
Contents lists available at ScienceDirect

Remote Sensing of Environment

journal homepage: www.elsevier.com/locate/rse

Object-based landfast sea ice detection over West Antarctica using time
series ALOS PALSAR data

Miae Kima,b,c, Hyun-Cheol Kimd, Jungho Ima,⁎, Sanggyun Leee, Hyangsun Hanf

a School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea
b Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
c Institute of Photogrammetry and Remote Sensing, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
dUnit of Arctic Sea-Ice Prediction, Korea Polar Research Institute, Incheon 21990, South Korea
e Centre for Polar Observation and Modelling, Earth Sciences, University College London, London WC1E 6BS, UK
fDivision of Geology & Geophysics, Kangwon National University, Chuncheon, Gangwon-do 24341, South Korea

A R T I C L E I N F O

Edited by Menghua Wang

Keywords:
Landfast sea ice
L-band SAR
ALOS PALSAR
Object correlation analysis
Machine learning

A B S T R A C T

Landfast sea ice (fast ice) is an important feature prevalent around the Antarctic coast, which is affected by
climate change and energy exchanges with the atmosphere and ocean. This study proposed a method for de-
tection of the West Antarctic fast ice using the Advanced Land Observing Satellite Phased Array L-band SAR
(ALOS PALSAR) images. The algorithm has combined image segmentation, image correlation analysis, and
machine learning techniques (i.e., random forest (RF), extremely randomized trees (ERT), and logistic regression
(LR)). We used SAR images with a baseline of 5 days that are not in the same orbit but overlap each other as
overlaps between swaths in adjacent orbits are often available in the polar regions. The underlying assumption
for the proposed fast ice detection algorithm is that fast ice regions in SAR images with a time interval of 5 days
are highly correlated. The object-based approach proposed in this study was well suited to high-resolution SAR
images in deriving spatially homogeneous fast ice regions. The image segmentation results using the optimized
parameters showed a distinct difference in the backscatter temporal evolution between fast ice and pack ice
regions. Correlation and STD of backscattering coefficients were found to be the most significant variables for the
object-based fast ice detection from two temporally separated images. In overall, the quantitative and qualitative
evaluation demonstrated that the algorithm was an effective approach to detect fast ice with high accuracies.
The models well detected various fast ice regions in the West Antarctica but misclassified some objects. The
misclassifications occurred toward the edge of fast ice regions with relatively rapid changes in backscattering
between both data acquisitions. On the other hand, few fast ice objects were misclassified as uniform back-
scattering over time occurred by chance on very small objects far from the coast. Very old multi-year fast ice
regions with high backscattered signals were also a source for some misclassifications. This may be due to the
sensitivity of L-band to snow structure to some extent and a thinner ice over the region with either ice growth
(no deformation) or closing (slight deformation) between both images. Heavy snow load on the ice could be
another error source for some misclassification as well. The approach allowed for the reliable detection of fast ice
regions by using L-band SAR images with a small local incidence angle difference.

1. Introduction

Sea ice plays an important role in modulating global climate and
ocean changes by reflecting incoming solar radiation (Parkinson and
DiGirolamo, 2016) and decreasing heat loss from the ocean to the at-
mosphere (Stammerjohn et al., 2008). Antarctic sea ice production also
contributes to deep-water formation and hence affects global atmo-
spheric and thermohaline ocean circulation (Zwally et al., 1983;

Bintanja et al., 2013; Ohshima et al., 2013). Sea ice conditions in-
cluding extent, concentration, thickness, and deformation have prac-
tical implications on scientific exploration and research such as ice
navigation and route planning for icebreakers, and in situ sampling
strategy (Parkinson and Cavalieri, 2012; Normile, 2015). The Antarctic
sea ice extent has shown a slowly increasing trend while Arctic sea ice
extent has diminished (Zwally et al., 2002; Cavalieri and Parkinson,
2008; Simmonds, 2015; Parkinson and DiGirolamo, 2016; Comiso et al.,
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2017). However, more recently a significant decrease of the sea ice
extent was observed over the Antarctic Ocean (Turner et al., 2017;
Viñas, 2017). This demonstrates the importance to continuously
monitor the sea ice extent to determine the long-term trend in Antarctic
sea ice and to identify any causality in global warming.

This study focuses on landfast sea ice (hereafter fast ice) regions in
the nearshore sea ice zone in the Antarctica. Fast ice forms along
coastlines and is fastened to ice walls, ice fronts, or icebergs with little
motion (WMO, 2014). Fast ice can form from the seawater in place or
by the freezing of floating ice of any age. Fraser et al. (2012) showed
that fast ice is prevalent throughout the spring season along the East
Antarctic coast. With the help of icebergs as anchor points, it can extend
to hundreds of kilometers far from the coast (Massom et al., 2001).
While fast ice regions occupy a small fraction of the sea ice extent in the
East Antarctica, its volume constitutes a higher proportion of the sea ice
volume (Giles et al., 2008). Thick sea ice often happens in the fast ice
zone (Kurtz and Markus, 2012; Price et al., 2013; Xie et al., 2013; Kern
et al., 2016). The distribution of fast ice affects the shape and size of
polynyas; 13% of Southern Ocean sea ice production takes place in the
major Antarctic coastal polynyas (Tamura et al., 2008; Fraser et al.,
2019). Then, dense water forms through brine rejection during sea ice
formation, which is a source of the Antarctic Bottom Water (Ohshima
et al., 2013; Nihashi and Ohshima, 2015). Fast ice can delay ice-shelf
calving and indirectly affect ice sheet mass balance (Massom et al.,
2010). Fast ice is also significant in providing extensive habitats and
breeding places for microorganisms, Emperor penguins, and Weddell
seals (Massom et al., 2009).

Although continuous efforts of monitoring fast ice have been made
through in-situ measurements (Murphy et al., 1995; Ushio, 2006; Heil,
2006), it is difficult to obtain long-term in situ measurements over vast
areas. In-situ measurements for fast ice are generally limited to fixed
locations where ice is thick enough for sampling. Satellite remote sen-
sing provides an alternative method for fast ice observations as it pro-
duces data covering substantial areas with good temporal resolution. A
variety of fast ice studies have been conducted in polar regions (Fraser
et al., 2012; Mahoney et al., 2014; Nihashi and Ohshima, 2015;
Dammann et al., 2019). In Antarctica, studies have been mainly limited
to the East Antarctic coast using satellite remote sensing such as de-
tection of fast ice extent, estimation of its thickness, and analysis of its
long-term distribution and variability (Massom et al., 2009; Fraser
et al., 2010; Giles et al., 2011; Fraser et al., 2012; Han et al., 2015; Yang
et al., 2016; Li et al., 2018). Nihashi and Ohshima (2015) conducted
circumpolar mapping of fast ice using AMSR-E images, but the fast ice
extent was considerably underestimated when compared to MODIS-
derived fast ice maps (Fraser et al., 2019).

Optical sensor images can be useful for classifying fast ice and pack
ice regions. However, they do not provide surface information when
clouds are present. As clouds are often present (approximately 60–80%
cloud cover depending on location and season) in Antarctica (Comiso
and Steffen, 2001; Spinhirne et al., 2005; Suen et al., 2014; Scott et al.,
2017), optical sensors might not provide the best solution to fully
monitor fast ice regions. Considering the effect of cloud contamination,
previous studies have detected fast ice using optical sensor data by
compositing images with dozens of days (Fraser et al., 2010; Fraser
et al., 2012). Such an approach is appropriate for relatively stable and
large fast ice areas, but may not be suitable for rapidly changing fast ice
regions where ice break-ups and (re)-growth occur frequently. Fast ice
changes at short timescales are an important factor for the Antarctic
coastal system, as fast ice physically interacts with ice tongues and also
affects the polynya regions (Giles et al., 2008). Some fast ice regions can
be in environmentally dynamic conditions due to varied sea ice drift
patterns and ocean currents, which could lead to changes in fast ice
(Meyer et al., 2011).

Passive or active microwave sensors have the advantage of pro-
viding images regardless of solar illumination or weather conditions.
Meanwhile, passive microwave data have relatively coarse spatial

resolution (~3–50 km), limiting their applications to wide fast ice re-
gions near the shoreline. Synthetic aperture radar (SAR), an active
microwave sensor, can be a powerful instrument for fast ice research
because it can observe sea ice in high spatial resolution. SAR sensors at
L-, C-, and X-bands have been used for classification of sea ice types
since backscattered radar intensity is dependent on surface roughness
and sea ice properties (Karvonen, 2004; Zakhvatkina et al., 2013; Liu
et al., 2015; Ressel et al., 2015; Wang et al., 2016; Casey et al., 2016).
There has been considerable research on sea ice classification where C-
band SAR is utilized as most of the ice service agencies use C-band SAR
(e.g. the European Remote Sensing (ERS)-1/2, RADARSAT-1/2, and
Sentinel-1) for operational ice monitoring. Several studies have sug-
gested that L-band SAR can be more useful in sea ice monitoring than
the widely used C-band SAR due to the benefits of using longer wave-
length signals (Casey et al., 2016; Howell et al., 2018). As radar waves
with a longer wavelength can have larger penetration depth into snow
on sea ice, using L-band SAR data is more suitable for characterizing sea
ice surface structure and type, especially during the melting period
(Dierking and Busche, 2006). Different types of sea ice in summer can
be distinguishable from one another in the backscattering properties of
L-band SAR, which would be difficult in other popularly used fre-
quencies such as C-band, X-band, and Ku-band. However, L-band SAR
has been relatively less explored in Cryosphere applications than other
bands. Considering upcoming satellites such as the Comisión Nacional
de Actividades Espaciales (CONAE) SAtélite Argentino de Observación
COn Microondas (SAOCOM) satellite series equipped with L-band SAR,
the National Aeronautics and Space Administration (NASA) - Indian
Space Research Organization (ISRO) Synthetic Aperture Radar (NI-
SAR), and the Japan Aerospace Exploration Agency (JAXA) Advanced
Land Observing Satellite-4 Phased-Array L-band Synthetic Aperture
Radar-3 (ALOS-4 PALSAR-3), more research on L-band SAR in Cryo-
sphere applications is necessary.

Mahoney et al. (2004, 2014) used vector gradient differences gen-
erated from three consecutive SAR images to detect fast ice edges along
the Alaskan Arctic coast. The method was successfully applied in the
mid-winter season, but manual examination was needed for the other
seasons. Li et al. (2018) recently improved the vector gradient differ-
ence method by including a median edge detection method over East
Antarctica, but it still has a limitation as they used a landfast ice edge as
reference data for the nine-year study period. Image correlation ana-
lysis based on a feature-tracking algorithm was conducted by Giles et al.
(2008) for detection of fast ice regions in East Antarctica using RAD-
ARSAT ScanSAR images in 1997 and 1999, even if fast ice changes on
shorter timescales (e.g., 5 days) remain as an unresolved issue. Fast ice
variability on shorter timescales needs to be explored as the occasional
breakouts of fast ice are closely connected with polynyas and ice sheet
(Giles et al., 2008). Karvonen (2018) used a temporal cross-correlation
method with dual-polarized Sentinel-1 SAR images of a two-week
period to detect Arctic fast ice regions. Most recently, Interferometric
SAR (InSAR) approaches have been applied to distinguish fast ice re-
gions (Meyer et al., 2011; Han et al., 2015; Dammann et al., 2016,
2019). As recent satellite SAR images have a short repeat cycle (e.g., 6-
to 12-day repeat cycle for Sentinel-1), it shows less difficulty in de-
tecting fast ice using InSAR with a small loss of interferometric co-
herence (Dammann et al., 2019). However, InSAR and offset tracking
methods can only use images obtained in accordance with the repeat
cycle in the same orbit. This study is focused on detecting fast ice using
images taken at different satellite positions with a 5-day interval. We
used SAR images with a baseline of 5 days that are not in the same orbit
but overlap each other, which is possible because observation areas of
adjacent orbits are overlapped a lot in the polar regions. Then, it would
be able to classify sea ice at a high temporal resolution than using
images with a repeat cycle in the same orbit.

In this paper, we propose a new method that combines image seg-
mentation, image correlation analysis, and machine learning techni-
ques for detecting fast ice regions over West Antarctica. Specifically,
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this study develops an algorithm for object-based fast ice detection that
adopts object correlation image analysis using bi-temporal L-band SAR
images with a short temporal separation (5-days). There are no studies
that require the use of specific time period over which fast ice remains
stationary (Mahoney et al., 2006). The present study defines fast ice as
ice that is in little movement for 5 days and attached along the coast.
Previous studies have used a time period of from 3 to 20 days to de-
termine what constitutes fast ice (Barry et al., 1979; Mahoney et al.,
2006; Fraser et al., 2010). Object-based classification has the potential
to achieve accurate feature extraction since pixel-based classification
might be inappropriate with SAR images of high spatial resolution due
to the difficulty of interpretation resulting from speckle noise and high
spatial heterogeneity (Karvonen, 2004; Casey et al., 2016). As fast ice
regions are recognized as being spatially continuous with little change
of movement, object-based analysis is desirable for the detection of fast
ice areas. After applying image segmentation to SAR composite images,
object correlation image analysis was conducted based on the char-
acteristics of motionless and stationary fast ice regions, which result in
highly correlated fast ice regions over time. Machine learning techni-
ques including random forest (RF), extremely randomized trees (ERT),
and logistic regression (LR) were applied to the segmented fast ice
image pairs to develop fast ice classification models. The trained models
were applied to various fast ice regions in ocean sectors of West Ant-
arctica to demonstrate the applicability of the proposed approach.

2. Data and methods

2.1. Process description and study area

The data processing flow of the proposed approach in this study is
illustrated in Fig. 1. First of all, SAR images, used as main data, are
preprocessed and then composited with a pair of images (Section 2.2),
then image segmentation is performed for the preprocessed composite
images (Section 2.3). For each object of segmented images, input
variables for fast ice and pack ice regions are extracted including sta-
tistical and contextual variables (i.e., object correlation images). To
construct fast ice and pack ice reference data, time series of SAR images
in a certain time interval (5-days) are used (Section 2.4). The

constructed datasets are applied to machine learning approaches to
develop fast ice classification models (Section 2.5). SAR images with
fast ice regions from four ocean sectors including Weddell Sea, Bel-
lingshausen Sea, Amundsen Sea, and Ross Sea in West Antarctica form
the study regions (Fig. 2). From each ocean sector, training and vali-
dation datasets were extracted to construct fast ice classification models
and a separate test dataset to evaluate the models.

2.2. ALOS PALSAR data

Level 1.5 geo-referenced images from the Advanced Land Observing
Satellite Phased Array L-band SAR (ALOS PALSAR) were used as main
data for the detection of fast ice in this study. PALSAR is an active
microwave sensor using L-band with a center frequency of 1.27GHz.
PALSAR images are distributed free of charge by the Alaska Satellite
Facility (ASF) to public users. Table 1 shows the detailed information of
SAR image pairs selected for this study including the names of each site,
dates of images, incidence angle at scene center determined by sensor
platform orientation, Earth's geometry, and electronic boresight, and
usage. All the SAR images are wide-swath ScanSAR mode data con-
sisting of 5 sub-swaths with a swath width of 350 km, horizontal-hor-
izontal (HH) polarization, descending flight pass direction, and the
range and azimuth pixel size of 100 m with a time interval of 5 days.
ALOS PALSAR L-band HH images were used due to data availability.
Although ALOS PALSAR orbit has a revisit time of 46 days, pairs of
images in a short time interval can be obtained for areas where fast ice
regions overlap in polar regions. This approach is intended to obtain
images with high temporal resolution even from polar orbiting satellite
sensors with long repetition cycles. We can thus have the benefit of
interpreting short-term fast ice deformation events occurring on a time
scale of several days.

The ALOS PALSAR ScanSAR mode has a wide range of incidence
angles of 18–43°. Incidence angle correction is needed when back-
scattering coefficients can change in the same sea ice type as the in-
cidence angle changes (Zakhvatkina et al., 2013; Lang et al., 2016).
However, in this study, incidence angle normalization was not per-
formed for several reasons. Incidence angle correction generally re-
quires accurate reference data for all sea ice types over study regions
(Zakhvatkina et al., 2013). Mahmud et al. (2018) proposed a method
using a mean incidence angle dependency for each first-year ice (FYI)
and multiyear ice (MYI) over the Arctic in winter for incidence angle
correction. They used the Canadian Ice Service Digital Archive (CISDA)
regional ice charts to correct incidence angle by sea ice type. In this
study, we examined the ice charts from the National Ice Center (NIC;
https://www.natice.noaa.gov/). The ice charts are produced mainly
with various satellite images with different spatial resolutions ranging
from coarse (e.g., Special Sensor Microwave Imager (SSM/I)) to finer
scales (e.g., RADARSAT and Advanced Very High Resolution Radio-
meter (AVHRR)). Therefore, the spatial resolution of the NIC ice charts
can range approximately from 10 m to 50 km. According to the NIC
weekly/bi-weekly ice analysis products (i.e., sea ice chart) available for
the study regions, a majority of the regions were just classified as
“Undetermined/Unknown” or “Old Ice” that can be FYI, second-year
ice, or MYI according to the WMO sea ice nomenclature. Accurate in-
cidence angle correction would not be guaranteed without detailed and
accurate information about sea ice types for the study regions. Komarov
and Buehner (2019) recently found that incidence angle correction does
not always contribute to the increase in accuracy of sea ice classifica-
tion. In addition, the L-band SAR is relatively less sensitive to small
changes in sea ice surface (Dierking and Busche, 2006; Meyer et al.,
2011; Dammann et al., 2016). We suppose that as SAR image pairs used
in this study have incidence angle differences of less than 3°, changes in
backscattering for each sea ice type would not be significant. In this
study, the capability of the proposed approach for fast ice detection
over West Antarctica is demonstrated in a variety of regions and dates,
without incidence angle correction and post-processing (more in theFig. 1. Data process flow chart of the approach in this study.
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discussion section).
Training, validation, and test datasets were extracted from each of

the ocean sectors, the usage of which is explained in Section 2.5. A total
of 7 image pairs were selected over 1) Weddell Sea sector including East
Weddell, Brunt Ice Shelf, and Larsen Ice Shelf, 2) Bellingshausen Sea
sector including Stange Ice Shelf and Dotson Ice Shelf, and 3)
Amundsen Sea sector including Getz Ice Shelf and Nickerson Ice Shelf.
The image data were collected between July and August 2007 and
again between October and November 2010. Level 1.5 SAR images are
multi-look processed and georeferenced images with general radio-
metric and geometric calibration (Lee et al., 2015). The selected images
were preprocessed in the MapReady software (version 3.1.24) devel-
oped by the Alaska Satellite Facility (ASF). First, the amplitude in SAR
images was converted into a radiometrically calibrated power image in
order to use SAR data in a quantitative manner. The SAR images with
backscatter values were calibrated into sigma-0 (nought) in power
scale, which intends to use the calibrated values that refer to the
ground. Then, the values were scaled into decibel (dB) values by ap-
plying a logarithmic function (10·log10(calibrated values)). SAR geo-
metry was transformed into polar stereographic map projection with a

bilinear resampling method and a specified pixel size of 100 m. The
noise-equivalent sigma-zero (NESZ) was −25 dB, below which pixel
values were discarded. A low pass filter of a 5 × 5 pixel window was
applied to the preprocessed images to reduce speckle. After pre-
processing, each image within an image pair was masked for the
overlaid regions and then composited for image segmentation (Section
2.2). Fast ice regions that might not be readily visible in a single image
can be revealed from the composite of bi-temporal images. As the
composite of two images enables the detection of spatiotemporal
changes between the two, fast ice regions can be captured in the
composite image with the pixel values that remain relatively constant
over time. Composite images were generated using ArcGIS 10.4.1
software. SAR image pairs used in this study have a 5-day interval, as
the time scale resulted in the largest number of image pairs available. In
addition, a relatively short time period such as 5 days could be useful
for detection of rapidly changing fast ice regions.

2.3. Image segmentation and explanatory variables

This study proposes object-based fast ice classification models based

Fig. 2. Map of study area including landfast sea
ice regions over West Antarctica with ALOS
PALSAR images over the Weddell Sea,
Bellingshausen Sea, Amundsen Seas, and Ross Sea
sectors. Regions (red letters) in Weddell Sea were
used for constructing training and validation da-
tasets and the other regions (blue letters) for test
dataset. (For interpretation of the references to
color in this figure legend, the reader is referred
to the web version of this article.)

Table 1
The information of ALOS PALSAR image pairs. All the image pairs are separated by 5 days.

Sector Site Date
(for a pair of images)

Scene Center Incidence angle Usage

Weddell Sea East Weddell 8 Aug. 2007
13 Aug. 2007

34.112°
34.107°

Training and validation

Brunt Ice Shelf 8 Aug. 2007
13 Aug. 2007

34.078°
34.090°

Test

Larsen Ice Shelf 20 Aug. 2007
25 Aug. 2007

34.106°
34.086°

Test

Bellingshausen Sea Stange Ice Shelf 7 Oct. 2010
12 Oct. 2010

34.099°
34.101°

Training and validation

Dotson Ice Shelf 13 Nov. 2010
18 Nov. 2010

34.103
34.103

Test

Amundsen Sea Getz Ice Shelf 31 Oct. 2010
5 Nov. 2010

34.091°
34.092°

Training and validation

Nickerson Ice Shelf 26 Jul. 2007
31 Jul. 2007

34.095°
33.979°

Test
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on image segmentation. Image segmentation was implemented in
eCognition software (Version 8.7.2; Developer, 2012) on the composite
SAR images. Image segmentation is suitable for SAR data with high
spatial heterogeneity. This is because classification problems caused by
local outliers and noise can be mitigated by grouping pixels with similar
characteristics. The multiresolution segmentation algorithm in eCog-
nition was used, which is a bottom-up segmentation method that
minimizes the heterogeneity of image objects and maximizes homo-
geneity to obtain the best segmentation results (Amani et al., 2017;
Johansen et al., 2018; Liu et al., 2018). The segmentation process is
conducted based on several user-defined criteria with three parameters
(i.e., scale, shape, and compactness; Belgiu and Drǎguţ, 2014). For more
detailed explanation about the segmentation process, please refer to
Appendix A. In this study, various combinations of weights for the
scale, shape, and compactness parameter fields were tested, and an
optimized combination was determined based on visual inspection of
resulting objects.

A total of 5 input variables—contextual variables of object corre-
lation images (OCI) analysis (i.e., Correlation, Slope, and Intercept) and
statistical variables such as Mean and standard deviation (STD)—were
extracted from objects of the segmented composite images (Table 2).
Over a five-day period, it would be feasible to evaluate the horizontal
movement of sea ice to detect if it is fast or pack ice. Based on the bi-
temporal imagery, those input variables can show differences in back-
scatter (i.e., evidence for motion) to distinguish ice types (i.e., fast and
pack ice). The contextual variables were calculated with pixels within
each object of the composite images. The magnitude and direction of
changes of spectral pixel values in an object of the composite images are
used for the OCI analysis (Im and Jensen, 2005; Im et al., 2008). If there
is little or no change between the two dates of images (i.e., fast ice),
correlation coefficients of pixel values from two dates should be high.
Otherwise, correlation coefficients are generally low or intermediate
when changes significantly or moderately occur (i.e., pack ice). The
other information in the OCI analysis are slope and intercept, which can
be useful in detecting changes when correlation coefficients are high.
The correlation (X), slope (slp), and intercept (Z) images are computed
as the following Eqs. (1)–(3), respectively (Im et al., 2008).
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where N is the image with the number of pixels for each object from the
image segmentation, B is the number of input bands, which is 2 (i.e.,
temporally separated images of two dates) in this study, ZD1i and ZD2i
are the images from date 1 and 2 for each channel i zonally summed

based on the objects, ZD1D1i, ZD1D2i, and ZD2D2i are the images
multiplied by each date by itself and date 1 and 2 for each channel i and
zonally summed based on the objects, and Slp indicates the slope image
obtained by the Eq. 2.

The Mean variable could be helpful in discriminating fast ice from
pack ice regions. The segmented objects over fast ice regions consist of
relatively homogeneous fast ice areas. Meanwhile, pack ice regions can
have a more complex texture depending on the ratio of ice floes, open
water, and open water covered with very thin ice. The STD variable
could also be an important indicator. Changes in spectral values over
fast ice regions between two images with a 5-day interval are generally
small when compared to pack ice with relatively larger changes in
backscatter coefficients over time. In addition, we tested some combi-
nations of input variables through the machine learning methods used
in this study with a statistical hypothesis test (not shown). According to
the preliminary results, there was no significant difference in models,
except for a model that used only the correlation variable and showed a
significant decrease in accuracy. Although slope and intercept were
highly correlated, they could convey different information that helps to
detect changes (Im and Jensen, 2005; Im et al., 2008). Therefore, we
decided to use all input variables that resulted in the highest accuracy.

2.4. Construction of reference for fast ice and pack ice

Reference regions for fast ice and pack ice were determined based
on visual interpretation of the preprocessed SAR composite images in a
5-day time interval. Seaward fast ice edges were determined by dis-
criminating fast ice and pack ice regions by analyzing the character-
istics of surrounding features and the backscatter evolution (shown as
red solid lines in Fig. 3). Fast ice is found adjacent to ice shelves and
also in-between grounded icebergs (Massom et al., 2001; Giles et al.,
2008; Fraser et al., 2012). Icebergs were masked out using a set back-
scatter threshold. In this study, this threshold was empirically de-
termined to be −11 dB. Icebergs generally show higher backscatter
than their surroundings which often is a mixture of open water and sea
ice (Williams et al., 1999; Mazur et al., 2017). In particular, icebergs
can be visually discriminated against level fast ice they embedded,
while they may not always show a distinct contrast within heavily
deformed sea ice (Wesche and Dierking, 2012; Wesche and Dierking,
2015). Fast ice regions show temporally consistent backscattering
compared to pack ice regions as shown in Fig. 3. The fast ice edge is
identified by a line of consistent backscatter. To assess the validity of
visual interpretation-based reference regions, time series of MODIS
optical images with 250 m resolution (MOD02QKM product, which is
Level 1B calibrated radiances data) were used (Massom et al., 2010;
Kim et al., 2015). Fig. 4 shows that SAR and MODIS images available in
a 5-day time interval (31 Oct. 2010–5 Nov. 2010) for fast ice near the
Getz Ice Shelf to qualitatively validate the presence of fast ice. As de-
lineated by the outermost edge (red line) to traverse between the fast
ice and background area, fast ice areas in the MODIS images are re-
cognizable. Finally, a total of 1068 samples (i.e., objects) used for
training and validation were constructed from the reference fast and
pack ice regions generated from SAR images. All samples were ran-
domly divided into 80% for training set to develop machine learning-
based fast ice classification models, and 20% for validation set to
evaluate their performances. We assessed the performance of the three
trained models with test dataset that are not included in the training
and validation data.

2.5. Machine learning techniques for fast ice classification

The machine learning approaches used in this study are random
forest (RF), extremely randomized trees (ERT), and logistic regression
(LR) for developing fast ice classification models using the training and
validation datasets. They have been widely used in the field of remote
sensing to solve various classification and regression problems (Yoo

Table 2
Information of the input variables used to develop fast ice detection models in
this study.

Type Input features

Contextual variables Correlation
Slope
Intercept

Statistical variables Mean of composite imagery including layer 1 (earlier
date) and 2 (later date)
Standard deviation (STD) of composite imagery
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et al., 2012; Barrett et al., 2014; Lee et al., 2017; Richardson et al.,
2017; Mutowo et al., 2019; McLaren et al., 2019). RF is a collection
(i.e., ensemble) of decision trees using a bootstrap aggregating (Bag-
ging) method (Breiman, 2001). It constructs independent trees with
random sampling and combines final results from the trees using an
ensemble method such as voting or weighted voting for classification
(Sonobe et al., 2017; Wylie et al., 2019). RF was implemented in R
software with an add-on package of random forest (Liaw and Wiener,
2002; Kim et al., 2017). In this study, options used for constructing a
random forest model in R were set as default for the number of trees
(500) and variables sampled at each node (generally n where n is the
number of input variables) and the minimum size of terminal nodes. It
also provides relative variable importance as Mean Decrease Accuracy
(MDA) (Rhee and Im, 2017). MDA is calculated using out-of-bag (OOB)

data, which is left out of the training data in each tree. Misclassification
rates are calculated using OOB data and a variable-permuted OOB data
using a given tree, which is repeated for all trees. MDA means the
average increase in the misclassification rate (Jang et al., 2017). The
higher the MDA it is, the more important the variable is to classify fast
ice and pack ice class.

ERT is a relatively new tree-based ensemble classifier method
compared to RF (Geurts et al., 2006). It extends RF by introducing a
different randomization to splitting at nodes. While RF finds the best
node splitting points among the input variables selected at each node
when constructing trees, ERT performs node splitting fully at random
and uses the same variable set with no bagging for each tree, further
reducing the variance between trees and minimizing the bias. ERT was
implemented using the add-on package of “ExtraTrees” in R with

Fig. 3. Example of backscatter image of L-
band HH-pol ALOS PALSAR SAR separated by
a 5-day time gap used to detect fast ice edge
for reference over Amundsen Sea and
Bellingshausen Sea sectors (refer to Table 1
for the detailed description of image pairs).
The Antarctic continent and ice shelves are
shown as solid dark gray and white areas,
respectively. The text in italic shows fast ice
and pack ice regions. Red solid lines indicate
the reference fast ice edge delineated by vi-
sual interpretation of the two images with a 5-
day time interval. (For interpretation of the
references to color in this figure legend, the
reader is referred to the web version of this
article.)
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default parameters.
LR is a regression model applicable to categorical variables to es-

timate the probability of an event occurrence (i.e. the probability of
being classified as fast ice). Similar to a linear regression model, it
models the relationship between independent variables and dependent
variables with a specific function (Lee et al., 2017). LR is used for
classification as output ranging from 0 (non-fast ice) to 1 (fast ice) that
is divided by a fixed threshold by using a logistic (sigmoid) function (4).

… =
+ ∑ =

X X X
w x

Prob(Y | , , , ) 1
1 exp[ ]n

i
n

i i
1 2

1 (4)

where Prob(Y|X1,X2, …,Xn) is the probability of the dependent variable
Y (i.e., fast ice and pack ice, target classes) given Xn (n = 1, 2, …, n)
(i.e., input variables), n is the number of independent variables, Xi in-
dicates an ith independent variable, and wi is the coefficient for variable
Xi. The logistic function estimates the probability of a class (fast ice or
pack ice). The LR implementation with an add-on package called “glm”
in R was used. In this study, we used a threshold of 0.5 above which
objects are assigned as fast ice.

Model performance was evaluated using confusion matrices with
producer's and user's accuracy (PA and UA, respectively), overall ac-
curacy (OA), and kappa coefficients. Using RF and LR outputs, we ex-
amined which variables were most sensitive to fast ice detection. For
model validation, the classification models were applied to fast ice re-
gions in the Weddell Sea, Bellingshausen Sea, Amundsen Sea, and Ross

Sea.

3. Results and discussion

3.1. Segmentation parameterization

We tested a total of 60 combinations with different weights in scale
parameters of 15, 20, 25, and 30, shape parameters of 0.1, 0.3, 0.5, 0.7,
and 0.9, and compactness parameters of 0.1, 0.3, and 0.5. Fig. 5 shows
some of segmentation results tested with various combinations of
parameters. The optimized parameter combination was determined to
be 25, 0.1, and 0.5 for scale, shape, and compactness parameters, re-
spectively. The three parameters were interactively involved in the
segmentation results. The overall segmentation quality was basically
examined for both over-segmentation and under-segmentation. Over-
segmentation was avoided by controlling the level of detail based on an
appropriate scale value (Fig. 5a). The scale threshold was adjusted to
make visually identified ice objects larger than the size of the seg-
mented objects in order to avoid mixed fast ice objects with pack ice
regions. The objects should not be too small to contain sufficient sta-
tistical information. As shown in Fig. 5a, the smaller the value of the
scale parameter is, the smaller the objects are produced, and vice versa.
The scale threshold of 25 was found to achieve reasonable segments
with clear boundaries between the fast ice and pack ice regions and the
minimal isolated segments (Fig. 5a). With regard to the shape

Fig. 4. Maps of fast ice near the Getz Ice Shelf in the Amundsen Sea from two SAR images (top) and MODIS calibrated radiances images available between 31 October
2010 and 5 November 2010 (middle and bottom). Red solid lines indicate the reference fast ice edge delineated by visual interpretation of the two images with a 5-
day time interval. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

M. Kim, et al. Remote Sensing of Environment 242 (2020) 111782

7



parameter, using a smaller shape value produced better segmentation
results with a distinct difference in the backscatter coefficients between
objects (Fig. 5b). In more detail, the difference between the shape of 0.1
and 0.9 is clearly seen along the edge of fast ice areas (red sold lines),
showing that the segments with the shape of 0.9 are mixed with fast ice
and pack ice regions. The objects with the shape of 0.1 better captured
patterns on backscattering. Regarding different compactness, it is
shown that a more compact and smaller sized objects were produced
using a larger compactness parameter (Fig. 5c). Compactly segmented
objects will have better statistical estimates for local changes than
others, which enables more accurate classification afterwards.

Fast ice regions are particularly noticeable due to the high corre-
lation values in the correlation map (Fig. 6a). This is because the var-
iations in the pixel values over fast ice regions are small, resulting in
high correlation when compared to the pack ice in subsequent images.
It also indicates that the STD variable is able to distinguish fast ice from
pack ice in this regard. The Mean variable image shows a distinct se-
paration in the areas where polynyas occur showing relatively low
backscatter (i.e., between fast ice and pack ice and between pack ice
and the Antarctic land in Fig. 6d). As a polynya may be covered by very
thin ice, the areas can show relatively low backscatter values (Dierking
and Busche, 2006; Howell et al., 2018). On the contrary, the situation
can be altered by other influences such as wind conditions (Dierking
and Busche, 2006; Wesche and Dierking, 2015). Wind-roughened open
water can have much higher backscattered signals (Dierking and
Busche, 2006). However, in this case, objects over pack ice regions
containing open water would have highly variable backscattering va-
lues from time series of images, leading to lower correlation or higher
STD values when compared to fast ice regions.

3.2. Model evaluation and variable importance

Model evaluation results using the validation set are shown in
Tables 4-6. All three models produced similar results. The ERT model
produced the best performance with an OA of 97.21% and a kappa
coefficient of 0.94, while RF and LR models resulted in slightly lower

performances with an OA of 96.74% and a kappa of 0.93. The fast ice
class shows slightly higher PA than the pack ice class in all three models
although the sample size of the pack ice class was twice that of the fast
ice class. Different sample sizes of the two classes including 1:1, 1:2,
and 1:3 for fast versus pack ice class were tested and 1:2 was identified
as the most reasonable to classify fast ice regions with minimum com-
mission and omission errors. Meanwhile, UA was lower for fast ice class
than pack ice class as some of the pack ice samples were misclassified as
fast ice class, which means that fast ice regions might have been slightly
over-detected. A slight over-segmentation might account for the over-
detection of fast ice because uniform backscattering over time can occur
by chance on very small objects far from the coast. A few of small pack
ice objects from near the seaward fast ice edge were misclassified as fast
ice as well due to the stationary backscatter strength of small segments.
Meanwhile, fast ice objects located at the edge of seaward fast ice were
occasionally misclassified as pack ice due to low correlation between
subsequent images. The stability of fast ice generally decreases toward
the edge of fast ice (Dammann et al., 2016). In particular, seaward
young and thin fast ice is less stable due to sheer by pack ice. On the one
hand, heavy snow load on sea ice often depresses the ice below ocean
water level, which then results in a slush layer at the basal snow layer
on ice. This is so called a negative freeboard, especially in Antarctica
(Massom et al., 1997). The process at the snow-ice interface can also
affect the backscatter signatures (Wesche and Dierking, 2012), which
can cause classification errors.

Fig. 7 shows the relative variable sensitivity identified by RF and LR
models with MDA and p-value transformed to the negative logarithmic
scale, respectively. Correlation and STD variables were identified as
important variables to discriminate fast ice from pack ice regions in
both RF and LR models. Correlation was highly significant since fast ice
is an almost motionless feature compared to pack ice over the synoptic
timescale (e.g., 5 days used here), which yields high correlation be-
tween two dates of imagery in fast ice regions and low correlation in
pack ice regions. Secondly, the STD variable was considered to be the
second significant variable for both models. This was because short-
term backscatter variations in objects are larger for pack ice than for

Fig. 5. Examples of segmentation results at different (a) scale parameters with fixed thresholds for shape of 0.1 and compactness of 0.5, (b) shape parameters with
scale of 25 and compactness of 0.5, and (c) compactness parameters with scale of 25 and shape of 0.1 parameter setting. The red solid line indicates reference fast ice
edge. The background is a false color composite image of date 1 (green) and date 2 (blue) over a part of landfast sea ice region off the Dotson ice shelf, the
Bellingshausen Sea sector. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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fast ice.

3.3. Performance evaluation of landfast sea ice detection maps

Fast ice detection models were tested for various fast ice regions
over the other ocean sectors (Figs. 8–13). To assess the performance and
extendibility of the models, test sites which are not included in training
were selected in different ocean sites with various conditions con-
sidering surrounding pack ice drift, wind exposure, atmospheric tem-
perature, and icebergs that can affect the development and stability of

fast ice. Fig. 8 shows the overall quantitative evaluation results for the
models over each study area. All models resulted in very similar ac-
curacies, while the LR model produced the best performance with
averaged 82.04% of PA (fast ice), 98.73% of PA (pack ice), 96.93% of
UA (fast ice), 92.69% of UA (pack ice), 93.45% of OA, and 0.84 of
Kappa. Fast ice edges were extracted as reference data by visual in-
terpretation of the ALOS PALSAR SAR bi-temporal images with a 5-day
interval (red solid lines) (Figs. 9–12). Regarding the fast ice objects that
were incorrectly classified as pack ice at the edge of fast ice (Figs. 9 and
10), heavy snow load on the ice could be a reason as explained in
Section 3.2. As snow loading induces flooding at the snow-ice interface
(Massom et al., 1997), the condition can change the backscattering
signals and further affect segmentation and classification results. In
Figs. 9b and 10c, a few pack ice objects were misclassified as fast ice by
the ERT and LR models. As explained in Section 3.2, the mis-
classifications occurred because a few relatively small objects have high
correlation between the two subsequent SAR images due to highly
compacted pack ice with limited motion in a short period of time.
Unlike the other fast ice regions with relatively high accuracies, the fast
ice region off the Larsen ice shelf, Antarctic Peninsula resulted in low
PA for fast ice (Fig. 8c). High backscatter over the fast ice region near
the Hearst Island of the Larsen D ice shelf (Fig. 11 and Fig. B1 of Ap-
pendix B) caused confusion in distinguishing fast ice from ice shelves,
causing misclassifications. The fast ice in the region seems to be very

Fig. 6. Input variables extracted based on the segmentation result including (a) Correlation, (b) Slope, (c) Intercept, (d) Mean of backscatter coefficient (in dB) for
combined dates 1 and 2, (e) Standard deviation of backscatter coefficient for combined dates 1 and 2. The background image is the ALOS PALSAR SAR image for the
landfast sea ice region off the Stange ice shelf, the Bellingshausen Sea sector. Gray area in the lower right is the Antarctic land, and red and blue solid lines over sea
ice zone indicate the reference fast ice edge. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

Table 4
Accuracy assessment result of the random forest model for the validation set.
The entries in the confusion matrix are the number of segments for each class.

Classified as Reference

Fast ice Pack ice Sum User's accuracy

Fast ice 70 5 75 93.33%
Pack ice 2 138 140 98.57%
Sum 72 143 215
Producer's accuracy 97.22% 96.50%
Overall accuracy 96.74%
Kappa coefficient 0.93

Table 5
Accuracy assessment result of the extremely randomized trees model for the
validation set. The entries in the confusion matrix are the number of segments
for each class.

Classified as Reference

Fast ice Pack ice Sum User's accuracy

Fast ice 70 4 74 94.59%
Pack ice 2 139 141 98.58%
Sum 72 143 215
Producer's accuracy 97.22% 97.20%
Overall accuracy 97.21%
Kappa coefficient 0.94

Table 6
Accuracy assessment result of the logistic regression model for the validation
set. The entries in the confusion matrix are the number of segments for each
class.

Classified as Reference

Fast ice Pack ice Sum User's accuracy

Fast ice 70 5 75 93.33%
Pack ice 2 138 140 98.57%
Sum 72 143 215
Producer's accuracy 97.22% 96.50%
Overall accuracy 96.74%
Kappa coefficient 0.93
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old multi-year sea ice, producing high backscatter as it has aged and
thickened changing its properties such as salinity and brine volume.
The fractures over fast ice give a further evidence of being fixed to the
nearby glacier for decades. Massom et al. (2010) showed a mechanical
coupling between multi-year fast ice (MYFI) and the Mertz Glacier
Tongue, where rifts from the glacier propagated into the MYFI and
contributed to its breakup. As shown in Fig. B1 of Appendix B, many
icebergs are trapped in fast ice areas as well. Cook and Vaughan (2010)
also reported semi-permanent fast ice formed along the entire Larsen D
Ice Shelf, which were difficult to distinguish from the ice shelf front.

Fig. 12 shows that some objects over fast ice areas were incorrectly
classified as pack ice over the fast ice regions off the Nickerson ice shelf.
The objects have a low probability of fast ice in the LR model as well.
Three possible reasons for the misclassification are discussed in the
following two paragraphs; these are the effect of snow packs on L-band
images, the effect of ice deformation, and the effect of incidence angles
(Wolfgang Dierking, personal communication, 2019). A reason for the
misclassifications may be due to L-band response to snow packs. Behind
the icebergs (bright backscattering spots), there are strips with snow
accumulation in the wind shadow (Fig. 12d). This implies that L-band is
also influenced by snow packs to a certain degree, even though it has
been known that L-band is not sensitive to snow cover as its wavelength
is significantly larger than snow grain size (Dammann et al., 2016).

Therefore, the changes in backscattering on the red elliptical circles in
Fig. 12d where misclassifications occurred might have been affected by
snow as well. Furthermore, the 10-m wind speed over the regions was
about 9 m/s according to the European Center for Medium-Range
Weather Forecasts reanalysis 5 (ECMWF ERA-5) data of the Climate
Reanalyzer (https://climatereanalyzer.org/). Even low wind speed
could be strong enough to change the snow structure. Meanwhile, if the
temperatures are close to 0 °C, there may also be some changes at the
snow-ice interface in terms of roughness, salinity, and moisture, which
also change the backscattering (Wesche and Dierking, 2012). However,
daily average 2-m maximum air temperature over the regions was ap-
proximately −20 °C on 26th July 2007 and − 30 °C on 31th July 2007
(5 days later) according to the weather map on 0.5° × 0.5° rectilinear
grids of the Climate Reanalyzer, which is generated from the NCEP
Climate Forecast System version 2 (CFSV2) and CFS Reanalysis (CFSR)
model. It confirms that the fast ice regions were in a dry ice condition as
it was in the austral winter season (i.e., July in Antarctica). On the other
hand, it may also be possible that the large darker zone in the lower
middle of the images is a thinner ice which has been slightly deformed
in some places between both data acquisitions. Above the lower red
elliptical circle in Fig. 12d, there is a brighter floe (blue rectangular box
in Fig. 12d). The darker strips through this floe and around it have
almost vanished in the image on 31 July, which may indicate either ice

Fig. 7. Relative variable importance in-
dicated by (a) mean decrease accuracy of
random forest and (b) –log10(p-value) of
the logistic regression model with a red
vertical line indicating that input vari-
ables on the left side of the line have p-
values less than 0.05. (For interpretation
of the references to color in this figure
legend, the reader is referred to the web
version of this article.)

Fig. 8. Performance evaluation of the trained models for landfast sea ice over (a) the Dotson ice shelf, the Bellingshausen Sea, (b) the Brunt ice shelf, eastern Weddell
Sea, (c) the Larsen ice shelf, Antarctic Peninsula, and (d) the Nickerson ice shelf, eastern Ross Sea.
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growth (no deformation) or closing (slight deformation).
Fig. 12d shows that the overall changes in backscattering over fast

ice regions are small between the two images. Most of the spatial pat-
terns (i.e., spatial relative changes of backscattering coefficient) are the
same in both images, while only the absolute value of gray tones
changes to a certain degree. With regard to the effect of incidence an-
gles, if the local incidence angle differences are over 5°, relatively
strong changes in the backscattering coefficient should be observed to
some extent, dependent on the dominant scattering mechanism (e.g.,
surface scattering from smooth or rough ice or volume scattering)
(Makynen et al., 2002). The differences in the incidence angles of the
SAR image pairs used in this study approximately range from about 1.5°
to 3°. Backscattering changes are about 0.5 dB on average with a
maximum of about 1.5 dB, which are not so significant considering that
there could be some changes on snow structure on sea ice. As a sup-
plement, the incidence angle was not identified as a particularly im-
portant variable when it was added to the set of input variables (Fig. B2
of Appendix B). This would indicate that the proposed models can be
used to detect fast ice regions using bitemporal SAR images at a 5-day
interval with similar incidence angle configurations, especially when
the differences in incidence angles are not significant.

Antarctic sea ice chart data were used to evaluate the reliability of
fast ice detection models using object-based SAR data. Sea ice chart
data obtained at 15 November 2010 for the fast ice region of the
Bellingshausen Sea sector were available. The ice chart superimposed

on a model detection result is shown in Fig. 13. The visual comparison
shows a good agreement but a difference at the top right of the scene. In
a closer examination of the two SAR images (Fig. 13a–b), the move-
ments of icebergs trapped in sea ice, the occurrence of openings by
leads, and several rectilinear or wedge-shaped cracks were clearly
confirmed. The reason for the difference may be attributed to the length
of the time interval used to derive fast ice. Previous studies explain that
using a longer time interval over fast ice tends to detect smaller fast ice
areas due to a lower likelihood that the ice would remain spatially
stationary for the entire period, whereas using a shorter time interval
can confuse temporarily frozen drift ice as fast ice. A relatively long
time interval (e.g., 20 days) has been used as a tradeoff (Fraser et al.,
2010), but generally, it is due to data availability constraints by a long
revisit time of satellite sensor systems especially for optical sensor and
InSAR data. The bi-weekly Antarctic sea ice chart defined a slightly
wider area as fast ice despite using a longer time interval than this
study. Although the two data with different time intervals have dif-
ferent physical definitions, they show fairly consistent results.

4. Conclusions

This study showed that bi-temporal L-band ALOS PALSAR SAR
images with a short time interval (i.e., 5 days) are capable of identifying
Antarctic fast ice. This study suggested an algorithm that combines
image segmentation, image correlation analysis, and machine learning
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Fig. 9. Landfast sea ice detection results off the Dotson ice shelf, the Bellingshausen Sea of (a) random forest (RF), (b) extremely randomized trees (ERT), (c) logistic
regression (LR) models, (d) backscatter image of L-band HH-pol ALOS PALSAR for date 1 (13 Nov. 2010), and (e) backscatter image for date 2 (18 Nov. 2010). Red
solid lines indicate the reference fast ice edge, RF and ERT results are shown in pink color and LR result for the probability of fast ice coverage in yellowish-starched
color, and gray areas are both Antarctic continent and ice shelves. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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techniques to detect fast ice regions. The proposed object-based ap-
proach was well suited to high resolution SAR images by extracting
spatially homogeneous fast ice regions. Fast ice does not move much
over time, so it was possible to identify fast ice areas that are highly
correlated between the two temporally separated satellite images
compared to pack ice regions. In addition, the fast ice detection method
using SAR images provides an opportunity to study the rapidly chan-
ging interaction between fast ice and pack ice on a regional scale in
more detail.

The model performance results for the validation data show that all
three methods yield high accuracy. Marginally misclassified or un-
detected fast ice cases occurred in unstable areas, which are generally
affected by the surrounding environment at the edge of fast ice.
Correlation and STD of backscatter were identified as the most im-
portant and contributing variables for detecting fast ice. This coincides
with the physical characteristics of fast ice with little motion over time
and spatial homogeneity, including the fast ice properties.

The results for test data which are not included in training from the
West Antarctic ocean sectors show that the proposed approach achieved
good performance without significant misclassifications or missing
objects. Some misclassifications over the fast ice region could be be-
cause the L-band is sensitive to snow cover to some extent, or some
places in the region might have thinner ice that is slightly deformed
during either ice growth (no deformation) or closing (slight

deformation) between both image dates. Heavy snow load on the ice
could be an error source for some misclassification as well. In addition,
very old multi-year fast ice was identified as an error source for mis-
classification as it has higher backscatter when compared to other fast
ice regions. The results compared with various reference data confirm
the robustness and reliability of the proposed algorithm particularly
using L-band ALOS PALSAR SAR images. We expect this algorithm to be
suitable for fast ice detection in different regions, especially when the
local incidence angle differences are not so significant.

We have extracted fast ice regions in a short time interval (i.e.,
5 days) using spatially overlapping SAR images (considering small
differences in incidence angles) regardless of repeat cycles. Fast ice
detection conducted in earlier studies was limited to a longer time in-
terval (e.g. 20 days in Fraser et al. (2010)). As a future study, it would
be interesting to compare the method with existing methods in East
Antarctica that use a longer time span such as 20 days.

This study is limited to the L-band ALOS PALSAR data and covers
the early melt (i.e., early November) and freeze up (i.e., June to August)
periods in the Antarctic, except for summer season (i.e., December to
February) due to no data available. Thus, it is not possible to generalize
the proposed model directly using other SAR images due to the different
characteristics of other bands to sea ice or different seasons. It would
also be interested in the investigation on the utility of L-band SAR for
fast ice detection over other popularly used frequencies (e.g. C-band, X-
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Fig. 10. Landfast sea ice detection results off the Brunt ice shelf, eastern Weddell Sea of (a) random forest (RF), (b) extremely randomized trees (ERT), (c) logistic
regression (LR) models, (d) backscatter image of L-band HH-pol ALOS PALSAR for date 1 (8 Aug. 2007), and (e) backscatter image for date 2 (13 Aug. 2007). Red
solid lines indicate the reference fast ice edge, RF and ERT results are shown in pink color and LR result for the probability of fast ice coverage in yellowish-starched
color, and gray areas are both Antarctic continent and ice shelves. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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band, and Ku-band). However, it might require a new training process
for machine learning with other SAR data. In future research, using
combinations of different polarization images from RADARSAT-2 and
PALSAR-2, for example, could provide more plentiful information on
different scattering mechanisms depending on sea ice properties.

With regard to producing a large-scale fast ice product based on this
technique, it could be feasible if all the steps were automated, including
SAR image processing, compositing image pairs, segmentation for the
composite images, calculating input variables and applying a machine
learning model. Cloud-based computing environments such as Google
Earth Engine and Amazon Web Services would allow for implementing
the processes.
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Appendix A. Segmentation process in eCognition software

The multiresolution segmentation algorithm in eCognition was used, which is a bottom-up segmentation method that minimizes the hetero-
geneity of image objects and maximizes homogeneity to obtain the best segmentation results (Belgiu and Drǎguţ, 2014). Segmentation starts with
single pixels and repeatedly merges them into larger groups by using certain user-defined criteria for homogeneity (Chen et al., 2018; Lu and He,
2018; Han et al., 2018). The segmentation procedure iterates until each image object finds the best neighbor to merge with based on several user-
defined segmentation criteria with three parameters (i.e., scale, shape, and compactness; Witharana and Civco, 2014). First, the scale parameter

Fig. 12. Landfast sea ice detection results off the Nickerson ice shelf, eastern Ross Sea of (a) random forest (RF), (b) extremely randomized trees (ERT), (c) logistic
regression (LR) models, (d) backscatter image of L-band HH-pol ALOS PALSAR for date 1 (26 July 2007), and (e) backscatter image for date 2 (31 July 2007), and (f)
a closer view for the misclassified fast ice region (solid black line box) with red circles and a floe in the blue rectangular box that show some changes in the
backscattering between both images. Red solid lines indicate the reference fast ice edge, RF and ERT results are shown in pink color and LR result for the probability
of fast ice coverage in yellowish-starched color, and gray areas are both Antarctic continent and ice shelves. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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influences the size of resultant objects. In homogeneous areas of images, objects will be larger than those in images with heterogeneous surfaces. It
also limits the maximum allowable criteria of the following homogeneity. Secondly, the color (i.e., pixel values) and shape parameters are used for
the homogeneity criteria. As these are complementary criteria, they have a relationship of Color = 1 – Shape. As the value of the shape criterion
increases, images are segmented for spatial homogeneity. Eventually, the relationship will determine the degree of the contribution of the spectral
values of images for object generation. The shape parameter cannot be greater than 0.9 in order for the resulting objects to be somewhat segmented
based on their backscatter values. It is also adjusted by the smoothness and compactness parameters. By changing the value of the compactness field,
the smoothness criterion is defined, which then determines the degree of smoothness or compactness among the objects. The compactness parameter
is calculated as the ratio of the perimeter of an object and its area. The more compact an object is, the smaller its border length is (i.e., pixels in an
object are closer to the circle boundary). This is useful for images where compact and non-compact objects are not clearly distinguishable due to
weak spectral contrast (Yan et al., 2006). The compactness criterion can enhance the quality of segmentation for strongly textured data such as radar
backscatter images with highly fractured objects (Lucieer and Lamarche, 2011).

Fig. 13. Qualitative analysis results. (a) Backscatter image of L-band HH-pol ALOS PALSAR for date 1; (b) backscatter for date 2; (c) comparison between the
Antarctic Ice Chart and RF result (pink area). The light blue and red hatched areas are from the Antarctic Ice Chart. SD, F, IC are abbreviations for ice chart codes
meaning Stage of Development, Form of ice, and sea Ice Concentration, respectively. The blue solid line is fast ice edge as a reference. (d–f) Results of machine
learning models (RF, ERT, LR, respectively) with fast ice edge as a reference (red solid line). Gray areas are both Antarctic continent and ice shelves. The color bar for
backscatter images is the same as those used in Figs. 9–12. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
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Appendix B

Fig. B1. Upper: Landfast sea ice detection results zoomed into the Hearst Island area for each model and corresponding backscatter images of L-band HH-pol ALOS
PALSAR for date 1 and 2. Red solid lines indicate the reference fast ice edge, RF and ERT results are shown in pink color and LR result for the probability of fast ice
coverage in yellowish-starched color, and gray areas are both Antarctic continent and ice shelves. Bottom: ALOS PALSAR images of wide beam mode on 25th August
2007 (back) and fine beam mode with a spatial resolution of 10 m on 11 December 2007 (front) over multi-year land fast sea ice off the Larsen Ice Shelf, Antarctic
Peninsula.
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Fig. B2. Relative variable importance indicated by mean decrease accuracy of random forest by adding incidence angle variables (i.e., IncangMean and IncangSTD,
which were obtained from the mean and standard deviation of incidence angle for each object).
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