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Abstract

Gram- stain- negative, aerobic and rod- shaped bacterial strains, designated SSM26T and SSM44, were isolated from a sea 
surface microlayer sample from the Ross Sea, Antarctica. Analysis of the 16S rRNA gene sequences of strains SSM26T and 
SSM44 revealed a clear affiliation with the genus Pseudomonas. Based on the results of phylogenetic analysis, strains SSM26T 
and SSM44 showed the closest phylogenetic relationship with the species Pseudomonas sabulinigri KCTC 22137T with the 
16S rRNA gene sequence similarity level of 98.5 %. Strains SSM26T and SSM44 grew optimally at 30 °C, pH 7.0–7.5 and 0.5–
10.0 % NaCl (w/v). The major cellular fatty acids were C

18 : 1
 ω7c (31.3–34.9 %), C

16 : 0 
(15.5–20.2 %), summed feature 3 (C

16 : 1
 ω7c/

C
16 : 1

 ω6c; 19.5–25.4 %) and C
12 : 0 

(6.0–9.3 %). The genomic DNA G+C content of each strain was 56.2 mol%. Genomic related-
ness analyses based on the average nucleotide identity and the genome- to- genome distance showed that strains SSM26T and 
SSM44 constituted a single species that was clearly distinguishable from its phylogenetically close relatives. The combined 
phenotypic, chemotaxonomic, genomic and phylogenetic data also showed that strains SSM26T and SSM44 could be distin-
guished from validly published members of the genus Pseudomonas. Thus, these strains should be classified as representing a 
novel species in the genus Pseudomonas, for which the name Pseudomonas neustonica sp. nov. is proposed with the type strain 
SSM26T (=KCCM 43193T=JCM 31284T=PAMC 28426T) and a sister strain SSM44 (=KCCM 43194=JCM 31285=PAMC 28427).

INTRODuCTION
The genus Pseudomonas, first described by Migula [1], 
belongs to the family Pseudomonadaceae in the class 
Gammaproteobacteria. Since then, many species of the 
genus Pseudomonas have been inspected in a variety of 
studies as they are diverse in function and some species 
are pathogenic for humans, animals and plants, e.g., 
Pseudomonas aeruginosa – type species of this genus – is 
a known human and animal pathogen, and Pseudomonas 
syringae, Pseudomonas asplenii, Pseudomonas fuscovaginae 
and Pseudomonas viridiflava are known plant pathogens 
[2]. At the time of writing, more than 200 species and 
subspecies of Pseudomonas have been validly published 

[3]. The genus Pseudomonas was divided into two major 
clusters containing seven groups based on their 16S rRNA 
gene sequences [4]. The six groups such as P. syringae, 
Pseudomonas chlororaphis, Pseudomonas fluorescens, Pseu-
domonas putida, Pseudomonas stutzeri and P. aeruginosa 
groups were included in one of the two major clusters, and 
the other cluster included only one group (Pseudomonas 
pertucinogena). Recently, phylogenetic relationships of 
Pseudomonas species based on multi- locus sequence 
analysis (MLSA) of housekeeping core genes revealed 
the presence of 18–19 groups or subgroups in the genus 
Pseudomonas [5, 6]. Here, we isolated two bacterial strains 
affiliated with the P. pertucinogena group from a sea surface 
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microlayer (SSM) sample, and subjected to a polyphasic 
taxonomic analysis. On the basis of this characterization, 
we propose a novel species of the genus Pseudomonas 
belonging to the P. pertucinogena group.

A SSM sample was collected using a customized SSM 
sampler employing a type of rotating drum [7] covered with 
polycarbonate in the Ross Sea, Antarctica during the Araon 
expedition in December 2014. The SSM sample was amended 
with autoclaved glycerol (final concentration 20 %, v/v) and 
preserved at −80 °C until further analyses.

For cultivation, an aliquot (100 µl) of the glycerol- 
amended SSM sample was spread onto a plate containing 
Reasoner’s 2A (R2A; Difco) agar and tryptic soy agar 
(TSA; Difco), and the plates were incubated aerobically 
at 20 °C for 2 weeks. Strains SSM26T and SSM44 were 
isolated on R2A agar and TSA, respectively, and subcul-
tured on respective fresh media. Strains SSM26T and 
SSM44 were subcultured more than four times for puri-
fication. To find an appropriate culture medium, a single 
colony was streaked onto TSA, saline TSA (supplemented 
with 3 % NaCl), marine agar (MA; Difco) and R2A agar, 
and those plates were incubated aerobically at 20 °C and 
30 °C. Cells were well grown on saline TSA at 30 °C. The 
strains were preserved in saline tryptic soy broth (TSB; 
Difco; supplemented with 3 % NaCl) supplemented with 
30% (v/v) glycerol at −80 °C.

For 16S rRNA gene amplification by PCR, DNA was 
extracted from a single colony by the boiling method 
[8]. The crude extracts were used as DNA template for 
PCR, which included 27F and 1492R primers [9]. Direct 
sequencing of the purified PCR products for the 16S 
rRNA gene was performed using sequencing primers (27F, 
518F, 800R and 1492R; [9, 10]) in an Applied Biosystems 
sequencer (Cosmo Genetech). Almost- complete 16S 
rRNA gene sequences of strains SSM26T (1406 bp) and 
SSM44 (1401 bp) were obtained and compared against the 
GenBank and EzTaxon- e databases using blastn [11, 12]. 
The 16S rRNA gene sequences of the type strains of related 
species were obtained from GenBank and were aligned on 
the basis of secondary- structures using the RDP aligner 
[13]. Phylogenetic analysis was made using the programme 
mega 7.0 [14]. The model of Jukes and Cantor [15] was used 
to generate an evolutionary distance matrix. Phylogenetic 
trees based on the neighbour- joining (NJ) [16], minimum- 
evolution (ME) [17] and maximum- likelihood (ML) [18] 
methods were reconstructed using bootstrap analysis of 
1000 replications.

Pseudomonas sabulinigri KCTC 22137T (=J64T) [19] was 
purchased from the Korean Collection for Type Cultures 
(KCTC) and used as a reference strain to compare genomic, 
phenotypic, biochemical and chemotaxonomical charac-
teristics with strains SSM26T and SSM44. Unless otherwise 
specified, strains SSM26T and SSM44 were grown on saline 
TSA for 2–3 days at 30 °C, and P. sabulinigri KCTC 22137T was 
grown on TSA with 5 % NaCl for 2–3 days at 30 °C, which is 
in exponential phase.

All morphological and physiological tests of strains SSM26T 
and SSM44 were carried out along with the reference strain. 
Gram- staining was performed as previously described [20]. 
Cell motility of the strain was observed by the hanging 
drop method [21]. Cell morphology was examined by light 
microscopy and transmission electron microscopy (CM200, 
Philips). Anaerobic growth was tested on the saline TSA using 
the GasPak anaerobic system (BBL) at 30 °C for 7 days. The 
temperature range for growth was determined on the basis 
of colony formation on saline TSA at 4 and 10–50 °C (in 
increments of 5 °C) for 3 weeks. The pH range (pH 5.0–10.0 
at intervals of 0.5 pH unit) for growth was determined by 
measuring OD600 in pH- buffered saline TSB using citric acid/
sodium dihydrogen phosphate buffer for pH 5.0, MES for 
pH 5.5–6.5, MOPS for pH 7.0–7.5, AMPD for pH 8.0–9.5 
and CAPS for pH 10.0, each at a final concentration of 
50 mM, incubating at 30 °C for up to 2 weeks. Salt tolerance 
was determined by measuring OD600 at 30 °C using synthetic 
ZoBell broth (Bacto peptone, 5 g; yeast extract, 1 g; ferric 
citrate, 0.1 g; distilled water, 1 l) supplemented with 0–3 % 
(at intervals of 0.5 %), 4–10 % (at intervals of 1 %, w/v), 12 
and 15 % NaCl, incubating at 30 °C for up to 7 days. Catalase 
activity was determined by bubble formation adding 3 % 
(v/v) H2O2 and oxidase activity was determined using 1 % 
(w/v) tetramethyl- p- phenylenediamine [22]. Hydrolysis of 
starch and Tweens (20, 40, 60 and 80) tests were performed 
as previously described [23] after 4 day incubation of cells 
on the saline TSA. Decomposition of casein, hypoxanthine 
and xanthine were determined according to the protocols 
as described previously [20]. Carbon source utilization was 
tested according to the method of Bruns et al. [24] with a final 
concentration of 0.4 % carbon source. Carbon utilization was 
determined as negative when growth was equal to, or less than, 
that in the negative control with no carbon source. Growth 
was measured by monitoring changes in the OD600 for 3 weeks 
at 30 °C. In addition, other biochemical activities of strains 
SSM26T and SSM44 were determined by using API 20NE and 
API ZYM kits (bioMérieux), and acid production was tested 
by using API 50CH kit (bioMérieux) according to the manu-
facturer's instructions except that the cell suspension was 
prepared as described previously [25]. The fatty acid methyl 
esters (FAMEs) in whole cells of strains SSM26T and SSM44 
grown on saline TSA for 2 days at 30 °C were analysed by gas 
chromatography (7890B, Agilent technologies) according to 
the instructions of the Microbial Identification System (midi) 
with the TSBA 6.21 database. FAMEs of P. sabulinigri KCTC 
22137T grown on TSA with 5 % NaCl for 2 days at 30 °C were 
also analysed.

For genome comparison, genomic DNA of strains SSM26T 
and SSM44 were extracted as previously described [26]. The 
genome sequencing of the two strains was performed using 
an Illumina MiSeq at ChunLab (Seoul, Republic of Korea) 
and assembled using the SPAdes programme version 3.7 [27]. 
Contamination was checked for all genomes obtained in this 
study on the basis of 16S [28] and protein- coding genes [26]. 
Genome completeness was estimated by CheckM (version 
1.0.8) [29]. Genome size, N50 and DNA G+C content were 
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calculated using quast (version 4.5) [30]. The degree of 
pairwise genome- based relatedness was estimated by both 
an average nucleotide identity (ANI) value following the 
blast- based ANI calculation method described by Goris et 
al. [31] and digital DNA–DNA hybridization (dDDH) by the 
Genome- to- Genome Distance Calculator (GGDC) described 
by Auch et al. [32]. The DNA G+C content was calculated 
from a draft genome of each strain. Automatic genome anno-
tation was performed using GenDB. To infer a more robust 
phylogeny of members of the genus Pseudomonas, phylog-
enomic analysis of genomes of strains SSM26T and SSM44 
and the type strains of related species was employed based 
on the Genome Taxonomy Database (GTDB) taxonomy 
using GTDB- Tk [33]. For a multiple sequence alignment of 
amino acids of 120 concatenated marker genes obtained by 
GTDB- Tk, phylogenetic analyses based on the NJ, ME and 
ML methods were performed using bootstrap analysis of 1000 
replications.

The results of the morphological, physiological and biochem-
ical analyses of strains SSM26T and SSM44 are given in the 
species description and Table 1. Cells of strains SSM26T and 
SSM44 were Gram- stain- negative, strictly aerobic, motile by 
means of a polar flagellum and rod- shaped (Fig. S2, avail-
able in the online version of this article). The 16S rRNA gene 
sequences of both strains were identical. Phylogenetic anal-
yses based on 16S rRNA gene sequences showed that strains 
SSM26T and SSM44 belonged to the genus Pseudomonas. 
Strains SSM26T and SSM44 were most closely related to the 
type strain P. sabulinigri KCTC 22137T with a 16S rRNA gene 
sequence similarity of 98.5 %. The 16S rRNA gene similarity 
between SSM26T and other Pseudomonas species were 
≤97.3 %; specifically, Pseudomonas litoralis 2SM5T (97.3 %), 
Pseudomonas pelagia CL- AP6T (97.2 %), Pseudomonas 
bauzanensis BZ93T (96.9 %), Pseudomonas pachastrellae 
KMM 330T (96.0 %), P. pertucinogena IFO 14163T (95.7 %), 
Pseudomonas formosensis CC- CY503T (95.6 %) and Pseu-
domonas oceani KX 20T (95.0 %). In all of the phylogenetic 
and phylogenomic trees, strains SSM26T and SSM44 formed 
a distinct branch with P. sabulinigri KCTC 22137T (Figs 1 and 
S1). Thus, the phylogenetic position of strains SSM26T and 
SSM44 showed that the strains could be assigned to a novel 
species in the genus Pseudomonas.

The genome sizes of strains SSM26T and SSM44 were 4.33 
Mbp. According to the minimal standards recommended for 
the use of genomic data in prokaryotic taxonomy [34], other 
statistics for the genomes of both strains are given in Table 
S2. The ANI values calculated for the estimation of the degree 
of pairwise genome- based relatedness between both strains 
was 99.9 %, indicative of a single genomic species. The ANI 
value generated by pairwise comparison between SSM26T and 
P. sabulinigri KCTC 22137T was 80.2 %. This level is obviously 
below the proposed cut- off ANI values of 95–96 % for delin-
eating bacterial species [31, 35]. The dDDH value estimated 
by GGDC between strains SSM26T and SSM44 was 100 %. 
The dDDH values between strain SSM26T and P. sabulinigri 
KCTC 22137T, and between strain SSM26T and other type 
strains of Pseudomonas species in the P. pertucinogena group 

were 22.5 % and 19.3–20.3 %, respectively (Table S3). These 
results indicated that strains SSM26T and SSM44 are members 
of a distinctive species of the genus Pseudomonas [36]. The 
DNA G+C content of both strains SSM26T and SSM44 was 
56.2 mol% (Table 1).

The major fatty acid profiles of strains SSM26T and SSM44 
were similar to those of P. sabulinigri KCTC 22137T. Fatty 
acids C18 : 1 ω7c, C16 : 0, summed feature 3 (comprising C16 : 1 ω7c/
C16 : 1 ω6c) and C12 : 0 were major components for these species 
(Table S1).

The following phenotypes were differential characteristics of 
strains SSM26T and SSM44 compared to its closest phyloge-
netic neighbour P. sabulinigri KCTC 22137T. Strains SSM26T 
and SSM44 could be distinguished from P. sabulinigri KCTC 
22137T by ability to hydrolyse casein, and ability to utilize d- 
malic acid and l- rhamnose as a sole carbon sources (Table 1). 
Strains SSM26T and SSM44 differed from P. sabulinigri KCTC 
22137T by positive results for caprate assimilation and nega-
tive ones for fermentation (Table  1). Strains SSM26T and 
SSM44 differed from P. sabulinigri KCTC 22137T by inability 
to produce acid from d- and l- arabinose, d- ribose, d- and 
l- xylose, d- galactose, d- glucose, d- mannose, l- rhamnose, 
cellobiose, lactose, melibiose, gentiobiose, d- lyxose and d- 
and l- fucose.

In conclusion, based on the phylogenetic, genomic, pheno-
typic and chemotaxonomic characteristics described above, 
strains SSM26T and SSM44 should be placed in the genus 
Pseudomonas as representing a novel species, for which the 
name Pseudomonas neustonica sp. nov. is proposed.

DESCRIPTION Of Pseudomonas 
neustonica SP. NOv.
Pseudomonas neustonica ( neus. to' ni. ca. N.L. fem. adj. neus-
tonica pertaining to and living in the neuston).

Cells are Gram- stain- negative, strictly aerobic, motile by 
means of a polar flagellum and rod- shaped (0.3–0.5 µm 
wide 1.1–2.0 µm long). Colonies are white, circular, smooth 
and convex with 0.3–0.5 mm in diameter after 3 day incu-
bation on TSA with 3 % NaCl at 30 °C. Positive for oxidase 
and catalase activities. The temperature and pH ranges for 
growth are between 10–40 °C (optimum, 30 °C) and pH 
5.0–8.5 (optimum, pH 7.0–7.5), respectively. Growth occurs 
in the presence of NaCl with concentration 0.5–10 % (w/v) 
(optimum 3 %). Starch, casein and Tweens (20, 40, 60 and 
80) are hydrolysed, but hypoxanthine and xanthine are not.

Alkaline phosphatase, esterase (C4), esterase lipase (C8), 
leucine arylamidase, acid phosphatase and naphthol- AS- 
BI- phosphohydrolase activities are positive, but lipase 
(C14), valine arylamidase, cystine arylamidase, trypsin, 
α- chymotrypsin, α- and β- galactosidase, β- glucuronidase, 
α- and β- glucosidase, N- acetyl-β- glucosaminidase, 
α- mannosidase and α- fucosidase are negative. Nitrate reduc-
tion, indole production, hydrolysis of gelatin and fermenta-
tion are negative, and enzyme activity of arginine dihydrolase 
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and β- galactosidase are absent. Urease activity and hydrolysis 
of aesculin are variable. Positive for assimilation of caprate 
and adipate, but negative for assimilation of citrate, d- glucose, 
l- arabinose, d- mannose, d- mannitol, N- acetylglucosamine, 
maltose, gluconate, malate and phenylacetate. Acid is 

produced from aesculin and potassium 2- ketogluconate, but 
not from N- acetylglucosamine, d- adonitol, amygdalin, dl- 
arabinose, dl- arabitol, arbutin, cellobiose, dulcitol, erythritol, 
d- fructose, dl- fucose, d- galactose, gentiobiose, d- glucose, 
glycerol, glycogen, inositol, inulin, lactose, d- lyxose, maltose, 

Table 1. Selected characteristics that differentiate strains SSM26T and SSM44 from Pseudomonas sabulinigri KCTC 22137T

Strains: 1, SSM26T; 2, SSM44; 3, Pseudomonas sabulinigri KCTC 22137T. +, Positive; ‒, negative. All data were obtained in this study except where 
indicated.

Characteristic 1 2 3

DNA G+C content (mol%) by genome analysis 56.2 56.2 58.1*

Hydrolysis of casein + + ‒

Growth conditions:

  NaCl range (optimum) (%, w/v) 0.5–10.0 (3.0) 0.5–10.0 (3.0) 0.5–10.0 (5.0–6.0)

  pH range (optimum) 5.0–8.0 (7.0–7.5) 5.0–8.5 (7.0–7.5) 5.0–9.0 (7.0–7.5)

Utilization as a sole carbon source:

  d- Malic acid + + ‒

  l- Rhamnose + + ‒

API 20NE test results:

  Fermentation ‒ ‒ +

  Urease + ‒ +

  Hydrolysis of aesculin ‒ + ‒

  Assimilation of caprate + + ‒

  Assimilation of citrate ‒ ‒ +

Acid production from:

  d- Arabinose ‒ ‒ +

  l- Arabinose ‒ ‒ +

  d- Ribose ‒ ‒ +

  d- Xylose ‒ ‒ +

  l- Xylose ‒ ‒ +

  d- Galactose ‒ ‒ +

  d- Glucose ‒ ‒ +

  d- Mannose ‒ ‒ +

  l- Rhamnose ‒ ‒ +

  Cellobiose ‒ ‒ +

  Lactose ‒ ‒ +

  Melibiose ‒ ‒ +

  Gentiobiose ‒ ‒ +

  d- Lyxose ‒ ‒ +

  d- Fucose ‒ ‒ +

  l- Fucose ‒ ‒ +

*Data from Kim et al. [19].
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P. pertucinogena group

Fig. 1. Neighbour- joining trees based on (a) amino acid sequences for 120 concatenated marker genes and (b) 16S rRNA gene sequences 
showing the relationship between strains SSM26T, SSM44 and the type strains of related species. Cellvibrio japonicus Ueda107T was 
used as an outgroup. Only bootstrap values above 70 % are shown (1000 resamplings) at branch points. Filled circles indicate that 
the corresponding nodes were also obtained in both the maximum- likelihood and the minimum- evolution trees. Bars, 0.05 and 0.01 
substitutions per site.
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d- mannitol, d- mannose, melezitose, melibiose, methyl α- d- 
glucopyranoside, methyl α- d- mannopyranoside, methyl 
β- d- xylopyranoside, potassium 5- ketogluconate, potassium 
gluconate, raffinose, l- rhamnose, d- ribose, salicin, d- sorbitol, 
l- sorbose, starch, sucrose, d- tagatose, trehalose, turanose, 
xylitol and dl- xylose. In sole carbon utilization tests, 
l- arabinose, cellobiose, d- fructose, d- glucose, lactose, d- 
malic acid, d- mannose, melibiose, l- proline, l- rhamnose and 
sucrose are utilized, but l- ascorbate, citric acid, myo- inositol, 

d- lyxose, raffinose, d- sorbitol and trehalose dihydrate are 
not utilized. The major cellular fatty acids are C18 : 1 ω7c, C16 : 0, 
summed feature 3 (comprising C16 : 1 ω7c/C16 : 1 ω6c) and C12 : 0.

The type strain, SSM26T (=KCCM 43193T=JCM 31284T), was 
isolated from the surface microlayer in coastal seawater of the 
Ross Sea (Antarctica). Strain SSM44 (=KCCM 43194=JCM 
31285), isolated from the same source, is a second strain of 
the species. The GenBank/EMBL/DBBJ accession numbers 

Pseudomonas orientalis CFML 96-170T (AF064457)

Pseudomonas fluorescens DSM 50090T (LHVP01000014)

Pseudomonas mucidolens IAM12406T (D84017)

Pseudomonas gessardii CIP 105469T (AF074384)

Pseudomonas migulae CIP 105470T (AF074383)

Pseudomonas fragi ATCC 4973T (AF094733)
Pseudomonas psychrophila E-3T (AB041885)

Pseudomonas chlororaphis subsp. chlororaphis DSM 50083T (Z76673)

Pseudomonas kilonensis DSM 13647T (LHVH01000037)

Pseudomonas corrugata ATCC 29736T (D84012)

Pseudomonas protegens CHA0T (CP003190)

Pseudomonas mandelii NBRC 103147T (BDAF01000092)

Pseudomonas cannabina CFBP 2341T (AJ492827)

Pseudomonas syringae KCTC 12500T (KI657453)

Pseudomonas anguilliseptica DSM 12111T (FNSC01000001)

Pseudomonas taeanensis MS-3T (AWSQ01000013)

Pseudomonas abietaniphila ATCC 700689T (FNCO01000040)

Pseudomonas lutea DSM 17257T (JRMB01000004)

Pseudomonas baetica a390T (FM201274)

Pseudomonas koreensis Ps 9-14T (AF468452)
Pseudomonas reinekei Mt-1T (AM293565)

Pseudomonas jessenii DSM 17150T (NIWT01000013)

Pseudomonas mendocina NBRC 14162T (BBQC01000018)
Pseudomonas oleovorans subsp. oleovorans DSM 1045T (NIUB01000072)

Pseudomonas flavescens LMG 18387T (FNDG01000047)

Pseudomonas straminea JCM 2783T (FOMO01000019)
Pseudomonas xanthomarina DSM 18231T (AB176954)

Pseudomonas stutzeri ATCC 17588T (CP002881)

Pseudomonas japonica NBRC 103040T (BBIR01000146)

Pseudomonas putida NBRC 14164T (AP013070)

Pseudomonas fuscovaginae ICMP 5940T (BATG01000120)

Pseudomonas asplenii ATCC 23835T (LT629777)
Pseudomonas thermotolerans CM3T (AJ311980)

Pseudomonas aeruginosa JCM 5962T (BAMA01000316)

Pseudomonas oryzihabitans IAM 1568T (AM262973)

Pseudomonas psychrotolerans C36T (AJ575816)

Pseudomonas oceani KX 20T (KT449732)
Pseudomonas pachastrellae KMM 330T (AB125366)

Pseudomonas neustonica SSM26T (KU716040)

Pseudomonas neustonica SSM44 (KU716041)
Pseudomonas sabulinigri J64T (EU143352)

Pseudomonas pelagia CL-AP6T (AROI01000066)

Pseudomonas pertucinogena IFO 14163T (AB021380)
Pseudomonas formosensis CC-CY503T (JF432053)

Pseudomonas bauzanensis BZ93T (GQ161991)

Pseudomonas litoralis 2SM5T (FN908483)

Cellvibrio japonicus Ueda107T (CP000934)
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for the 16S rRNA gene sequence and the genome sequence 
of strain SSM26T are KU716040 and RKKU00000000, 
respectively, and those of strain SSM44 are KU716041 and 
RKKV00000000, respectively. The DNA G+C contents are 
56.2 mol% (by genome analysis).
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