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ABSTRACT Texture in synthetic aperture radar (SAR) images is a combination of the intrinsic texture
of scene backscattering and the texture due to noncoherent high-frequency multiplicative noise (HMN)
interactions that reflect erroneous information and lead to observation misinterpretation. The focus of this
paper is the fractal analysis of KOMPSAT-5 SAR images of noncoherent sea-ice textures while being
decomposed by discrete wavelet transform (DWT) processing. As a novel approach, fractal analysis relies
on SAR sea-ice spatial backscattering data generation and time-frequency domain (TFD) formulations from
the perspective of uncorrelated HMN. To the best of our knowledge, this is the first time that the extraction
of the resolution profile and raw data for the reference KOMPSAT-5 SAR sea-ice image have been derived,
evaluated and compared both qualitatively and quantitatively at each scale of DWT decomposition on the
basis of the presence of HMN. This paper also presents a novel detailed modeling of the multiresolution
probability distribution function of the HMN and its power spectral density function modeling at each scale
of the decomposition. Other quality assessment techniques, such as two K-means clustering algorithms and
several visualized verification methods, such as gradient vector field, advection mapping and tensor field
mapping, have been implemented in this regard to investigate embedded HMN suppression and its adverse
effects on the presence of pixel anomalies. As a result, as the decomposition continues, the HMNat each scale
of decomposition is constantly altering from high-frequency uncorrelated anomalies to low-frequency joint
spatial information within the observed 2-D data. In other words, excessive multiscale HMN suppression will
result in spatial information loss thatmakes theDWT scale selection quite important for texture classification.
The results also show that the importance of HMN suppression in SAR sea-ice images in the form of pixel
anomaly decomposition for the purpose of further texture investigation should be in accordance with the
spectral behavior of the HMN. The results are helpful for SAR remote sensing image restoration and data
preservation when dealing with high-resolution SAR images, such as in time series analysis, sea-ice texture
change detection, and polar structural mapping. The proposed approach is implemented on real KOMPSAT-5
SAR satellite sea-ice images, while fractal spatial resolution profile simulations are carried out based on the
inversed equalized hybrid domain image formation algorithm.

INDEX TERMS Discrete wavelet transform, fractal analysis, high-frequency multiplicative noise, raw data
generation, synthetic aperture radar.

I. INTRODUCTION
Synthetic aperture radar (SAR), by transmitting wideband
signals at specific intervals, can exploit the properties of the
backscattered signals pertaining to illuminated terrain under
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all-weather and all-day conditions [1]. These backscattered
data are unprocessed time-synchronized signals in a com-
plex demodulated format, which are just frame formatted
and rearranged into contiguous radar range lines known as
raw data [2]. The SAR image formation algorithm (IFA)
processes the raw data in both fast and slow times to recon-
struct 2-D grayscale images of the illuminated terrain and its
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pertinent textures [2], [3]. During the coherent processing of
the successive received pulses, constructive and deconstruc-
tive phase interferences occur in the form of pixel anomalies
within the image reconstruction procedure known as high-
frequency multiplicative noise (HMN) [4]. These signal-
dependent anomalies, which present as uncorrelated signals
in the form of pixel intensity alterations, will result in image
quality degradation and texture misinterpretations [4].

Despite the adverse effects of HMN presence in SAR
imagery, they are still the main information source for remote
sensing, specifically polar region with hostile conditions and
difficult access. Polar region with underlying oceans and
overlying atmosphere have directly a role in global climate
change studies [2], [5]. Hence, SAR polar observation and
sea-ice imagery are particularly helpful for frigid zone mon-
itoring and texture analysis for the purpose of environmental
research, climate change studies, earth temperature obser-
vation, maritime safe navigation, polar explorations, and
other probable operations in ice-covered areas [6]–[8]. In this
regard, 2-D grayscale images of SAR sea-ice are processed
for the purpose of sea-ice electromagnetic interactions, struc-
ture recognition, texture clustering, image classification and
image change detection [9], [10].

However, the complex SAR sea-ice terrain is considered
a nondeterministic texture completely time-dependent and
constantly changing based on origination, formation, growth
and melting. In other words, sea-ice has different features,
such as surface roughness, temperature, inclusion particles,
and salinity, which form different electric permittivity and
magnetic permeability values. These values can easily affect
the reception procedure of the reflected pulses in the shape of
diverse scatterings and various backscattering coefficients by
means of uncorrelated HMN, which results in incoherent raw
data reception and image pixel anomalies as major sources
of information loss and imprecise SAR classifications and
detections [4], [7], [11]–[13]. In short, sea-ice textures have
different electromagnetic interaction behaviors and gray lev-
els, which might reflect erroneous information and lead to
misinterpretations of the observation data, which are very
important for polar region observations. Therefore, identify-
ing the main features of sea-ice terrains into a set of prede-
fined categories and objective SAR sea-ice classifications are
optimum solutions to avoid texture misinterpretations while
handling the presence of HMN.

To date, different approaches have been proposed for
SAR sea-ice texture analysis and classification, which are
mostly based on the statistical analysis of pixels or generative
stochastic parameter modeling [6], [14]–[25]. The computa-
tional complexity as well as focusing on the intensity cou-
pling between pixels at a single scale without considering the
adverse effects of HMN and the origin of signal anomalies are
the major defects of such texture analysis methods proposed
in different studies [26].

With the advent of studies on scaling properties, the use
of the texture transform method based on time-frequency
domain (TFD) techniques has become popular for the

purpose of texture analysis [27]–[32]. Moreover, discrete
wavelet transform (DWT) applications for SAR image pro-
cessing have received much attention in the literature in
contrast to other TFD techniques [33]–[36]. With the help of
the DWT algorithm, SAR images can not only be transformed
into both spatial and frequency domain information as a
multiresolution technique but can also be decomposed into
further scales, which is referred to as multiscale implemen-
tation. Accordingly, a TFD fractal formulation of the SAR
sea-ice texture in the presence of embedded HMN and pixel
anomalies based on DWT application can be considered a
novel SAR sea-ice fractal research study that has not yet been
performed on sea-ice textures [4], [7], [9]–[13], [18]–[23],
[25]–[36]. In other words, multiresolution DWT decomposi-
tion is not only helpful to investigate the adverse effects of
the presence of HMN and its suppression within the SAR
sea-ice texture but also assists the multiscale probability
distribution formulation of noncoherent structures and clas-
sification along with preservation of the fine details of the
sea-ice. The Korea Multi-Purpose Satellite-5 (KOMPSAT-5)
is South Korea’s first satellite equipped with X-band SAR.
The enhanced observation mode of KOMPSAT-5 can be
considered as suitable option for constant monitoring of sea-
ice areas, which has not been investigated completely [37].
According to the DWT algorithm, a multiresolution TFD
formulation and modeling of the electromagnetic interaction
and HMN multiscale probability distribution function (PDF)
within the KOMPSAT-5 SAR sea-ice image is a novel key
point for such fractal analysis. All the aforementioned works
have not only failed to develop a TFD formulation and model
the probability distribution of the embedded HMN and pixel
anomalies of SAR sea-ice texture but also lack multiscale
suppression fractal analysis and the successive classification
procedure as well as proper signal-based and objective image
quality assessment.

To the best of our knowledge, this is the first time that the
adverse effects of the presence of HMN and the associated
pixel anomalies within KOMPSAT-5 SAR sea-ice images
have been investigated with the help of joint complex TFD
formulation and modeling on the basis of multiscale DWT
decomposition. The main objectives of this study are the
precise multiresolution HMN investigation within the SAR
texture and its pertinent effects on the sea-ice classifications
while being suppressed by the DWT. This study also includes
an objective SAR sea-ice image quality assessment, which
verifies the proposed TFD formulation, structural behavioral
modeling, signal fractal analysis and classification method.
The investigation of the presence of HMN is performed with
the help of sea-ice electromagnetic interaction analysis and
resolution profile extraction for both the image and the sen-
sor [38]. Additionally, a multiscale TFD distribution formula-
tion of embedded HMN and a model of its spectral behavior
as well as different K-means clustering algorithms are also
being used for the purpose of fractal sea-ice signal and pixel
anomaly investigation. The objective quality metrics include
the PDF of HMN, HMN power spectral density (PSD)
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modeling, gradient vector mapping, tensor field mapping and
advection mapping of the HMN, pixel-based measurements,
correlation-based metrics, local entropy and local range mea-
surements as well as SAR-specific parameters such as the
peak side-lobe ratio (PSLR) and the integrated side-lobe ratio
(ISLR). The K-means classification application is considered
as two different iterative and adaptive versions for the purpose
of research reliability. All the abovementioned procedures
(image resolution investigation, signal spatial profile extrac-
tion, multiscale HMN distribution assessment and model-
ing, image decomposition, K-means classifications and the
different objective quality assessment techniques) are con-
sidered for the first time as a whole fractal research anal-
ysis in the case of real SAR sea-ice texture interpretation,
specifically the KOMPSAT-5 SAR. The results verify the
formulation, modeling, suppression, decomposition and clas-
sification accuracy.

This paper is organized as follows. In Section II,
a brief description of SAR electromagnetic interaction and
HMN generation is presented. This section also includes
KOMPSAT-5 SAR sea-ice resolution profile extraction based
on the image profile and raw data generation (RDG) in the
presence of HMN. This section also describes DWT decom-
position of images, HMN probability distribution formula-
tion and TFD spectral behavior analysis as well as K-means
classification. In Section III, the proposed aforementioned
methods and the simulations and verification scenarios with
the help of the above objective qualitative and quantitative
metrics will be applied. Finally, the conclusions are given in
Section IV.

II. CONCEPTS AND APPROACHES
A. KOMPSAT-5 SAR SEA-ICE IMAGE ANALYSIS AND
RESOLUTIONAL PROFILE EXTRACTION
SAR sensors provide information about terrains by measur-
ing and mapping the reflected energy in microwave bands.
In comparison to its passive, optical or infrared counter-
parts, SAR circumvents the resolution limitation by using
coherency in the ranging and Doppler tracking to acquire
high-resolution images of terrain based on pulse compression
and the effective viewing geometry. Each image pixel is
generated by processing a large number of successive echoes
and the coherency of the pulse in the transceiving modula-
tion process, which results in a deterministic phase variation
is very important. It is important to note that the sensor
directly observes the scene reflectivity as a spatially varying
quantity, and any random process in the form of dephased
reflectance will lead to distinct intensity anomalies in the
signal and, consequently, the image texture. In other words,
nonstationary multiplicative noise with random interference,
known as HMN, degrades the backscattered signal quality
and makes the pulse no longer coherent for the reception
of the signal. According to the spatial configuration of the
noise, the signal characteristics will change, and the spatial
distribution of the noise power makes the description of the

raw data matrix highly complex because of changing values.
This noncoherent noise is distributed throughout the image
and contributes very little to the pixel intensities but can con-
stitute a significant attenuation of the received backscattered
raw data profile as the presence of uncorrelated multiplicative
interference, which varies randomly. The spatial distribu-
tion of the proposed nonstationary multiplicative noise in
the time-dependent formulation of the backscattered signal
intensity can be presented as the complex reflectivity:

σ (x, y, t) = σ 0 (x, y) .N (t) (1)

where σ is a product of a spatially varying complex reflec-
tivity σ 0 (·) and time-dependent HMN in terms of N (t).
The HMN is considered completely signal dependent and is
demodulated in a manner proportional to the terrain mean
complex reflectivity of σ 0 (x, y), which has an asymmetrical
PDF and gamma distribution related to the phase, the ampli-
tude, the intensity and the manner of the observation of
the backscattered signal and the 2-D reconstructed image
I (x, y) [4]. In other words, the received backscattered signal
is no longer a coherent signal, and any time the SAR collects
the complex reflectivity values from the distributed point
scatterers within a terrain, the HMN embedded within the
signal has a constructive or destructive pattern and the pixel
statistical distribution based on the amplitude, phase, and
intensity will be affected. It should be noted that surfaces
under the same amount of radiation and with similar texture
would have different values of σ and produce different gray
levels.

This noisy pattern of microwave imaging will be much
more complicated when dealing with sea-ice terrains because
of the complex electromagnetic interaction of different lay-
ers and the low backscattering profile of the sea-ice while
being illuminated by active coherent radiation under different
radiation scenarios [39]. Hence, an extended terrain backscat-
tering modeling of the sea-ice on the basis of σ 0 (·) might
be helpful for further understanding of the presence of N(t)
within the backscattered signal as a major abnormal source
of random pixels and the terrain electromagnetic interactions
compared to previous works [26]–[41]. Accordingly, both the
mean SAR image I (·) and the HMN spectrum follow from
the hypothesis that the complex reflectivity σ (·) at different
points at the same or at different times on the same terrain are
uncorrelated. As a result, when addressing σ (·), the HMN
manifests itself in the form of resolution cell disorders and
SAR image pixel anomalies with statistical properties similar
to those of thermal noise that make the raw data interpretation
and texture analysis erroneous. Accordingly, the real refer-
ence SAR sea-ice image by KOMPSAT-5, as shown in Fig. 1,
will be used for further profile investigations. As shown,
the reference SAR sea-ice image includes open water and
free floating snow surfaces such as sea-ice, ice floes and ice
fragments, which differ on the basis of their shape, extent,
thickness and concentration.

Accordingly, the contours of the sea-ice image vary in size,
density and magnitude throughout the entire image, which is
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FIGURE 1. Original SAR sea-ice (a) reference image and (b) contour plot.

the result of backscattering coefficient alteration that presents
as pixel anomalies among the adjacent resolution cells. This
abrupt reflectivity alteration is a combined effect of the sensor
and the sea-ice terrain interaction as the source of HMN
that manifests as random pixel anomalies within the texture.
Figs. 2 and 3 present a perspective of the aforementioned
adverse HMN effects on the shape of pixel anomalies present
and the suppressed scenario for comparison [4].

As can be deduced, the intensity alteration occurs both
in the fast-time and slow-time directions between adjacent
resolution pixels. From a backscattering point of view, each
resolution cell contains several scattering centers with differ-
ent complex reflectivity values whose electromagnetic inter-
actions are influenced by the radiation scenario. According to
the difference anomaly profile in Fig. 2(c) and 2(d), the abrupt
intensity alterations have a higher rate in the fast-time direc-
tion and are more intense on the magnitude in the slow-time
direction, which is the same of image frequency profile in
Fig. 3. It is deduced that the adverse effects of HMN on the
frequency profile can be more intense on the weaker signals
with low signal-to-noise ratios (SNRs). The adverse HMN
sensitivity presence can be observed from -8 dB to -14 dB
with a differencemagnitude of approximately 1 dB or 2 dB on
the profile. These errors in the reception can present as pixel
alterations, which are completely present in Fig. 4. As seen,
an SNR deviation of 1 dB or 2 dB will result in a maximum
pixel intensity alteration of 1 dB with a nonspecific pattern
within the image.

As seen, an SNR deviation of 1 dB or 2 dB will result in a
maximum pixel intensity alteration of 1 dBwith a nonspecific
pattern within the image. This pixel behavior is in the shape
of random abrupt intensity changes or slow variations in

FIGURE 2. Normalized SAR sea-ice pixel anomaly profiles and
comparisons: (a) slow-time direction, (b) fast-time direction, (c) slow-time
direction difference profile, and (d) fast-time difference direction profile.

magnitude. The difference profiles in Figs. 2, 3 and 4 clearly
show how HMN can degrade the SAR quality not only on
the basis of raw data but also on the basis of images that are
determined to occur due to electromagnetic interactions and
texture behaviors.

Figures. 5 and 6 present the sea-ice pixel anomalies based
on the gradient vector field (GVF) presentation. According
to the GVF results in Fig. 5, the HMN adverse effects have
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FIGURE 3. Normalized SAR sea-ice image frequency profile in the
(a) slow-time direction and (b) fast-time direction.

a nonspecific pattern in the intensity anomaly, which causes
the vector fields of the pixel components to be extended and
less focused in both directions with a random distribution
over the entire sea-ice terrain. It is also obvious that the main
GVF concentrations are on the edges and boundaries due
to their propagation model and pixel divergences. However,
in ideal suppressed HMN conditions with less propagation
disorder, the GVF concentration is supposed to be uniformly
distributed and tends to be more focused, as shown in Fig. 6.

From a broader perspective, different texture states under a
number of conditions occurring above and below the sea-ice
terrain have their own direct influence on the coherence of
the electromagnetic interactions and result in the source of
uncorrelated HMN, which renders difficulties in the interpre-
tation of the main features of SAR images in the form of pixel
anomalies.

Accordingly, the local structural characteristics of the sea-
ice pixel anomalies in Fig. 1 present the gradient maps of
Fig. 7 and the kurtosis image of Fig. 8. The magnitude and
directionmaps in Figs. 7(a) and 7(b) are based on the intensity
partial derivation along the fast-time and slow-time directions
according to their quantized values, while the SAR kurtosis
image in Fig. 8 is based on the probability distribution of the
embedded HMN or the spatial interaction of adjacent pixel
anomalies.

As seen in Figs. 7(a) and 8, specific regions are distin-
guished from the other homogenous regions because of the
large gradient value and angle of probability as well as the
tailedness of their distribution, which are more responsive
to the sea-ice electromagnetic interactions. According to

FIGURE 4. Normalized SAR sea-ice pixel anomaly evaluation based on
the rate and intensity: (a) the slow-time direction, (b) the fast-time
direction, (c) the slow-time difference direction profile, and (d) the
fast-time difference direction profile.

Figs. 7(b) and 8, the presence of HMNwill smooth the sea-ice
image boundaries and lead to higher gradient map values and
probability distributions, which makes it hard to distinguish
the texture content known as an unstable area within the sea
ice. According to Fig. 8, ice fragments, sea ice and edge
boundaries are examples of unstable regions that produce
pixel anomalies due to backscattering phenomena in the form
of HMN behavior.
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FIGURE 5. Normalized SAR sea-ice gradient vector fields: (a) the real size
and (b) the zoomed-in view.

FIGURE 6. Suppressed HMN sea-ice gradient vector field (a) the real size
and (b) the zoomed-in view.

In short, the HMNhas a random distributionwith a nonspe-
cific pattern of pixel anomalies and does not follow a spatial
variation related to the average reflectivity of the illuminated
terrain. Hence, in addition to image resolution profile extrac-
tion, a spatial resolution profile analysis based on distributed
scatterer reflectivity measurements might help to investigate
SAR sea-ice electromagnetic interaction behaviors. In other

FIGURE 7. Normalized SAR sea-ice image resolution gradient map (a) the
gradient magnitude and (b) the gradient direction.

FIGURE 8. Normalized SAR sea-ice kurtosis.

words, distinguishing features of the sea-ice texture, such as
the edge sharpness, extent, volume, and roughness, as key
descriptors of sea-ice are the source of the random distribu-
tion of HMN in the shape of pixel anomalies.

Therefore, it is necessary to investigate the uncorrelated
interaction of sea ice on the basis of active sensor-terrain
spatial resolution profile extraction. In comparison to the
image resolution evaluations in Figs. 2 to 8, the sea-ice spa-
tial resolution is not only dependent on the electromagnetic
interaction phenomena but also relies on sensor parameters
such as the carrier frequency and observation time. How-
ever, the results of the noncoherent electromagnetic interac-
tion evaluation are not parameter oriented. In other words,
when the received backscattered data are extracted, the effects
of the sensor parameters will not change the randomness of
the HMN but are necessary for such spatial profile extrac-
tion. It should be noted that, compared to the evaluation
of the image pixel resolution, which is intensity oriented,
the evaluation of the spatial resolution is based on the spatial
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FIGURE 9. Sea-ice spatial resolution and backscattered data profile
extraction algorithm.

TABLE 1. Main parameters of the SAR sensor.

configurations of sensor-terrain active interactions in the
form of front-end phase history analysis. In this paper,
the extraction of the received backscattered data profile is car-
ried out on the basis of time-frequency domain IFA according
to Table 1 and the RDG routines of Fig. 9 [4].

The purpose of SAR spatial resolution analysis is twofold.
The first, namely, the extraction of raw data, allows the
evaluation of the adverse effects of HMN on the active inter-
action behavior of the texture while it is being backscat-
tered to the sensor in the form of raw data. The second is
the detection of unstable regions as a source of anomalies.
Referring to the proposed RDG method in Fig. 9, the inco-
herent information of the reference SAR sea-ice image will
be first imported to a preprocessing step on the supposi-
tion of a non-backscattered background, which is called
surface reflectivity stretching. Terrain reflectivity stretching
makes the sea-ice texture homogenous for spatial resolution
profile extraction. It should be noted that the selection of
the sensor parameters for the algorithm is dependent on
the size of the reference image. Accordingly, the result in
Fig. 10 shows the extracted normalized SAR sea-ice received

FIGURE 10. Normalized SAR sea-ice received backscattered data (a) 3-D
view and (b) kurtosis image.

backscattered data as well as its kurtosis image. As can
be deduced, the maximum backscattered magnitude of the
terrain-sensor interaction is approximately 0.75 dB, while the
minimum is approximately 0.35 dB. In other words, the thick
homogenous sea-ice floe has stronger complex reflectiv-
ity magnitudes; as the texture changes to ice fragments,
including drifted thin ice sheets and sea-ice, the magnitude
decreases. Figure.10(b), which is the same as Fig. 8, presents
the kurtosis image of the received backscattered data from
Fig. 10(a).

According to the results, the sea-ice section including open
water and ice fragments presents higher random noise spar-
sity relative to the HMN distribution. In other words, the peak
values in the kurtosis image indicate the direction and severity
of the HMN, as sign of pixel anomaly within the sea-ice.
The higher the kurtosis of the raw data, the more resolution
cells that will have the dominant HMN level; however, a uni-
form distribution of kurtosis is an extreme case that will not
happen in real RDG. In the same way, Figs. 11(a) and 11(b)
present a complete perspective of the reflectivity alteration
and HMN sparsity in the reference KOMPSAT-5 sea-ice
image while being overlaid. As seen, the sea-ice texture
including open water and thinner ice fragments are the most
likely sources of pixel anomalies, which has also been shown
in Figs. 8 and 10(a).

As a result, the probability distribution of the HMN over
the sea-ice texture is peaked and flat relative to the spatial
configuration of the uncorrelated source of pixel anomalies,
which are more likely to occur in areas with open water,
ice fragments, drifted particles and mixed sea-ice textures.
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FIGURE 11. Normalized SAR sea-ice overlaying image with (a) the
received backscattered data image and (b) the received backscattered
data kurtosis image.

FIGURE 12. Normalized SAR sea-ice received backscattered data
advection map.

Figure 12 presents the aforementioned results on the basis
of the advection map of the sea-ice RDG according to the
external vector field approximation of reflectivity distribu-
tions in Fig. 10(a). Due to the dynamic coherent features
of electromagnetic propagation, it is observed that thick ice
floes and the fragmented ice have dense spatial representation
of the vector fields within their spatial resolution cells in
comparison to other reflectivities. The received backscattered
sea ice signals are diffused to neighboring regions of vector
fields that can be used for sea-ice complex RDG prediction
and pixel anomaly studies while dealing with HMN spatial
resolution analysis.

Accordingly, the results in Fig. 13 present the adverse
effects of HMN on the sensor-terrain spatial resolution. It is
shown that the deteriorative effects of HMN on the spatial
resolution in the fast-time direction have a much faster rate
rather than the slow-time direction; however, it has almost the
same pea-to-peak magnitude of alteration, which is approx-
imately 1 dB as in the image resolution in Fig. 4. Similar to
the results of the image resolution in Figs. 2 and 4, the HMN
in both directions is observed as destructive but with different
rates and magnitudes.

FIGURE 13. Normalized SAR sea-ice spatial resolution profile
presentation and comparison: (a) slow-time direction, (b) fast-time
direction, (c) slow-time direction difference profile, and (d) fast-time
difference direction profile.

In comparison to the spatial resolution, the image res-
olution is more sensitive to the presence of HMN, and
the slow-time direction is more sensitive to HMN than the
fast-time direction. In general, HMN is multiplicative, and
increasing the transmit signal power will not reduce the HMN
level because the variance increases with the intensity. Like-
wise, improving the signal bandwidth for fine-range resolu-
tion will result in a high data rate with the computational
cost in the fast-time direction and increase the chance of the
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presence of HMN. In the slow-time direction, the situation
is more complex due to the interrelations between various
sensor parameters and the resolution. As a result, HMN tends
to weaken for very high-resolution systems, since the number
of elemental scatterers within a resolution cell decreases.

It is worth noting that the information capacity per res-
olution cell is very small, and consequently, the complete
removal of HMN and normally pixel anomaly correction is
impossible without sacrificing the resolution [42]. As a key
descriptor, HMN and pixel anomaly correction based on the
HMN distribution model still remain. In short, the HMN dis-
tribution model within the SAR sea-ice texture play a key role
in the qualitative and quantitative assessment of verification
scenarios. The next section will provide more details on the
modeling, removal and evaluation analysis.

B. KOMPSAT-5 SAR SEA-ICE HMN SUPPRESSION, HMN
DISTRIBUTION FORMULATION AND TEXTURE
CLASSIFICATION APPROACH
Since sea-ice regions are often difficult to access, in situ
metrics to validate calculated SAR results are sparse. On the
other hand, the presence of HMN in SAR images reduces
the accuracy of the texture analysis on the basis of electro-
magnetic interactions. Thus, it is important to address the
SAR sea-ice texture in a way not only capable of reducing
the adverse effects of the HMN but also able to improve
the possibility of texture specification with minimal loss of
information. Hence, this section will briefly introduce the
approach to KOMPSAT-5 SAR sea-ice HMN suppression
based on the TFD technique, HMN spectral property for-
mulation and texture classification. The concept of HMN
suppression and spectral formulation is based on the DWT
decomposition method, while the classification is proposed
on the basis of two separate iterative and adaptive K-means
clustering algorithms.

1) SAR HMN SUPPRESSION BASED ON A TEXTURE
DECOMPOSITION APPROACH
The major disadvantage of the methods used in SAR sea-ice
texture analysis is the application of joint probability distri-
butions of the pixels based on a single scale. In other words,
such methods share one common weakness, that is, the focus
on the coupling between image pixels on a specific scale
while completely ignoring the adverse effects of the pres-
ence of HMN in the shape of pixel anomalies when dealing
with 2-D received backscattered data. Hence, the need for a
method that represents the 2-D SAR sea-ice grayscale image
in a domain whose coordinate system has an interpretation
closely related to the characteristics of the texture, such as
the frequency, time, and intensity, is very important to char-
acterize effectively the adverse effects of pixel anomalies
and HMN at different scales of the texture. As previously
introduced, the DWT is a formal, unified multiresolution
TFD framework for multiscale decomposition of 2-D images,
which can help to retrieve the SAR sea-ice texture contents
based on maximizing the recognition rate while capturing

FIGURE 14. Normalized SAR sea-ice multiresolution and multiscale DWT
decomposition and PDF property coefficients for the HMN intensity.

the distribution information of the texture at different coor-
dinates. The 1-D DWT algorithm can be extended to a 2-D
DWT by the tensor product of two 1-D wavelets along the
horizontal and vertical directions with some geometric and
frame arrangement definitions, as shown by (2) [33], [43].
At each scale, the decomposition scheme applies the scaling
filter and the wavelet filter alternately to the columns and
rows of the 2-D image under TFD analysis. At any decompo-
sition level l = 1, . . . ,L, according to their frequency com-
ponents, the input is transformed into four subbands. They
are called the approximated subband LL and the other three
detailed subbands are HL, LH and HH, while L is the result
of low-pass scaling filtering and H is for high-pass wavelet
filter. Since the approximation of subband LL at any scale
contains any low-frequency components of the reference
image, it carries most of the original information, whereas
the detailed subbandsHL, LH andHH capture the horizontal,
vertical, and diagonal features, respectively. Subband LL will
be used as an input for further scale decomposition in the
case of multiscale analysis at level l + 1. At scale 0, LL is
represented by the reference image. Hence, the scaled and
translated basis elements of the 2-D DWT algorithm are as
follows:

LL = c (x, y) = c(x)c(y)

HL = wH (x, y) = w(x)c(y)

LH = wV (x, y) = c (x)w (y)

HH = wD (x, y) = w(x)w(y) (2)

where, c (x, y) is the scaling function, w(x, y) is the wavelet
function, the superscripts H , V and D refer to the decompo-
sition direction of the wavelet, which are used as part of 2-D
image manipulation, while the multiresolution representation
of scaling is given by (3) and Fig. 14:

cl,m,n (x, y) = 2
l
2 c(2lx − m, 2ly− n)

wkl,m,n (x, y) = 2
l
2w
(
2lx−m, 2ly−n

)
where k={H ,V ,D}

(3)
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In the case of 2-D SAR sea-ice image decomposition
according to (1) and with the help of (2), the DWT function
of SAR image with sizes Na and Nr on the basis of the
scaling function and its corresponding wavelet functions are
defined as:

Tc (l0,m, n) =
1

√
NaNr

∑Na−1

x=0

∑Nr−1

y=0
I (x, y)cl0,m,n (x, y)

THw (l,m, n) =
1

√
NaNr

∑Na−1

x=0

∑Nr−1

y=0
I (x, y)wHl,m,n(x, y)

T Vw (l,m, n) =
1

√
NaNr

∑Na−1

x=0

∑Nr−1

y=0
I (x, y)wVl,m,n(x, y)

TDw (l,m, n) =
1

√
NaNr

∑Na−1

x=0

∑Nr−1

y=0
I (x, y)wDl,m,n(x, y)

(4)

where Tc (·) is the scaling function and THw (·), T
V
w (·) and

TDw (·) are the horizontal subband, vertical subband and
diagonal subband representations, respectively, of the SAR
sea-ice image. It should be noted that the inverse DWT of the
aforementioned decomposition is derived as (5):

I (x, y) =
1

√
NaNr

∑
m

∑
n
Tc (l0,m, n) cl0,m,n (x, y)

+
1

√
NaNr

∑
l=H ,V ,D

∑
l=l0

∑
m

∑
n

×T kw(l,m, n)w
k
l,m,n(x, y) (5)

According to the above formulation, the DWT decom-
position method is used to transform 2-D images into
representations in which both the SAR spatial and frequency
information are presented within different scales that are
easy to interpret. Accordingly, every subband image con-
tains information on a specific scale and orientation, which
are conveniently separated while their spatial information
is retained within the subimages. Therefore, extracting the
subimage information based on the embedded properties
might be helpful. The spectral properties are one of the
characteristics that are important to extract for KOMPSAT-5
SAR analysis. Spectral property extraction, specifically the
HMN spectral formulation, will be described in the next
section.

2) SAR HMN PROPERTY FORMULATION BASED ON
THE DWT DECOMPOSITION APPROACH
As described previously, due to the different physical prop-
erties of the complex sea-ice terrain illuminated by inciden-
tal electromagnetic waves, the independent point scatterers
within resolution cells will generate random coherent inter-
ferences in the form of HMN in sea-ice images.

The characteristics of the HMN are very important, and
they differ from those found in other sensors, such as
their coherency, the multiplicative behavior, the asymmetri-
cal PDF, the distribution model and the dependency on the
backscattered signal that is completely under the control of
phase, amplitude and intensity distribution of the observation
mode. In other words, as the reference image is decomposed

into further scales, the HMN will be changed based on the
expectation and the variance of the SAR sea-ice coefficients,
which will be modulated by the characteristics of the HMN
proportional to the texture mean backscattering. In short,
despite the limitation of the random sea-ice propagation,
when the 2-D image is being decomposed, HMN property
extraction is not only possible but also helps for profile
evaluation, which provides a complete statistical presenta-
tion of the HMN coefficients. According to (1) and for the
purpose of statistical analysis of the HMN, let us consider
the SAR sea-ice observations, which will be mapped in two
dimensions (6):

P = IS .N (6)

where P is the SAR observed pixel, IS is the average sea-ice
pixel intensity, and N is the HMN intensity. IS and N are con-
sidered two independent random variables within the image
pixels. P1 and P2 are considered two adjacent pixels in a SAR
observation:

P1 = αN1

P2 = βN2 (7)

where α and β are constants and N1 and N2 are independent
HMN random variables with identical PDFs according to the
general gamma distribution 0(n, λ) as in (8):

p (N ) =
λn

(n− 1)!
N n−1 exp (−λN ) (8)

where N is the result of HMN components that are observed
with a specific phase and amplitude, as derived in (1). More-
over, P1 and P2 can be modeled as two adjacent pixels in
an observation of P, where α and β are the pixel intensities.
In the case of α = β, the two adjacent pixelsP1 andP2 belong
to a homogenous region. Otherwise, P1 and P2 are located in
two different regions. If α 6= 0 and β 6= 0,O1 and P2 follow
the general gamma distribution with the form of (9):

pP1 (N ) =
λn

α (n− 1)!
(
N
α
)
n−1

exp
(
−λ

α
N
)

where N , n≥ 0, and

pP2 (N ) =
λn

β (n−1)!
(
N
β
)
n−1

exp
(
−λ

β
N
)

where N , n≥0

(9)

The property of P1−P2 is the basis for the development of
HMN properties and coherent complex modeling in the 2-D
DWT domain. Hence, if the cumulative distribution function
of P1 − P2 is defined as:

P(P1 − P2 < t) =
∫∫

N≤t
pP1 (N ) pP2 (N ) dN (10)

then the following will result (11), as shown at the bottom of
the next page.
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The PDF of P1 − P2 can be derived as:

pP1−P2 (N ) =
exp

(
−
λ
β
|N |
)

(n− 1)!

(
λ

α

)n (
λ

β

)n
∑n−1

j=0

(n+ j− 1)!

j! (n− j− 1)!( λ
α
+

λ
β
)
n+j |N |

n−j−1


(12)

Hence, the moments of P1 − P2 can be derived by:

E
[
N i
]
=

2
(n− 1)!

(
λ

α
)
n
(
λ

β
)
n

∑n−1

j=0

(n+ j− 1)! (i+ n− j− 1)!

j! (n− j− 1)!( λ
α
+

λ
β
)
n+j

∣∣∣∣βλ
∣∣∣∣i+n−j


E
[
N i
]
= 0

if i is even
if i is odd

(13)

For the purpose of HMN complex behavioral modeling, let
α = β = 1. Hence, (12) can be rewritten as:

pP1−P2 (N ) =
exp (−λ |n|)
(n− 1)!

(λ)2n

×

n−1∑
j=0

(n+ j− 1)!

j! (n− j− 1)!(2λ)n+j
|N |n−j−1

 (14)

Equation (14) is the combination of exponential and poly-
nomial functions, and if a random variable follows the
abovementioned function, it follows an exponential poly-
nomial (EP) distribution and can be stated as an EP(n, λ)
distribution. Accordingly, the EP distribution and its corre-
sponding statistical features are the basis of HMN behavioral
analysis in TFD. Suppose {Pi} is an observed set of HMN
data with independent variables that follow a gamma distribu-
tion 0(n). To the best of our knowledge, if λ = n, the general
distribution of 0(n, λ) is simplified to 0(n). After a 1-D
DWT using Haar’s mother wavelet, the result would be as
follows:

T 1
1 ([P1,P2]) = [c11,w11] =

1
√
2
[P1 + P2,P1 − P2] (15)

where c11 is the scaling coefficient (SC) in the low-pass
filtering direction and w11 is the discrete wavelet coeffi-
cient (DC) in high-pass filtering, which are independent vari-
ables of the HMN. All the SCs follow a general gamma
distribution, while the DCs follow an EP distribution. In the

case of two-scale 1-D DWT decomposition, (15) can be
rewritten as:

T 1
2 ([P1,P2,P3,P4]) = [c1,w21,w11,w12]

=
1
2
[P1 + P2 + P3 + P4,P1 + P2

−P3 − P4,P1−P2,P3−P4] (16)

Similarly, for M–scale 1-D DWT decomposition, the PDFs
of the SCs and DCs follow the gamma distribution and EP
distribution, respectively, as below:

cM ∼ 0(2Mn, 2−M/2n)

wM ∼ EP(2M−1n, 2−M/2n) (17)

In the case of 2-D DWT decomposition, the abovemen-
tioned result can be generalized. Suppose P̄ =

{
Pi,j
}
0≤i,j<n

is a homogenous region with unitary backscatter intensity,
as shown in (6).

{
Pi,j
}
are independent HMN random vari-

ables with the gamma distribution Pi,j ∼ 0(n). The behav-
ior of HMN in the DWT domain has two parts (scaling
and wavelet coefficients), and every SC and DC depend on
a 2M×2M block in the normalized reference image after
M -scale DWT decomposition. According to one-scale DWT
decomposition in (16):

W 1
([

P11 P12
P21 P22

])
=

[
c1 wH1
wV1 wD1

]
=

1
2

[
P11+P12+P21+P22 P11−P12+P21−P22
P11+P12−P21−P22 P11−P12−P21+P22

]
(18)

Based on (18), the following result can be derived:

c1 ∼ 0(4n,
1
2
n)

wi1 ∼ EP
(
2n,

1
2
n
)
, i = H ,V ,D (19)

After an M -scale DWT decomposition, (19) can be
rewritten as:

cM ∼ 0(4Mn, 2−M )

wiM ∼ EP(22M−1n, 2−Mn) (20)

Figure 14 shows the PDF of the HMN intensity for every
SC and DC in the case of three-scale SAR sea-ice image
decomposition. According to the above TFD distribution
modeling of HMN based on DWT, PSD modeling is consid-
ered the best possible option to investigate the adverse effects
of HMN within KOMPSAT-5 SAR sea-ice images. The PSD
is an objective quality assessment metric that measures the
intensity of the joint pixels as a function of the frequency

P(P1 − P2 < t) =


exp

(
−
λ
β
|t|
)

λn

αn(n−1)!

∑n−1
i=0

λi

bi

[∑i
j=0

|t|i−j
j!(i−j)!

(n+j−1)!(
λ
α
+
λ
β

)n+j
]

t ≤ 0

1− exp
(
−
λ
β
|t|
)

λn

αn(n−1)!

∑n−1
i=0

λi

β i

[∑i
j=0

|t|i−j
j!(i-j)!

(n+j−1)!(
λ
α
+
λ
β

)n+j
]

t > 0

(11)
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and shows at which frequencies the intensity variations are
strong and at which frequencies the intensity variations are
weak. According to the above model, pixel anomalies and
their statistical distribution based on amplitude, phase and
intensity play a key role in complex PSD simulation. The
results after HMN suppression and modeling will be used not
only for classification but for objective verification. In short,
the essence of HMN suppression using DWT analysis is
to reduce the HMN level in the TFD, while our primary
objective is to focus on PSD function modeling and prepare
the image for postprocessing tasks, such as segmentation and
classification.

3) SAR UNSUPERVISED TEXTURE SEGMENTATION BASED
ON THE K-MEANS CLASSIFICATION APPROACH
The sea-ice image reconstruction consists of numerous
microwave interactions, intermodulation processes, propaga-
tion and backscattering effects based on random complex
structures. Due to the inherent SAR pixel anomaly presence,
sea-ice pixel-oriented spatial information extraction remains
a challenging task. On the other hand, sea-ice local feature
extraction is a translational variant, which is a problem for the
segmentation of homogenous textured images. Hence, it can
be advantageous to include spatial information in the feature
sets of segmentation not only to increase the pixel information
accuracy but also to reduce misinterpretations. As described
previously, hierarchical DWT texture decomposition has the
ability to suppress the adverse effects of HMN and incor-
porate contextual information in the case of pixel anomaly
correction. It should be noted that the reconstructed images
are the same size as the normalized reference image, so that
no components will artificially dominate the classification
problem, which is an issue that commonly occurs with seg-
mentation algorithms.

Accordingly, subband multiresolution image segmentation
will be applied according to the decomposition scale. The
above considerations suggest associating an unsupervised
classification method that uses the generated features with
a class label according to their position in the sea-ice fea-
ture space. The K-means clustering algorithm is a determin-
istic routine that aims to divide several observations into
user-defined classes where each observation only belongs to
one class with the class centroid nearest to the observation.
The basic idea of the K-means is to cluster the closest samples
by in K groups. Iteratively, the values of the centroids of
the clusters are updated one by one until the best clustering
results are obtained on the basis of a criteria function. The
adjustment criteria of the iterations are obtained by finding
the values of objective function. The K-means considers the
distance as the similarity index to find the optimal classifi-
cation so that the objective index is minimized. The value of
K should be given in advance, and the selection of the K is
based on prior supervised information.

In this research, the main idea of K-means clustering
is proposed based on two separate simultaneous algorithm
implementations for the purpose of further verifications.

FIGURE 15. Normalized SAR sea-ice K-means texture classification
procedure including normal iterative and adaptive clustering.

First, the K-means SAR sea-ice image classification is tuned
and applied directly on the decomposed sea-ice image based
on the iterative mode. Second, the K-means clustering algo-
rithm classifies the decomposed SAR sea-ice image on the
basis of adaptive mode. Both algorithms are the same in
terms of their purpose (classification), but in adaptive mode,
the number of K results based on recursive adaptive training
of the algorithm and is not known in advance. Figure 15
shows both proposed K-means classification algorithms in
detail. According to Fig. 15, the feature vector descriptions
are based on the normalized column pixel values that can
be grouped in white, light gray, gray, dark and black pixels,
which are defined on the basis of KOMPSAT-5 sea-ice image
maximum value and are known as clustering number. After
pixel conversion into column vectors, the algorithm should
find the centroid of each clusters for minimization of the
index criteria. The centroid points initialization is calculated
on the basis of averaging the sea-ice image maximum value
on the basis of clustering number where each point corre-
sponds to one segment. Next, the samples are grouped into
segments based on the similarity index. Here, the similarity
is computed as the distance value between one iteration and
the centroid point. In other words, the samples goes to the
segment with the most similarity.

After all of the samples have been assigned to one seg-
ment, the new centroid points in each specific segment are
calculated again. Then, each sample finds its cluster with
the criterion of most similarity in the next iteration. This
procedure is repeated until all of the centroid points converge.
On the other hand, in the adaptive clustering algorithm, there
are some differences in the adaptation, segmentation number
selection, centroid initialization, criteria calculation and con-
vergence routine. In the adaptive K-means, the convergence
of the model is based on external neighbor segments and
the mean gray-level value computation while in the iterative
mode, it is performed inside the segments and with the help
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FIGURE 16. Normalized SAR sea-ice DWT-decomposed images: (a) 1st scale, (b) 1st-scale contour plot, (c) 2nd scale, (d) 2nd-scale contour
plot, (e) 3rd scale, and (f) 3rd-scale contour plot.

of known number of clusters and centroid initialization. The
next section will present the segmentation results in detail.

III. SIMULATION RESULTS AND VERIFICATION
For highly deformed textures and with low cross-correlation
terrains, such as SAR sea-ice images, there may be useful
texture information affected by HMN, and its suppression
is crucial to postprocessing. Hence, a comprehensive fractal
analysis of HMN and its effects on the texture classifica-
tion could be considered helpful. Accordingly, the reference
KOMPSAT-5 SAR sea-ice image in Fig. 1will be investigated
based on DWT decomposition and properties extraction as
well as the classification. The total objective quality assess-
ment carried out at each step of investigation helps us under-
stand the adverse effects of HMN presence. To the best of
our knowledge, this is the first time that a KOMPSAT-5 SAR
sea-ice image is being decomposed, modeled, classified and
verified on the basis of TFDmultiplicative noise suppression.
The objective quality assessment uses both qualitative and
quantitative metrics that verify procedure. The metrics are the

image resolution, spatial resolution, pixel-based, correlation-
based, SAR parameters, spectral properties and tensor field
mapping.

A. KOMPSAT-5 SAR SEA-ICE TEXTURE DECOMPOSITION
AND HMN SUPPRESSION BASED ON THE DWT METHOD
The DWT multiresolution method transforms sea-ice images
into representations in which both spatial and frequency
information are presented with multiple scales along the
fast-time and slow-time directions. The reconstructed images
are the standard pyramidal decompositions with the same
number of pixels as that in the reference image (Fig. 14).
Among the images, the one that is obtained by vertical and
horizontal low-pass filtering, contains the maximum infor-
mation of the sea ice (LL). LL1 is selected for the next round
of multiscale decomposition in the same manner as that for
the reference image. From the next round of decomposition,
the approximated LL2 is extracted. Similarly, the decompo-
sition will continue to further scales since at the third scale,
the image loses some of its anomaly details as LL3.
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According to Fig. 14 and the proposed SAR sea-ice image
in Fig. 1, the results of DWT decomposition as well as the
texture contour plots are presented in Fig. 18. As shown, the
texture including the ice floes, ice fragments, sea-ice and open
waters are still distinguishable based on their values, although
they are visually getting smoother as the decomposition con-
tinues at further scales. The contour plots verify the presence
of pixel anomalies and backscattered coefficient alteration
suppression between adjacent spatial resolution cells accord-
ing to their magnitude and concentration. Accordingly, as a
result of HMN suppression and texture smoothing, the image
resolution profile in both the fast-time and slow-time direc-
tions is extracted and shown in Fig. 17.

It can be deduced that pixel intensity alterations, including
abrupt changes and slow variations in both the fast-time and
slow-time directions, are not only damped at every scale of
DWT decomposition but also the intensities of the remain-
ing pixels are amplified as the decomposition continues.
Figures 17(c) and 17(d) show a value of maximum 0.6 dB
pixel amplification at each scale of the decomposition com-
pared to the previous scale, while the total amplification for
three scales of decomposition is approximately 2.6 dB.

Similarly, the deteriorative effects of HMN on the
image frequency profile while being decomposed have been
extracted and are shown in Fig. 18. Based on the results,
the HMN level has been suppressed by approximately 3 dB
in both the fast-time and slow-time directions as the spectrum
becomes sharper in the peak and flattened in the side lobes
while being decomposed into further scales. This frequency
profile modification directly affects the instantaneous pixel
alterations and anomaly correction, which are the results of
the presence of uncorrelated HMN and its spectral tailedness.

Accordingly, the rate and intensity of pixel anomalies will
be damped and corrected, as shown in Fig. 19. The total
correction value reaches approximately 0.8 dB, and it is clear
that the third scale of decomposition is completely successful
in pixel anomaly correction. It should be noted that HMN
suppression and tailedness flattening directly affect the GVF.
As shown in Fig. 20, the vectors are becoming highly focused
while the field concentrations on the boundaries are higher
due to pixel anomaly correction as the decomposition con-
tinues. In other words, HMN is the reason for the nonuni-
form vector field distribution throughout the entire sea-ice
terrain, and it degrades the image quality by way of pixel
intensity anomalies. These phenomena have adverse effects
on the image resolution and vector field dissipation on the
basis of the probability distribution by way of different gra-
dient values and angles of probability, which are completely
responsive to the GVF corrections.

The results in Figs. 21 and 22 verify that the SAR sea-ice
areas with anomalies are sensitive to gradient value changes,
which are previously introduced as unstable areas. In short,
the unstable areas with larger gradient values and angles
of probability are most likely to be the source of HMN,
specifically those places that are boundaries and contain thin
ice and open water at the same time.

FIGURE 17. Normalized SAR sea-ice DWT-decomposed image pixel
anomaly profile presentation and comparison (a) slow-time (b) fast-time
(c) slow-time difference profile (d) fast-time difference profile.

The DWT decomposition is completely helpful for HMN
suppression as well as resolution enhancement. It is clear
from the results that the flat or peaky HMN distribution
decreases at each scale of the decomposition specifically in
unstable regions. The abovementioned results are also true
for the SAR spatial resolution effects analysis. According
to Figs. 1, the nonhomogeneous sea-ice structure does not
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FIGURE 18. Normalized SAR sea-ice DWT-decomposed image frequency
profile presentation (a) slow-time and (b) fast-time.

follow a specific pattern when dealing with electromagnetic
pulses. In other words, the structure of sea-ice has partially
direct adverse effects on the coherency of the electromagnetic
interactions and imposes a random walk of magnitudes and
phases in the superposition of reflections. The result is ran-
dom radiometric fluctuations associated with any resolution
cells that are identically distributed in the real and imaginary
part of the received backscattered data. This pattern of embed-
ded uncorrelated and noncoherent noise is formed when each
resolution cell contains many point scatterers pertaining to
resolution cells that are much larger than the wavelength of
the incident wave that presents in a Rayleigh distribution of
the intensity fluctuations within a sea-ice image, while none
of which produces a significant reflection by itself. Accord-
ingly, the presence of HMN over the 2-D received backscat-
tered sea-ice data and the intensity fluctuation advectionmaps
are shown in Fig. 23. The results verify the random pattern of
the presence of HMN based on the probability function and
intensity distributions. According to Figs. 23(c) and 23(d),
DWT decomposition reduces the intensity fluctuation in the
entire sea-ice scene. The overlaid result of the sea-ice HMN
kurtosis and the reference image in Fig. 23(e) shows how the
sea-ice structure forms the pattern of HMN over the entire
terrain.

The results in Fig. 24 show that this uncorrelated and
noncoherent pattern known as HMN has an attenuation of
at least 1 dB on the received backscattered signal magni-
tude that could easily affect the information capacity for
each resolution cell while being received by the receiver.

FIGURE 19. Normalized SAR sea-ice DWT-decomposed image pixel
anomaly evaluation based on the rate and intensity: (a) slow-time
direction, (b) fast-time direction, (c) slow-time difference direction
profile, and (d) fast-time difference direction profile.

Accordingly, it can be deduced that the decomposed images
are very similar to the reference image in terms of
the pixel-based metrics, and HMN suppression has not
changed the pixel intensity distributions; the results are listed
in Table 2.

The source of the pixel anomalies and their distribution are
shown in Fig. 25(d). It is clear that sea ice, which includes
open water and thin ice sheets, is the major source of HMN
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FIGURE 20. Normalized SAR sea-ice DWT-decomposed image gradient vector field presentation: (a) 1st scale, real size; (b) 1st scale, zoomed-in view;
(c) 2nd scale, real size; (d) 2nd scale, zoomed-in view; (e) 3rd scale, real size; and (f) 3rd scale, zoomed-in view.

TABLE 2. Decomposed SAR images’ pixel-based objective quality metric
results.

and consequently the pixel anomalies, while its PSNR is
approximately 7.5 dB and the variance and mean intensity
value (MIV) are zero.

The same results are derived while correlation-based mea-
surements are being calculated. According to Fig. 26, all the
DWT-decomposed images, including the first scale and the
second and third scales, have the highest degree of similarity

to the reference image based on a normalized cross correla-
tion (NCC) value of 8.7 in both the fast-time and slow-time
directions. Similarly, Table 3 and Fig. 27 show the evaluation
results of the quantitative metrics for the DWT-decomposed
SAR images. As can be deduced, HMN suppression can
improve the received signal strength in the receiver but reduce
the PSLR and ISLR values at the same time. It should be
noted that despite SAR-specific metric degradation based
on decomposition, spatial information is retained within the
signals, and all the indexes still have acceptable values and
are far from undesired thresholds.

B. KOMPSAT-5 SAR SEA-ICE TEXTURE AND EMBEDDED
HMN SPECTRAL MODELING BASED ON THE JOINT
COMPLEX TFD METHOD
From the SAR spectral point of view, a SAR grayscale image
of a time-dependent terrain can be regarded as an indepen-
dent mapping of an ensemble of various scatterers having
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FIGURE 21. Normalized SAR sea-ice DWT-decomposed image resolution gradient and direction maps: (a) 1st scale, (b) 1st scale, (c) 2nd scale,
(d) 2nd scale, (e) 3rd scale, and (f) 3rd scale.

TABLE 3. SAR sea-ice metric evaluation results.

different Doppler frequencies into different, azimuthally dis-
placed imaging points. These phase points are synchronized,
frame formatted and reassembled based on the observation
mode and the illumination time. On the other hand, the DWT
of the reconstructed image will conveniently decompose the
aforementioned data on the basis of a specific scale and ori-
entation while retaining their spatial information. As a result,
statistical pixel distribution analysis based on the ampli-
tude, phase, and intensity will enhance texture decomposition
and sensor-terrain interaction investigations. This statistical
moment investigation with the help of the underlying spatial

distribution will result in PSD function extraction, which is
considered a combined spectral analysis of the entire ter-
rain [4]. The PSD function can model the intensity of the joint
pixels as a function of a certain interval of frequencies and
provides information on the energy associated with a specific
range of frequencies. According to Figs. 10 and 16, the mod-
eled PSD function of the normalized reference KOMPSAT-5
sea-ice image and its received backscattered data are pre-
sented in Fig. 28.

Figure 30 also includes the difference in the PSDs between
the reference SAR sea-ice image and the reconstructed
DWT-decomposed images. The major low-frequency peak in
the PSD function in Figs. 28(a) and 28(c) represent the spatial
statistics of the main body of the sea-ice structure and the
received backscattered data. Both the reference image and
the received backscattered data consist of a single peak in
the low-frequency part of the PSD function, which is a sign
of a nonoverlapping structures in the sea-ice texture known
as a major entity. The received backscattered data and the
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FIGURE 22. Normalized SAR sea-ice DWT-decomposed image kurtosis:
(a) 1st scale, (b) 2nd scale, and (c) 3rd scale.

reference image have an approximately 12 dB difference in
the PSD intensity profile, which is due to the probable loss
effects, which can bemeasured by the received signal strength
(RSS). According to the result in Fig. 28(b), all the decompo-
sition images have almost the same spectral distribution with
a magnitude of approximately 13 dB in the low-frequency
part of the PSD function, while the maximum PSD difference
value belongs to the third scale DWT-decomposed LL3 with
a difference of 0.12 dB. The other previous decomposition
scales, such as LL1 and LL2, mostly behave the same as the
reference image, which shows that their resulting textures
based on the pixel distribution and estimation are the same.
Similarly, PSD function modeling is carried out for the pur-
pose of sensor-terrain embedded noise interaction. As seen
in Figs. 28(d), the PSD of the sea-ice backscattered data is
mostly contaminated with embedded HMNwith a magnitude
of 0.012 dB that is located in the entire high-frequency and
partially the medium-frequency parts of the raw data, which
is completely dependent on the backscattering conditions.

Similar to Fig. 28, PSD function modeling is carried out
for the purpose of pixel anomaly distribution over the entire
SAR sea-ice texture while being decomposed based on DWT,
which is shown in Fig. 29. The same as in Fig. 29(d),
the embedded noise has occupied the entire high-frequency
part of the PSD due to their spatial locations in terms of
the adverse overlapping multiplicative distribution, which
has significant adverse effects on the amplitude, phase and
intensity.

Compared to the major entity of the texture, the pixel
anomalies can be modeled as high-frequency replication
structures within the PSD function in the shape of several
high-frequency peaks. As presented in Fig. 29, the PSD of
the HMN distribution in LL2 shifts to the medium-frequency
parts, while in LL3, the HMN distribution approaches the
low- and medium-frequency parts of the function, which is
the same as the major peak in Fig. 28. As the decomposition
continues, not only is the HMN distribution reduced but their
presence levels and spatial frequency locations are also alter-
ing. In other words, higher orders of DWT decomposition
consist of major nonoverlapping structures with significant
variance that are not reduced to the replication of anomaly
statistics.

In short, further scales of the DWT decomposition are no
longer effective because the HMN spatial distribution has
completely shifted toward the low-frequency parts of the
PSD, which shows that the HMN behaves the same as the
main entity of the texture but with different statistics and
distribution variances. According to Figs. 29(a) and 29(b),
the intensities are, to some extent, on the same margin, but in
Fig. 29 (c), not only the HMN spatial locations shifted toward
the low-frequency parts but its magnitude also increased five
times.

As a result, the pixel anomaly removal or HMN suppres-
sion at higher scales of DWT decomposition are more likely
to be the same as the suppression of main-body information
and not the HMN per se. It should be noted that the HMN
distribution function is supposed to be a general gamma
distribution. As shown in Fig. 16, the DWT decomposition
makes the images visually smoother, and it is necessary to
compare the decomposition effects based on the structural
visualization of the texture while considering the pixel dis-
tributions. To validate the pixel anomaly correction with the
help of DWT decomposition, tensor field map (TFM) visual-
izations can provide proper information about the structural
properties of HMN suppression within the texture on the
basis of spatial configurations. Accordingly, the elliptic visu-
alizations for a group of pixels with specific colors ranging
from blue to red are shown in Fig. 30. Blue indicates the
presence of normal anomalies, and red indicates a high rate,
while their axes can be oriented toward specific directions
in the shape of an ellipse. This presentation is based on the
magnitude, direction and ratio between the samples that can
detect possible anomalies with different local behaviors than
the surroundings. In the case of homogenous areas such as
thick ice floes that spatially handle the uniform change in
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FIGURE 23. Normalized SAR sea-ice HMN (a) advection map of the 2-D received backscattered data,
(b) advection map of the sea-ice terrain, (c) advection map of the 1st scale of DWT decomposition,
(f) advection map of the 3rd scale of decomposition, and (e) the results overlaid on the reference image.

pixel statistics, the direction and the axis size of the ellipse
are almost similar to a circle.

However, as the intensity of changes increases sharply
in each principal direction that is the same as that of ice
drifts or open water, not only the shape of elliptic descriptors
will change based on their tensor eigenvector and eigenvalue
calculations but also their orientation is changing at the same
time with different colors. In other words, blue indicates a
normal anomaly, and red indicates a high rate, while the axes
are aligned on the basis of magnitude, direction and the ratio
between the samples that can detect possible anomalies with
different local behaviors than the surroundings. The results in
Fig. 30 completely present the TFM visualization alteration
within the reference SAR sea-ice image as the decomposition
continues.

It is clear that the third scale of DWT decomposition, LL3,
could be the last scale for anomaly correction, while there
have just been oriented lines instead of circles or ellipses
that show how much intensity change is in each principal
direction. The results in Fig. 30 are completely in agreement
with the results in Fig. 23, which shows HMN suppression
and pixel anomaly corrections.

C. KOMPSAT-5 SAR SEA-ICE TEXTURE CLASSIFICATION
RESULTS BASED ON THE K-MEANS
CLUSTERING METHOD
As described in Section II.B.3, the K-means clustering algo-
rithm tries to partition the SAR sea-ice image into pre-
defined, distinct, nonoverlapping clusters where each pixel
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FIGURE 24. Normalized SAR sea-ice DWT-decomposed image spatial
resolution profile presentation and comparison (a) slow-time
(b) fast-time (c) slow-time difference profile (d) fast-time difference
profile.

belongs to only one group, while the difference between the
pixels and the cluster’s centroid index is minimized. The
clustering tries to make the intercluster pixels as similar
as possible while also keeping the clusters as different as
possible. The less variation we have within clusters, the more
homogeneous the segment is. The prior information about
the reference SAR sea-ice image, the pixel anomaly behav-
ior, the image DWT decomposition and the fractal analysis

FIGURE 25. Normalized SAR sea-ice DWT-decomposed image SSIM map:
(a) 1st scale, (b) 2nd scale, (c) 3rd scale, and (d) the 1st scale
diagonal HH1.

that have been described in the previous sections will affect
the results of unsupervised classification evaluation of this
section. For the sake of validity, unsupervised K-means clus-
tering is carried out based on two different algorithms (itera-
tive and adaptive) on the reference SAR sea-ice image and
its DWT-decomposed versions under the same simulation
conditions. It should be noted that in the iterative clustering
algorithm, the numbers of clusters are predefined as five and
four clusters.
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FIGURE 26. Differences in the NCCs between the reference normalized
SAR image and the DWT-decomposed image; (a) slow-time and (b)
fast-time.

FIGURE 27. Normalized SAR image DWT-decomposed image average
received signal intensity; (a) slow-time (b) fast-time.

However, the adaptive clustering number derivation is
completely based on the convergence of the results. Accord-
ingly, the results of both the iterative and adaptive versions
of the unsupervised K-means classification algorithm are

FIGURE 28. Normalized SAR sea-ice image PSD function modeling of
(a) the reference image, (b) the DWT-decomposed image difference
profile, (c) the received backscattered data, and (d) the received
backscattered data HMN.

presented in Figs. 31 and 32. According to the results and
on the basis of the number of clusters and the classification
results, it is deduced that sea-ice segmentation on the basis
of DWT decomposition has better results rather than the
reference version.

As seen, the differentiation between textures improves
as the decomposition continues. As a rule of thumb,
the higher the DWT decomposition scale is, the better the
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FIGURE 29. Normalized SAR sea-ice DWT-decomposed image PSD
function modeling at the (a) 1st scale, (b) 2nd scale, and (c) 3rd scale.

segmentation results are. However, the proper selection of
the DWT scale remains a challenge based on the details in
Sections II.A and III.B. According to the iterative K-means
simulation results in Figs. 31(a) and 31(b), by the time
the clustering is addressing the reference normalized SAR
sea-ice image, the iterative clustering results are supposed to
be nonuniformly grouped in comparison to the adaptive clus-
tering result in Fig. 32(a). This finding shows that the iterative
clustering is completely sensitive to the adverse effects of
HMN and the presence of pixel anomalies within the texture,
while the adaptive version works better under the same condi-
tions. On the other hand, the other adaptive clustering results
in Fig. 32 demonstrate that in adaptive clustering, there is a
specific difference in the clustering between the real reference
SAR image and its DWT-decomposed images.

In other words, the adaptive K-means clustering algorithm
is superior to the iterative version while being applied on
the reference SAR image. However, the superiority of adap-
tive clustering when ignoring the presence of HMN and its

FIGURE 30. Normalized SAR sea-ice DWT-decomposed images, TFM
visualization presentation: (a) the reference image, (b) the 1st scale,
(c) the 2nd scale, and (d) the 3rd scale.

adverse effects on the pixel anomalies in the reference SAR
image could also be considered a defect in high-resolution
SAR images at the same time even if it functions with an
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FIGURE 31. Normalized SAR sea-ice image iterative K-means clustering results: (a) the reference, (b) the reference, (c) the 1st scale, (d) the
1st scale, (e) the 2nd scale, (f) the 2nd scale, (g) the 3rd scale, and (h) the 3rd scale.

automatic number of clusters. Accordingly, as both clustering
methods are being applied directly to the DWT-decomposed
images, the precision of grouping the pixels into specific
clusters increases, specifically in the homogenous sea-ice
textures, such as ice floes, borders, areas surrounding ice
fragments and open water.

It is deduced from the results that at higher scales of DWT
decomposition and simultaneously with HMN suppression,

clustering works better than at the lower scales. In general,
the most desired K-means clustering results could be consid-
ered as those in Figs. 31(e) to 31(h) or Figs. 32(c) and 32(d).
Nevertheless, in the case of clustering evaluation and verifi-
cation, not only should pixel anomaly suppression be consid-
ered but also the acceptable similarity between the clustered
images must be taken into account. In other words, according
to the iterative clustering results in Figs. 31(a) and 31(b),
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FIGURE 32. Normalized SAR sea-ice image adaptive K-means clustering
results: (a) the reference, (b) the 1st scale, (c) the 2nd scale, and (d) the
3rd scale.

we propose first suppressing the adverse effects of HMN
with the help of DWT decomposition. The selection of the
proper scale for DWT decomposition could be done with the
help of the results in Section III. A and B and the number
of convergence adaptive clusters. In the case of SAR sea-ice
and according to the results in Figs. 29, 31 and 32, the best
scale of DWT decomposition is considered the second scale.
In the second scale, not only has the HMN been suppressed

FIGURE 33. Normalized SAR sea-ice third DWT decomposition clustering
results comparison: (a) iterative K-means and (b) adaptive K-means.

FIGURE 34. Normalized SAR sea-ice third DWT decomposition modified
clustering results comparison: (a) iterative K-means (b) adaptive K-means.

properly but both the adaptive and the iterative clustering
algorithms have converged in their segmentation number, and
their clustered maps are almost similar.

In short, DWT-decomposed images have better clustering
results than the reference image, while the adverse effects
of pixel anomalies on the clustering results are shown in
Figs. 33(a) and 34(a). It is also deduced that the adaptive
K-means clustering algorithm is the same as the iterative
version and does not have the ability to classify the structures
with highly complicated electromagnetic interactions such as
edges, while HMN suppression makes it possible. In other
words, better classification results against the presence of
HMN means that the false alarms have been successfully
suppressed in the reference image. Figs. 33 and 34 present
and overlay images of the clustered DWT results and the
reference SAR image for a better visualization, while their
modified clustering versions are also presented.
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The ultimate goal of this section is to classify the sea-ice
texture in SAR images to facilitate the subsequent analysis.
The results of DWT decomposition have been used to gen-
erate clustered images while the HMN has been suppressed
and analyzed. According to the whole the K-means clustering
procedure, not only has the HMN been suppressed properly
but also the clustering is close to the most likely unsupervised
condition, which has been derived based on two different
algorithms. As a result, the presence of pixel anomalies due to
the adverse effects of HMNwill result in segmentation errors,
and the selection of the proper scale of DWT decomposition
on the basis of a quality assessment technique is the key for
SAR sea-ice texture analysis. According to the results above,
it is important to suppress the HMN while it belongs to the
high-frequency part of the data, and PSD modeling plays an
important role in proper scale selection for decomposition.

IV. CONCLUSION
The KOMPSAT-5 SAR sea-ice image resolution is inherently
degraded by phase interferences of received backscattered
signals in the form of pixel anomalies known as noncoherent
HMN. According to the fractal sea-ice resolution profile,
HMN is dependent on the underlying radar reflectivity char-
acteristics and presents itself as a nonspecific pattern of pixel
anomalies. It is also shown that due to the multilayer structure
of sea-ice, the notion of the texture is associated with HMN
andmight reflect erroneous information on the inherent prop-
erties of the texture, which leads to misinterpretations. Thus,
it is necessary to assess the adverse effects of the presence of
HMN on KOMPSAT-5 SAR sea-ice texture while developing
a suppression technique for anomaly correction.

Accordingly, a TFD suppression technique based on DWT
decomposition is proposed in this research. Since the DWT
algorithm is sensitive to intensity variations at the given scale
of decomposition and HMN has scale-dependent properties,
a distribution model of the HMN at each scale of decomposi-
tion has been provided. According to the asymmetrical PDF
formulation and multiresolution spectral behavior modeling
at the decomposition scales, the nonlinear behavior of HMN
that can modulate the DWT coefficients and lead to texture
irregularities as the source of information loss has been sim-
ulated and presented. It is also shown that the noncoherent
HMNwill change the DWT coefficients proportionally to the
mean reflectivity of the terrain. Thus, it is important to assess
the adverse effects of HMN on DWT decomposition before
it is used for texture classification.

The proposed novel approach is tested on real KOMPSAT-5
SAR sea-ice images as well as on simulated images to quan-
tify the percentage of correct classifications. Several fractal
indexes proposed in this research are completely new and are
considered for SAR sea-ice image texture analysis for the first
time. The most important metrics including PDF formulation
and PSD analysis of the HMN at each scale of decomposi-
tion, raw data generation for the DWT-decomposed images,
sea-ice resolution fractal analysis, tensor field map presen-
tation of the adverse effects of HMN, HMN pixel anomaly

advection mapping, pixel anomaly edge gradient vector map-
ping and several objective quality assessment metrics. For
the purpose of further verification, two different types of
K-means clustering algorithms were used and compared,
which shows the reliability of the approach. Finally, it should
be noted that a fully developed HMN pattern is the magnitude
of the complex reflectivity coefficient distribution function
with a correlation structure dependent on the waveform
shape, sensor electromagnetic interactions, imaging mech-
anism and the geometry involved. Notably, the entity of the
terrain being imaged plays a key role.
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