-polarization phase difference (φ) versus RMS height for the (a) 2017 and (b) 2018 sea ice campaigns. The
values enclosed within parentheses in figure (a) represent the R and p values for RMS heights lower than 6.9 cm.

GISCIENCE & REMOTE SENSING 13



morphology of the snow cover of the sea ice between
the time of the terrestrial 3D laser scanning experiments
and the time of SAR acquisition, which could be a cause
of the low correlation observed between the co-
polarized backscattering coefficients and the RMS
height. However, since the air temperature of 0–1°C
lasted for only a short period of time, it would have
had little impact on the wetness and dielectric property
of the snow cover. It is assumed that the winds also
exhibited a small effect on the changes in the surface
roughness of the snow-covered sea ice. This is because
strong relationships with the co-polarized backscatter-
ing coefficients were observed for RMS heights lower
than 5 cm, where the backscattering coefficients were
at least 1 dB higher than the NESZ.

The TDX SAR data for the 2018 ice campaign were
acquired at a mid-incidence angle (36.1°). The σ0HH and
RMS height for 2018 showed a very strong negative
correlation, with an R value of −0.891, which was due
to the macroscale surface roughness (Figure 10(c)).
σ0VV was also strongly correlated with the RMS height
of sea ice (R value of −0.725 (Figure 10(d))). The cor-
relations between the co-polarized backscattering
coefficients and the RMS height for the 2018 ice cam-
paign were much stronger than those for the 2017 ice
campaign, which would be attributed to the differ-
ence in the distributions of the RMS height values.
The maximum RMS height value for 2018 was only
6.9 cm, but the maximum RMS height for 2017 was up
to 17.9 cm. The values of σ0HH and σ0VV for 2017 were
close to the NESZ at RMS heights higher than 5 cm,
which contributed to the low correlation observed
between the backscattering coefficients and the RMS
height. For an RMS height lower than 6.9 cm (which is
the observed maximum for 2018) for 2017, however,

the co-polarized backscattering coefficients and the
RMS height showed weak correlations (Figure 10
(a-b)). The air temperature was below 0°C, and
a gentle wind was observed during the terrestrial 3D
laser scanning experiments and TDX SAR data acquisi-
tion, which would not change the surface roughness
characteristics of the snow-covered sea ice and would
contribute to the strong correlations observed
between the co-polarized backscattering coefficients
and the RMS height.

(Figure 11(a-b)) show the scatterplots of the RMS
height of the snow-covered sea ice and γVVHH for the
ice campaigns conducted in 2017 and 2018, respectively.
γVVHH depends on the surface roughness, dielectric con-
stant of the surface, and dominant scattering mechan-
ism of sea ice (Mäkynen and Hallikainen 2004; Scharien
et al. 2012). For the 2017 ice campaign, the correlation
between γVVHH and RMS height was very weak (R values
of 0.135 for all RMS height values and −0.090 for RMS
heights <6.9 cm), which was attributed to the influence
of a low backscattering close to the NESZ. The γVVHH and
RMS height of sea ice for the 2018 ice campaign showed
a higher but not stronger correlation (R value of 0.607),
although the backscattering coefficients were higher
than the NESZ value because of the mid-incidence
angle. Previous studies with C-band showed that γVVHH
increases with increasing surface roughness of sea ice
(Drinkwater et al. 1991; Mäkynen and Hallikainen 2004),
whereas Wakabayashi et al. (2004) used L-band polari-
metric SAR data and reported that the surface roughness
contribution to co-polarized backscatter is canceled in
the calculation of γVVHH. (Figure 11(b)) shows that the
γVVHH at the X-band with a mid-incidence angle does not
reflect the macroscale surface roughness of the snow-
covered sea ice.

Figure 13. Scatterplots of co-polarization correlation coefficient (ρ) versus RMS height for the (a) 2017 and (b) 2018 sea ice campaigns.
The values enclosed within parentheses in figure (a) represent the R and p values for RMS heights lower than 6.9 cm.

14 H. HAN ET AL.



4.2. Correlations between polarimetric features
and RMS height

The relationships of RMS height to φ and ρ for the 2017
and 2018 ice campaigns are shown in (Figures 12and 13)
respectively. φ and ρwere reported to be sensitive to the
surface roughness of sea ice and to decrease with
increasing roughness (Wakabayashi et al. 2004; Gill and
Yackel 2012; Moen et al. 2013; Fors et al. 2016b). For the
2017 ice campaign, however, φ and ρ showed R values
less than 0.6 with the RMS height of sea ice (Figures
12aand 13a). This is because the changes in φ and ρ

caused by surface roughness are small at a high inci-
dence angle (Wakabayashi et al. 2004). The scattering
components close to the noise level due to the high
incidence angle can also contribute to the low
correlations.

φ and ρ were reported to show good correlations
with the sea ice surface roughness at a lower inci-
dence angle (Wakabayashi et al. 2004). For the ice
campaign conducted in 2018, the φ and ρ derived
from the mid-incidence angle TDX SAR data were
strongly correlated with the RMS height of sea ice,
showing R values of −0.895 and −0.795, respectively
(Figures 12b and 13b). These strong relationships are
in agreement with the results that have been
reported in previous studies (Wakabayashi et al.
2004; Gill and Yackel 2012; Brekke, Grahn, and
Doulgeris 2015; Fors et al. 2016b).

4.3. Feasibility of using X-band dual-polarimetric
SAR for sea ice surface roughness investigations

The intensity- and polarimetry-based features derived
from the TSX and TDX dual-polarimetric SAR data were
compared with the RMS height of the first-year sea ice
with dry snow cover measured by the terrestrial 3D laser
scanning experiments in the MIZ of the Chukchi Sea in
summer. The X-band dual-polarimetric SAR features
derived at a high incidence angle were not significantly
correlated with the RMS height (<17.9 cm), which was
mainly because of low radar backscattered signals that
were observed close to the noise level. Meanwhile, the
SAR features derived at a mid-incidence angle, except
for the co-polarization ratio, showed a statistically sig-
nificant correlation with the RMS height (<6.9 cm) of the
investigated sea ice surface. At the mid-incidence angle,
backscattering at HH polarization and co-polarization
phase difference was the most promising among the
intensity- and polarimetry-based SAR features, respec-
tively, for investigation of the RMS height of the snow-
covered sea ice with macroscale surface roughness in
summer.

The dual-polarimetric X-band SAR features
obtained at the mid-incidence angle (for the 2018
ice campaign) were found to be more feasible for
characterizing the summer sea ice with dry snow
cover for RMS heights lower than 7 cm than those
derived at the high incidence angle (for the 2017 ice
campaign). However, values of RMS height higher
than 7 cm were not observed in the 2018 campaign,
and we could not investigate the relationship
between the SAR features obtained at the mid-
incidence angle and a higher RMS height. For the late-
summer first-year sea ice, the C-band co-polarized
backscattering coefficients and co-polarization ratio
at a mid-incidence angle (38.2°) were strongly nega-
tively correlated with the RMS height for height
values lower than 30 cm (Fors et al. 2016b). In our
observations, the X-band backscattering coefficients at
the mid-incidence angle clearly showed an inverse
relationship with the RMS height and were at least
6 dB higher than the noise level (Figure 9(c-d)). For
RMS height values lower than 7 cm, the SAR features,
except co-polarization ratio, showed more significant
correlations with the RMS height at the mid-incidence
angle than at the high incidence angle. Therefore, the
X-band radar backscattering at a mid-incidence angle
may be significantly correlated with the RMS height as
the latter increases to at least the observed maximum
for 2017 (17.9 cm). Further sea ice campaigns and
acquisitions of mid-incidence angle SAR data, or
radar backscattering modeling studies, are required
for more accurate analysis of the relationships, but
these are left for future work.

Surface roughness can vary greatly in space, even
within a single ice floe. However, the area of sea ice
over which the RMS height was analyzed was small
(100 m × 150 m for each ice campaign), and might not
have been enough to investigate the general character-
istics of the SAR features for the macroscale surface
roughness of sea ice. Nevertheless, the measured RMS
height, ranging from 2 to 17 cm, seemed to reflect the
macroscale surface roughness corresponding to the
X-band wavelength. The errors in co-registration
between the sea ice DSMs, UAV images, helicopter-
borne images, and SAR images (<2 m) can be an impedi-
ment to accurate analysis of the relationship between
the SAR features and the RMS height of sea ice. However,
they were very small compared to the grid size in the
RMS height investigation (15 m); thus, the results of
statistical analysis of the correlation between the SAR
features and the RMS height can be considered
reasonable.

The results of the correlation analysis showed that the
X-band SAR features at the mid-incidence angle are
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superior to those at the high incidence angle for inves-
tigating the RMS height of snow-covered first-year sea
ice. In addition, we were able to identify which X-band
features are sensitive to the macroscale surface rough-
ness of sea ice. However, this study has limitations in the
investigation of sea ice surface roughness. First, only one
SAR data was acquired from each of the two sea ice
campaigns. The ice campaigns were conducted in differ-
ent locations and at different times, so the surface
roughness of sea ice and the weather conditions were
also different. For more accurate analysis of the correla-
tion between sea ice surface roughness and SAR features
by incidence angles, at least two SAR data with different
incidence angles should be acquired from the same ice
campaign. To this end, we tried to acquire two or more
SAR images with different incidence angles and polar-
izations by predicting the drift of sea ice. However, the
drift of sea ice was different from what was predicted,
and the SAR imaging of the sea ice campaigns failed. The
other limitation is the lack of information on snow prop-
erties such as density, wetness, and grain size, which
significantly influences the microwave scattering
mechanism and the interpretation of the relationship
between SAR features and sea ice roughness.
Unfortunately, only the depth of snow was measured
during the sea ice campaigns, and it was estimated that
the snow was dry by hand test. Our future works will
include investigation of signals of Arctic summer sea ice
surface roughness in SAR features at various frequencies
and incidence angles in combination with information
on the physical properties of snow and ice in future sea
ice campaigns.

5. Conclusion

The characteristics of the macroscale surface rough-
ness signatures of the sea ice with dry snow cover on
the Chukchi Sea in summer were analyzed in terms of
the RMS height in dual-polarimetric X-band SAR by
using a 3D terrestrial laser scanner, a UAV, and
a helicopter, and two TSX/TDX dual-polarimetric SAR
datasets with different radar incidence angles. The 3D
laser scanning experiments were conducted on the
snow-covered sea ice to acquire very-high-resolution
DSMs of them, which were used to compute the RMS
heights of sea ice based on a grid size of 15 m. The
co-polarized backscattering coefficients, co-
polarization ratio, and co-polarization correlation
coefficient of the snow-covered sea ice were com-
puted from the TSX/TDX X-band dual-polarimetric
SAR data, which were geometrically matched to the
DSMs through a consecutive co-registration process
by using the UAV and helicopter-borne photographs.

The errors of the co-registration between the DSMs
and SAR data were smaller than 2 m, which enabled
a comparison of the SAR features and the RMS height
of sea ice at a scale of 15 m × 15 m.

The SAR features derived from the X-band dual-
polarimetric SAR data at a high incidence angle
(49.5°) were not statistically correlated with the RMS
height of the snow-covered sea ice. This may have
been possibly caused by the low radar backscatter-
ing close to the noise level, which is due to the high
incidence angle. Meanwhile, the SAR features of the
X-band dual-polarimetric data acquired at a mid-
incidence angle (36.1°), except for the co-
polarization ratio, showed a statistically strong corre-
lation with the RMS height of the snow-covered sea
ice. The backscattering coefficient in HH polarization
and the co-polarization phase difference was the
most promising among the intensity- and polarime-
try-based SAR features, respectively, and described
the RMS height of the snow-covered sea ice with
macroscale surface roughness. Our results demon-
strate that X-band dual-polarimetric SAR features at
a mid-incidence angle can reflect the surface rough-
ness characteristics of snow-covered first-year sea ice
in summer and can potentially be used for estima-
tion of the roughness of sea ice in terms of RMS
height.

Sea ice surface roughness can vary spatially and tem-
porally even for the same ice floe. To investigate the
spatiotemporal characteristics of sea ice surface rough-
ness, satellite polarimetric SAR and field observation
data need to be obtained for various regions and sea-
sons. More satellite polarimetric SAR and in situ observa-
tion data will not only enhance our understanding of the
sea ice roughness signatures in SAR but also enable the
development of sea ice roughness estimation models
based on SAR observations.
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