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Abstract: Polar regions are too harsh to be continuously observed using ocean color (OC) sensors
because of various limitations due to low solar elevations, ice effects, peculiar phytoplankton
photosynthetic parameters, optical complexity of seawater and persistence of clouds and fog.
Therefore, the OC data undergo a quality-control process, eventually accompanied by considerable
data loss. We attempted to reconstruct these missing values for chlorophyll-a concentration (CHL) data
using a machine-learning technique based on multiple datasets (satellite and reanalysis datasets) in
the Ross Sea, Antarctica. This technique—based on an ensemble tree called random forest (RF)—was
used for the reconstruction. The performance of the RF model was robust, and the reconstructed
CHL data were consistent with satellite measurements. The reconstructed CHL data allowed a high
intrinsic resolution of OC to be used without specific techniques (e.g., spatial average). Therefore,
we believe that it is possible to study multiple characteristics of phytoplankton dynamics more
quantitatively, such as bloom initiation/termination timings and peaks, as well as the variability in
time scales of phytoplankton growth. In addition, because the reconstructed CHL showed relatively
higher accuracy than satellite observations compared with the in situ data, our product may enable
more accurate planktonic research.

Keywords: data reconstruction; chlorophyll-a concentration (CHL); random forest (RF);
Ross Sea; Antarctica

1. Introduction

Ocean color (OC) sensors are critical resources for ocean biology, biogeochemistry and climatic
research [1,2]. The substantial space and time coverages of the sensors have made these sensor
indispensable to the studies on the oceanographic dynamics of marine ecosystems [3]. Furthermore,
the OC sensors have been widely used to study various phenomena, such as harmful algal blooms [4],
maritime disasters [5–7], coral reefs [8] and sediment plumes [9]. In particular, because the chlorophyll-a
concentration (CHL, mg m−3) in a euphotic zone, which is a representative product derived from the
OC measurements, is strongly related to phytoplankton abundance, CHL has a vital role in elucidating
the pattern of the phytoplankton growth [10], primary production [11] and global carbon cycle through
remotely measured carbon dioxide pressure [12,13] over the global oceans.

High-resolution (from hundreds of meters to thousands of kilometers) OC sensors have been
monitoring our planet almost every day since the late 1990s. The quantity of data has been gradually
increasing over the last two decades. Additionally, because the efforts of many researchers have
greatly improved the quality of this enormous dataset, its potential availability has grown dramatically
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in recent years. Nevertheless, in the polar regions, the continuous use of OC remote sensing has
several limitations due to low solar elevations, ice effects [14], peculiar phytoplankton photosynthetic
parameters [15], optical complexity of seawater [16] and persistence of clouds and fog [17]. For these
reasons, since the valid values rarely remain, there are practical constraints to polar studies based on
these OC measurements.

The polar regions are now experiencing various environmental changes with respect to current and
projected climate change, such as melting snow, glaciers and sea ice, permafrost thaw, ocean acidification
and changes in hydrology and ecosystems. Some of these result in positive feedback loops that
exacerbate the problem. Despite these implications, it is difficult to detect climate-induced changes
due to unsecured data quantity and quality. In particular, to understand long-term variability in
marine ecosystems associated with climate change, it is vital to consider the error of generalization.
In other words, it should not be presumed that the interpretation based on insufficient observations
caused by many gaps is similar to the general ecological characteristics of the region. Conventionally,
many researchers have used OC data using spatial or temporal (monthly or annually) means to account
for the considerable gaps in data. This approach has not taken full advantage of the native resolution
of the OC and also suffers from the error of generalization that misrepresents the characteristics of a
confined area as those of the entire region.

In the past decade, various efforts have been made to fill these gaps in the OC data to avoid
faults of more sophisticated and efficient techniques, such as data interpolating empirical orthogonal
functions (DINEOF) [18]. Recently, some artificial intelligence (AI)-based algorithms have been applied
to recover the gap data [17,19–21]. Jouini et al. [19] reconstructed the CHL in the western sector of the
North Atlantic via sea surface temperature (SST) and sea surface height (SSH) using a classification
technique called the self-organizing map. They showed that even under 100% cloud cover, the CHL
values could be reconstructed at scales larger than 10 km well. Krasnopolsky et al. [20] also applied
an AI-based technique to reconstruct the gaps in OC data on a global scale. The reconstruction
was based on the physical variables derived from satellite measurements such as SST, SSH and sea
surface salinity (SSS) and Argo in situ data. They noted that the application of their approach could
provide an accurate, computationally cheap method for filling spatial and temporal gaps in the
satellite observations. Chen et al. [21] reconstructed CHL data through an ensemble-based approach
(random forest, RF) using wavelength-based predictors. They showed a significant improvement
in OC gap recovery of more than 300% over the regions of the Yellow Sea and the East China Sea
and the estimated CHL has a quality similar to that of the standard satellite-derived CHL. However,
all previous studies have been conducted in non-polar regions, except that of Park et al. [17] (hereafter
P2019). P2019 applied a method of reconstructing the missing values on the satellite-derived CHL data
in polar regions. They attempted to predict the CHL for the pixels with missing values using ensemble
machine-learning-based models with the satellite data of other factors such as sea ice concentration
(SIC) and SST and reanalysis data generated by combining observation data and numerical model
output. Although the results were robust, their reconstruction had some limitations: (1) The spatial
coverage of their reconstruction was too small. Cape Hallett, their study area, is a region without
distinct ecological properties (i.e., phytoplankton bloom) in the Ross Sea. Most phytoplankton blooms
are concentrated in the western and southern Ross Sea [10]; (2) Because their reconstruction was
primarily focused on high model performance, they constrained the span of reconstructed CHL data to
0–3.77 mg m−3. They set a range of reconstructions based only on model performance without any
consideration of whether there was a CHL of more than 3.77 mg m−3 in the region. This limitation may
result in a significant error in the reconstruction at the CHL values higher than the upper limit value;
(3) Their reconstruction is limited to only the open water areas bordered by 15% SIC, which are subject
to marginal ice edges. In the current study, such restrictions were redefined with different criteria,
and detailed explanations are given in Section 3.1.

Consequently, we produced the gapless CHL dataset using a novel reconstruction model called
RF, which is a kind of machine-learning-based ensemble tree algorithm. This work fundamentally
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follows the concept suggested by P2019, but it does include some critical solutions to the issues that
they have, such as the small spatial scale, narrow scope of the reconstructed CHL range and area
restricted to the ice-free ocean (<15% ice concentration). This product covers a spatially large scale that
includes the Ross Sea shelf region (79–65◦ S and 140◦ E–140◦ W) and has a broader CHL range from 0 to
50 mg m−3 compared with that of P2019. Furthermore, the areas with up to 60% ice concentration that
likely to be observable with OC sensor were considered. For better reconstruction model performance,
the unnatural data that could interfere with the model development were detected and removed
using the normalized median test method (Sections 3.1 and 4.1) and some procedures such as data
transformation (Section 3.2) and model optimization (Section 3.3) were performed. Then, we evaluated
the model performance using several evaluation indices (Sections 3.4 and 4.2). In addition, the model
was adjusted by introducing an oversampling technique to solve the low accuracy issue in the minority
target class (Section 4.3), and the final evaluation was performed (Sections 4.4 and 4.5). In Sections 3.5
and 4.6, the variable importance and partial dependence plot that reflect the contribution of the
predictive variables to the model development were described. Finally, the challenges that remained
despite our efforts and the benefits of the CHL product retrieved from this research were discussed in
Section 5.

2. Data

For the reconstruction model development focused on the Ross Sea, the information on the input
(predictive) and the target (responsive) variables are listed in Table 1. The variable selection was
established based on the relationship between the physical oceanographical factors from the local
to global scale and phytoplanktonic dynamics in the Ross Sea region, revealed by many previous
studies [22–36], as suggested in P2019 (see Section 4.1 in P2019).

Table 1. Information on the datasets used for the chlorophyll-a concentration (CHL) reconstruction
model development. All data were bilinearly remapped into the resolution (9 km) on the visible
infrared imaging radiometer suite (VIIRS) CHL data.

Variables Abbreviation Range (Unit) Format Dataset

Predictor

Climatology of CHL CHLCLIM 0.05–4.93 (mg m−3)
Log10

[CHLCLIM] VIIRS

Sea surface temperature SST −1.8–3.4 (
◦

C) SST MURSST

10-m zonal wind U10 −16.6–17.7 (m s−1) U10

ERA-Interim
10-m meridional wind V10 −16.5–17.2 (m s−1) V10

2-m atmospheric temperature T2M −21.0–4.1 (
◦

C) T2M
Photosynthetically

active radiation PAR 7787.2–685,853.6 (J m−2) PAR

Bathymetry DEP 5326.7–41.0 (m) DEP GEBCO

Longitude LON 140
◦

E–140
◦

W LON
Latitude LAT 79–65 (

◦

S) LAT

Days of year DOY 305 (Nov 1)–90 (Mar 31)
(days) DOY

Target Satellite CHL CHLSAT 0.01–89.6 (mg m−3) Log10[CHLSAT] VIIRS

2.1. Satellite and Reanalysis Datasets

The CHL data were used as the target data to be reconstructed and the climatology of the CHL
during summertime (November 1 to March 31) was used as a predictor of the reconstruction model.
The CHL data were a Level-3 9 km standard mapped image produced by the visible infrared imaging
radiometer suite (VIIRS) mounted on the suomi national polar-orbiting partnership and was obtained
from the NASA ocean color website (https://oceancolor.gsfc.nasa.gov/).

Because these data date back to late 2012, this study is limited to a total of six spring and summer
periods from 2012/2013 to 2017/2018. For the SST data, we used the multiscale ultra-high resolution sea
surface temperature (MURSST) data provided by the Jet Propulsion Laboratory (https://www.mur.
jpl.noaa.gov), which are available from 2002 to the present. Some other relevant satellite-based data

https://oceancolor.gsfc.nasa.gov/
https://www.mur.jpl.noaa.gov
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used in this study are the SIC data. These data were not used directly for the model development but
used as a reference for masking. The SIC data were derived from the University of Bremen’s ARTIST
(Arctic radiation and turbulence interaction study) sea ice (ASI) algorithm [37]. This algorithm has
a resolution of approximately 10 km on a polar stereographic grid using the full resolution of the
advanced microwave scanning radiometer 2. These data are available at https://seaice.uni-bremen.de/

amsr2/index.html.

2.2. Other Input Variables

Variables such as the 2-meter atmospheric temperature (T2M), photosynthetically available
radiation (PAR), 10-meter zonal (U10) and meridional (V10) winds that could not be obtained from the
satellite observations were derived from the ERA-interim reanalysis data provided by the European
Center for Medium-Range Weather Forecasts (https://www.ecmwf.int). Although the PAR data can
be obtained from the OC sensor, these data also have many gaps. Due to the characteristics of
the model developed here, the data cannot be reconstructed in pixels where even one gap exists
in the input data. Therefore, the ERA-interim dataset with no gaps was used for the PAR data.
In addition, ocean floor depth (DEP) data, used as a predictor (input variable), were provided by the
general bathymetric chart of the ocean, and have a spatial resolution of approximately 30 arc-seconds
(https://www.gebco.net). These digital bathymetry data have higher accuracy in combination with the
acoustic in situ measurements and satellite-based gravity data. The ocean floor depth, the longitude
(LON), latitude (LAT) and days of the year (DOY) are additionally used as predictors that do not
control the CHL variation directly. These factors were used to illustrate the climatology of the CHL
over the Ross Sea and to consider the remaining factors for CHL changes that the environmental
predictor selected here (SST, T2M, U10 and V10) cannot explain.

2.3. In Situ Measurements

Observing polar regions is considerably difficult because access is limited due to the harsh marine
environment (e. g., the presence of sea ice). Although this type of study requires a large amount of
actual data to evaluate the acceptability of the reconstruction results, it is practically impossible to
secure enough spatially uniform data, especially throughout our research area, the Ross Sea (Figure 1).
Therefore, we used the in situ measurements obtained within the Ross Sea that are publicly available.
The first measurement was conducted onboard the RV/IB Nathaniel B. Palmer from February 12
to March 18, 2013 (NBP1302). The data were extracted from the data files provided by Smith and
Kaufman [38]. Second, the CHL analyzed in uncontaminated near-surface (3 to 7 m) water samples
obtained from the “pump-underway ship intake” system during the same cruise was used (NBP1302U).
The dataset was obtained from the Biologic & Chemical Oceanography Data Management Office
website https://www.bco-dmo.org. Another survey was then conducted onboard the same ship from
December 31, 2017, to February 19, 2018 (NBP1712), which was obtained from the U.S. Antarctic
Program Data Center [39]. Of the collected CHL data from all the stations of the NBP1302, NBP1302U
and NBP1712 surveys, we did not consider the information at the stations where no CHL observations
were performed, that have more than 60% ice concentration or where no data above a 10-meter depth
were obtained. In addition, the mean values in the 5 × 5 pixels centered on the pixel with the location
of the in situ measurement on the standard satellite-based and reconstructed CHL datasets were
matched with the satellite data to minimize the uncertainties that contribute to the temporal and
spatial mismatch between the in situ observations and mapped CHL datasets. Only if the number
of valid pixels in the 5 × 5 pixels was ≥ 10%, the extracted data were used together with the field
measurements in the model development. As such, 164 samples (62 stations from NBP1302, 64 stations
from NBP1302U and 38 stations from NBP1712) were selected for the comparison with both the
standard satellite-derived and the reconstructed CHL dataset.

https://seaice.uni-bremen.de/amsr2/index.html
https://seaice.uni-bremen.de/amsr2/index.html
https://www.ecmwf.int
https://www.gebco.net
https://www.bco-dmo.org
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Figure 1. Map of the Ross Sea, including bathymetry (colored) and in situ data location from the three
cruises; NBP1302 (light red circles), NBP1302U (orange triangles) and NBP1712 (light blue squares).
The bathymetry data were obtained from the GEBCO with 1-arc resolution. Gray contour lines indicate
the depth from 400 to 1200 m with a 100-m depth interval.

3. Procedure and Approaches

This section first presents an illustration of the workflow of our study (Figure 2). Several methods
and model settings used in the process are described in the following subsections.

Figure 2. Flowchart to illustrate the fundamental process conducted in this study (left) and the
schematic diagram of the random forest (RF) model used for the CHL reconstruction. CHLSAT data
from which noise is removed through the median test method are specified as “fCHLSAT”. “CHLREC”
refers to the CHL data produced primarily through the RF model and then the RF model was adjusted
due to insufficient training issue (final product is labeled “CHLADJ”).
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3.1. Ice Masking and Noise Reduction

Because the OC observation in regions where the sea ice is densely covered is practically impossible,
we attempted to mask the CHL data using the SIC. It appears that the OC can be measured in the region
with up to 60% SIC on average (not shown). Thus, we decided not to consider the CHL measurements
in the areas with a SIC of more than 60% in the model development.

The quality of OC data were improved based on the quality-control flags for various other
conditions (e.g., sun zenith angle, cloud, ice cover, atmospheric correction status, land and sun glint).
Nevertheless, there were still unusually high or low CHL values that were not consistent with the
adjacent measurements, as shown in Figure 3. In these images, these abnormal CHL values are
likely attributed to the failure in flagging thin clouds. If these values are used for the reconstruction
without any correction, the overall model performance is reduced, and prediction failure could occur.
Therefore, we applied a method called "normalized median test" to remove these abnormal CHL values.
Conventionally, a simple median filter is often applied before using the CHL data. Still, this method
not only results in the coercive deformation of the original data, but also eliminates the boundary
values, leading to data loss. However, the normalized median test used here is a way to minimize such
deformation and loss.

Figure 3. Examples with unlikely high CHL values induced by failures of flagging for (a) 10 December
2016 and (b) 25 December 2015, including VIIRS quasi-true color images (background) and CHL
distribution (colored scatters). True color images were produced from one of several swath images
acquired for the corresponding dates. High CHL values above 40 mg m−3 were marked arbitrarily
with red dots.

The initial version, a simple median test, was presented by Westerweel [40] and developed
to detect outliers in particle image velocimetry data. This version was improved by Westerweel
and Scarano [41] by normalizing the median residual to make it more robust, and we applied this
improved method to remove the unnatural values on the gridded CHL images. The procedure of
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the method is as follows. First, the size (b × b) of the subwindow is set. Based on the value C0 of a
specific pixel (i.e., the center of the subwindow), a total of b2

− 1 adjacent pixel values are determined
(
{
Ci |i = 1, . . . , b2

− 1) ). Next, the median of adjacent values, Cm (excluding C0) is calculated. Then,
the residual for the median (ri) can be calculated as follows.

ri = |Ci−Cm| (1)

This value is used to calculate the median rm of the ri and normalize the residual of C0 as follows.

r∗0 =
|C0−Cm|

rm+ε
(2)

where ε may represent the acceptable fluctuation level due to cross-correlation. Finally, a specific
threshold (θ) is applied to the calculated r∗0, and we set the target to remove pixels with normalized
residual values greater than θ (r∗0 > θ). Here, we set b = 5, ε = 1 and θ = 1.

3.2. Data Transformation and Feature Selection

One of the crucial factors in machine learning is the imbalance of the target class (the “class”
refers to CHL in this study.). The bloom, which is implied by an increase in the CHL, in the Ross Sea
is characterized by the plankton assemblage in a restricted space and growth/dissolution for a short
time scale. Because of these characteristics, the lower CHL values are found more frequently in typical
surface oceans than the higher CHL values associated with bloom. Eventually, the CHL data generally
do not show a normal distribution and have positive skewness. If the positively skewed data are used
to train the model as is, there is a high probability that the prediction of the minority class (CHL values
with low data frequency) will fail. Because the basic concept of machine learning itself is optimized for
the data in nature, we transformed the target class into a normal distribution that usually appears in
natural data on logarithmic scales [3].

When the data transformations were completed, the Boruta algorithm [42], a variable selection
technique based on the RF, was used to test how efficiently the selected predictors worked for model
development. As such, it was found that the selected variables play a significant role, and we attempted
to develop a RF model to reconstruct the CHL data from 2012/2013 to the 2017/2018 summer seasons in
the Ross Sea.

3.3. Machine-learning Model

To reconstruct the CHL data, we used the RF model, a type of ensemble learning method for
classification and regression analysis and output classifications or average predictions from multiple
decision trees constructed during the training process [43]. In general, in order to enable the randomness
and independence of each tree, the RF model randomly collects subset samples (by allowing duplicates)
through a bootstrap aggregation technique that can improve the stability and accuracy of model
performance. The method reduces the variance in the iterative results of the model and can avoid
overfitting, causing little difference in performance between the training and test datasets. In addition,
the bagging techniques are known to be appropriate for the data containing noise, such as the CHL
dataset. The features (input variables) used for node division are limited to ensure diversity between
each tree constituting the RF. That is, if all the features are selected when constructing the trees,
there will be little difference between the trees. A rule of thumb is that the RF model sets the square
root of the total number of features as the parameter on the maximum feature number to produce
the best results. Eventually, for the feature selected at each node, the node is divided into two child
nodes based on the optimal partitioning condition (i.e., a small mean squared error, MSE), and a leaf
node is calculated. Then, finally, the results produced by each tree are ensembled on average to draw
a conclusion.
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Several parameters must be considered when implementing an RF model that can best fit the target
data through a given predictor. The first parameter is the number of features (Mtry). As described
above, the Mtry that is generally optimized in the RF model is the square root of the entire feature
number; that is, because the total Mtry in this study is 10, Mtry was set to 3. Another vital parameter to
consider is the number of single decision trees (Ntree) to use in implementing the ensemble. A high
value of Ntree can produce more accurate results, but if it is too high, the computation efficiency will be
reduced considerably. Therefore, a balance between accuracy and computational efficiency is required.
Through trial and error, the value of Ntree was set to 60 and Mtry was set according to the convention
(Mtry =

√
9). The two parameters mentioned above showed the most sensitively towards the data

given in this study, and the minimum number of samples required to split an internal node and to be
at a leaf node were applied as 2 and 1, respectively.

3.4. Model Evaluation Metrics

Various statistical metrics were used to evaluate model performance. It is expected that a more
detailed evaluation is possible through these various metrics, and the metrics used are R2, MSE,
root mean squared error (RMSE), mean absolute error (MAE), relative RMSE (RRMSE) and root mean
absolute error (RMAE). Furthermore, to highlight cross-sensor agreement and bias, an unbiased percent
difference (UPD) and mean relative difference (MRD) can be defined as follows [21,44,45].

UPD(%) =
1
N

N∑
i=1

∣∣∣yi − ŷi
∣∣∣

0.5(yi + ŷi)
× 100 (3)

MRD(%) =
1
N

N∑
i=1

(yi − ŷi)

ŷi
× 100 (4)

3.5. Contribution of Predictive Variable for Reconstruction

Decision tree-based algorithms such as RF can measure the variable importance (VI) of features
used in model development. The VI could be measured by testing how much the node reduces impurity
on average [43]. The VI is calculated as the average of the weights, and the weight of each node is
equal to the number of training samples associated with it. After training, this score is calculated for
each feature, and the result is normalized so that the total sum of importance is 1. This characteristic
makes it possible to infer how a feature causes a class change.

In addition, we used the partial dependence plot (PDP) to confirm how a change in the feature
(i.e., predictor) in the trained model ultimately contributed to predicting the target. Moreover, through
the PDP, we thought that the PDP could show the sensitivity of the developed model toward the input
variables. The PDP is one of the ways to interpret the trained model, allowing the identification of
linear, monotonic or more complex relationships between predictors and targets. x =

{
x1, x2, . . . , xp

}
represent the features in the model f̂ (x) (p = 10 in this study).

When splitting x into the set of selected Xs and its complement (Xc), the PDP of the response
variable for Xa is defined as

fs(Xs) = EXc

[
f̂ (Xs, Xc)

]
=

∫
f̂ (Xs, Xc)pc(Xc)dXc (5)

where pc(Xc) is the marginal probability density of Xc. pc(Xc) can be calculated.

pr(Xr) =

∫
p(x)dXr (6)
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Equation (5) can be estimated from the training data as follows:

f s(Xs) =
1
n

n∑
i=1

f̂ (Xs, Xi,c) (7)

where Xi,c(i = 1, 2, . . . , n) are the values of Xc that occur in the training samples. That is, the effect of
all other predictors in the model is averaged. For details, refer to Friedman [46].

4. Results

4.1. Data Filtering for Model Training

The CHL data for model training were reorganized through ice masking and filtering using the
normalized median test, as mentioned earlier. As such, there were significant adjustments compared
with the CHLSAT data (Figure 4 and Table 2).

Figure 4. Close-up views of the CHL maps around regions containing large CHL values (> 40 m m−3).
Left panels show the CHLSAT maps and the right panels are the maps of the CHL filtered (fCHLSAT)
by the normalized median test, which is set to b = 5 and θ = 1.1, in (a) 27 November 2015,
(b) 25 December 2015, (c) 10 December 2016 and (d) 30 November 2017.

The CHLSAT data were mostly concentrated (about 99.99% or more) at a value of less than
10 mg m−3, and the data quantity gradually decreased as the CHL value increased. The values masked
by SIC were mostly removed in the range below 10 mg m−3, except that 3 pixels were eliminated in
the field 40 mg m−3

≤ CHL <50 mg m−3. The mean ± standard deviation of the removed values was
approximately 0.20 ± 0.32 mg m−3; these values were mostly found in the range lower than 1 mg m−3.
The pixels removed by the normalized median test were composed of those with concentration
> 40 mg m−3 and especially the CHLSAT values greater than 50 mg m−3 were completely removed. As a
result, this may mean that most CHLSAT values above 40 mg m−3 can be considered as outliers during
the normalized median test. Among the in situ measurements (N = 6086) of surface (<10-m depth)
CHL during consecutive summer seasons from 1993 to 2012 in the Southern Ocean obtained from the
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SeaWiFs bio-optical archive and storage system, only one measurement of more than 40 mg m−3 was
present (not shown). This high CHL measurement was observed in the Antarctic peninsula coastal
region; most of the measurements in the Ross Sea were below 30 mg m−3. Such results may be evidence
that the masking and filtering we performed in this study are efficient. Finally, the filtered CHLSAT

(fCHLSAT) data were used for machine-learning training to build the reconstructed CHL (CHLREC)
data and the total number of pixels to be used for training and validation was 3536,976 without the
missing values (see Table 2).

Table 2. Number of pixels at specific ranges of the chlorophyll-a concentration (CHL) on the remotely
observed CHL (CHLSAT), masked CHL (mCHLSAT) and noise-filtered CHLSAT (fCHLSAT) data from
2012/2013 to 2017/2018. The CHL data were masked in areas with SIC higher than 60%. The numbers
in the brackets indicate the number of masked pixels. Most CHL values removed from the mCHLSAT

data are concentrated the CHL range below 10 mg m−3, with the mean ± s.d. of approximately 0.20 ±
0.32 mg m−3. In contrast, the filtered CHL values on the fCHLSAT data are confined within the CHL
range above 40 mg m−3 and the 54.41 ± 11.94 mg m−3.

CHL
(mg m−3)

<10 <20 <30 <40 <50 <60 <70 <80 <90 Total

N

CHLSAT 3,532,120 11,710 547 100 69 21 19 12 4 3,544,602

mCHLSAT 3,524,727 11,702 547 100 66 21 19 12 4 3,537,198

fCHLSAT 3,524,727 11,702 547 100 15 0 0 0 0 3,537,091

4.2. Overall Assessment of the Model Performance for Reconstruction

We developed the RF model that reconstructs the missing values in the fCHLSAT data through
the model setup described earlier. The model performance for the training set (N = 2652,818),
which accounts for 75% of the total data, has an accuracy with R2 = 0.99, MSE = 0.02 mg m−3,
RMSE = 0.14 mg m−3, MAE = 0.03 mg m−3, RRMSE = 8.06%, RMAE = 4.08%, UPD = 3.12% and
MRD = 0.17% (Figure 5). The training seems to have been carried out intensively within the 0.1 to
1 mg m−3 CHL range due to the high data frequency of fCHLSAT. The validation set (N = 884,273),
which represents 25% of the total data, also showed high accuracy (R2 = 0.95, MSE = 0.08 mg m−3,
RMSE = 0.28 mg m−3, MAE = 0.08 mg m−3, RRMSE = 38.06%, RMAE = 10.25%, UPD = 8.07% and
MRD = 0.94%.), but it was confirmed that the variance was slightly larger than that in the training set.

Figure 6 shows the data frequency and reconstruction rate of the CHLREC compared with the
fCHLSAT data. The maximum reconstruction rate of the CHLREC was up to 40 times at ~0.3 mg m−3,
but in specific ranges (vertical gray solid lines). The number of CHLREC data was less than that of
fCHLSAT data, indicating the predictive failure due to over- or underestimation. We defined these parts
as reconstruction failure ranges and segmented them into S1 (<0.04 mg m−3) which is the part inferred
as overestimation, and S3 presumed to be underestimated (>10.59 mg m−3) (S2 can be defined as the
range of successful reconstruction). Most reconstruction seems to have occurred in the segment S2,
and more detailed analysis was needed to determine what factors caused the reconstruction failures in
segments S1 and S3. Aside from the failure in segment S1 with the low CHL, because the CHL in the
segment S3 with high CHL has significant implications for environmental analysis, we determined
that it is necessary to diagnose and compensate for the failure in this segment in the reconstruction for
time-varying analysis.
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Figure 5. Probability density estimate (PDE) for scatter plots of the comparison between filtered
satellite CHL measurements (fCHLSAT) and the reconstructed CHL estimates (CHLREC), which were
derived from the machine-learning-based RF model for the data reconstruction, in the (a) training and
(b) validation processes. For efficiency of graphical representations, figures are illustrated using 3% of
each training set (N = 79,584) and validation set (N = 26,528) that were randomly extracted for only this
figure (not in analysis). Still, all the statistical results were from the total training and validation sets.
For the computation of the PDE at each point, the kernel smoothing function was used.

Figure 6. Binned CHL-frequency histograms of both filtered CHLSAT (fCHLSAT, blue line) and
the reconstructed CHL estimates from the RF models (CHLREC, orange line) on logarithmic scales.
The bars denote the reconstruction rate of CHLREC (black) at each CHL bin. Bins were determined by
logarithmically dividing the CHL ranges from 0.01 to 50 mg m−3 into 1000 bins. Vertical gray lines
indicate the location of the bin with the failure of the reconstruction, implying the underestimation of
the machine-learning models or the preservation of CHLSAT. Degments (S1 to S3) were defined based
on the phase of the reconstruction rate from the RF model.
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4.3. Additional Diagnosis and Adjustment of the Model

Figure 7 shows the results of testing how much reconstruction capability the RF model can have
in segments S3 and S1. As in the previous process, the data included in the segments were divided into
75% training data (N = 2,652,818) and 25% validation data (N = 884,273) and training and validation
were performed for each segment. The black dots are the performance of the RF model for the training
data, and the red dots are that for the validation data. The performance of the model trained with the
model configurations mentioned earlier (i.e., Ntree = 60, Mtry = 3) for segment S3 (because it may have
a higher analytical significance than that in S1) is R2 = 0.89, MSE = 1.34 mg m−3, RMSE = 1.01 mg m−3,
MAE = 0.69 mg m−3, RRMSE = 7.37%, RMAE = 5.01%, UPD = 4.44% and MRD = 0.47%, which is
significantly lower than the established model performance. As expected, the performance of the
RF model for the validation data were also reduced significantly (R2 = 0.65, MSE = 1.50 mg m−3,
RMSE = 1.52 mg m−3, MAE = 1.24 mg m−3, RRMSE = 11.07%, RMAE = 9.00%, UPD = 8.10% and
MRD = 0.92%). The performance in the segment S1 also declined significantly compared with that
of the established model, but the absolute errors such as MSE, RMSE and MAE, were almost zero.
This is because S1 is limited to a range of very small CHL values of less than 0.04 mg m−3. Therefore,
we eventually concluded that the difference between fCHLSAT and CHLREC in S1 was negligible.
Although the underestimation issue in S3 was already included in the results presented in Section 4.2
(Figure 5), it was difficult to recognize such an issue because the data in S2 accounted for more than
99.9% of the total data. That is, if S2 shows 100% accuracy, even if the model fails for S1 and S3,
the overall evaluation of the model may show an accuracy of more than 99.9%.

Figure 7. Scatter plots for testing the RF-model performance for insufficient training data at segments
(a) S3 (high CHL values) and (b) S1 (low CHL values). For this comparison, 25% of the data of each
segment first were replaced by missing values, and then the model was performed. Red and black dots
represent the reconstruction results for data used and not used in any model training and validation
process, respectively. Ultimately, the CHLREC estimated on the replaced pixels was compared to the
initial CHL values. Black and red solid lines indicate the linear regression, including 95% confidence
intervals (shading). Black dotted and dashed lines are the boundary values of each segment and
one-to-one correspondence, respectively. Evaluation metrics represent the accuracy for the dataset not
included in model development (dataset used in model development).

Model failure in S1 and S3 is likely to occur due to the lack of training data, and we performed
oversampling for S3 containing less training data to overcome the issue. The easiest way to oversample
is to resample the minority class, i.e., to duplicate the entries or manufacture data, which is the
same as what was done previously. More duplicates could result in more accuracy, but overfitting is
inevitable. Therefore, considering the proper accuracy, overestimation issue and efficient computation
time together, we attempted to determine the number of times the minority class cluster must be
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increased while maintaining efficiency. As such, it was concluded that it is the most efficient to
quadruple the data of S3, and the results for the validation set are R2 = 0.98, MSE = 0.48 mg m−3,
RMSE = 0.51 mg m−3, MAE = 0.18 mg m−3, RRMSE = 3.68%, RMAE = 1.30%, UPD = 1.14% and MRD =

0.07% (Figure 8). The difference in performances for the training and validation set is small, suggesting
that the performance is not overfitted and significant. Consequently, we believe that this diagnostic
process shows effective performance under the configuration of the current RF model when at least
10,000 data are obtained.

Figure 8. Scatter plots for testing the adjusted RF model performance at segment S3 (high CHL values
with 10.59 mg m−3). Refer to Figure 7 for details.

4.4. Conclusive Evaluation of the Adjusted CHL Reconstruction Outcome

For the final evaluation of the adjusted CHLREC data (hereafter "CHLADJ"), which was achieved
through the process of diagnosis and adjustment of the CHLREC data, we tested the spatiotemporal
variation in the CHLADJ. (Figure 9). In the CHLADJ scenes for three consecutive days (two cases on
3 January 2014 and one on 22 January 2017), the CHLADJ images depict the continuous blooms well.
In particular, in the fCHLSAT image on 2 January 2014, the missing values generated within the high
CHL patch close to 10 mg m−3 in the southwest coastal area of Cape Colbeck (refer to the map in
Figure 1) are well reconstructed in both the CHLREC and CHLADJ datasets, even on images from 21 to
23 January 2017.

Both the CHLREC and CHLADJ data were then compared to the in situ measurements to determine
how close the reconstructed datasets were to satellite observations (Figure 10). First, because the
NBP1302 cruise was mostly carried out around the western Ross Sea in February, a high CHL range
(about 1 to 5 mg m−3) was captured. On the contrary, the NBP1712 measurement was performed in
December, and most of the low CHL values were recorded because, in this period, the bloom was limited
in the central Ross Sea [8]. The NBP1302U cruise has stations on both the low –CHL open ocean and the
shelf region characterized by high CHL. When compared with the in situ measurements, the fCHLSAT

data exhibit R2 = 0.24, MSE = 0.06 mg m−3, RMSE = 0.25 mg m−3 and MAE = 0.31 mg m−3 and the
CHLADJ data have R2 = 0.74, MSE = 0.02 mg m−3, RMSE = 0.16 mg m−3 and MAE = 0.36 mg m−3,
showing that the satellite observations have a lower correlation with in situ measurements than the
reconstructed CHL values. Such features are particularly evident in the R2.
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Figure 9. Spatial distribution of fCHLSAT, CHLREC and adjusted CHLREC (CHLADJ) for 3 consecutive
days (upper panels: t= 3 January 2014; lower panels: t=22 January 2017). Thick gray lines in the CHL
spatial distribution are the contours of 60% sea ice concentration (SIC); regions with more than 60% SIC
were masked in the distribution of the CHLREC from the RF model.

Figure 10. Scatter plot of in situ measured CHL versus CHLSAT and CHLADJ, which were derived from
the RF model. The circles represent the in situ CHL which match the averaged CHLSAT value on 5 ×
5 pixels and the squares represent the regions where the CHLADJ do not match CHLSAT. Error bars
denote the standard deviations of the mean on the 5 × 5 pixels. Light red, orange and blue colors
denote NBP1302, NBP1302U and NBP1712, respectively. Solid and dashed lines represent the linear
regression lines for CHLSAT and CHLREC, respectively. Black lines refer to the total in situ dataset.
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4.5. Comparative Analysis of Temporal Features

In this section, a comparison is performed to confirm the difference between the fCHLSAT and
CHLADJ datasets (Figure 11). This comparison is expected to be evidence of the potential availability of
the CHLADJ data for climate research using the time–series properties. There is a significant difference
in amplitude between the time–series of the two datasets over the entire Ross Sea. In contrast to the
time–series of the fCHLSAT, which had large fluctuations, the time–series of the CHLADJ seem to be
quite stable. In general, the high fCHLSAT in November is highly associated with seasonal sea ice
reduction. The effective observed pixels at this time began to gradually increase, but not significantly
enough to have a stable standard deviation from the mean. As such, this instability may result in the
overestimation of the spatial average. When the sea ice begins to melt, the ocean–atmosphere thermal
interactions allow considerable cloud formation. Consequently, the available pixels were extremely
rare, and the usability of the data increased at the same time once the sea ice was sufficiently melted.
At this time, the amplitude of fCHLSAT also begins to be significantly reduced and does not show
much difference from the CHLADJ.

Figure 11. Time–series of spatially-averaged (a) fCHLSAT (green line) and (b) CHLADJ (light red line)
on the left y-axis and (c) SIC (light blue line) and (d) data availability for fCHLSAT (orange bar) on the
right y-axis. Time–series are shown only in summertime (November to March) during 2012/2013 and
2017/2018 and are separated by vertical thick black lines. SIC and data availability are expressed on a
13-day moving average.

4.6. Partial Dependence on CHL Reconstruction

In the PDP results, the CHL tends to increase between about 1 and 2 mg m−3 with the CHLCLIM

showing the contribution of the highest VI (25.4% ± 11.8%) but remains constant for further CHLCLIM

values (Figure 12). The consistency of the PDP for the CHLCLIM within a specific range is likely to be
due to incomplete training induced by insufficient data. Therefore, the PDP for the closest CHLCLIM

value that was sufficiently trained is maintained. This characteristic is seen in the PDP for almost all
predictors except for LAT. This consistency is not a natural state, so it has no specific meaning. The LAT,
the predictor with the second-highest VI (13.3% ± 2.7%), shows a high PDP below approximately 74

◦

S
and near 68

◦

S. The values may be determined by the average latitude of the continental shelf, open
ocean and near the Mertz Glacier Tongue with the relatively high CHL (refer to Figure 1). The DOY
has a VI of approximately 13.0% ± 9.6% and has a bimodal distribution with peaks in December and
February (the flat parts are excluded from interpretation). This bimodal feature in the Ross Sea has
been well presented by Smith et al. [38] and may be related to the December bloom in the central



Remote Sens. 2020, 12, 1898 16 of 22

Ross Sea and the February bloom in the western Ross Sea. The leading four predictors, including the
LON variable with a VI of 9.0% ± 0.8%, contained climatological components of the Ross Sea CHL
rather than directly affecting its changes. The DEP, which is also a predictor associated with the CHL
climatology, is not entirely independent of the leading predictors; therefore, this variable has the lowest
VI (6.0% ± 0.3%). Nevertheless, the reason for not excluding the DEP is that it was first identified
as a valid predictor through the Boruta algorithm [42] mentioned earlier, and it could explain the
climatological components that have not been fully explained by the previous four leading predictors.
While the five predictive variables mentioned above are responsible for the climatological aspect of the
Ross Sea CHL, the VIs of five environmental variables that may cause the anomaly are within 8% each:
T2M (7.6% ± 0.5%), PAR (6.9% ± 1.6%), U10 (6.6% ± 5.9%), V10 (6.3% ± 0.2%) and SST (6.2% ± 0.5%).
However, these variables have ranges that are too narrow, and there were some differences between
the PDPs on the CHLREC and the CHLADJ. Thus, these results were not interpreted in this study. It is a
challenge to obtain the PDP results for these variables’ distinctive meanings by analyzing the response
of the phytoplankton to the environmental changes based on the various measurements such as in situ,
satellite and reanalysis datasets.

Figure 12. PDP (on the left y-axis) of the CHL reconstruction (light blue: CHLREC, orange: CHLADJ) for
all predictors in order of the variable importance (VI): (a) CHLCLIM, (b) LAT, (c) DOY, (d) LON, (e) T2M,
(f) PAR, (g) U10, (h) V10, (i) SST and (j) DEP. Light blue bars (on the right y-axis) indicate the data
distribution of predictors at certain bins (500 bins). Numeric values on the top of each window indicate
the VI (mean ± standard deviation,%) of the predictor obtained from the machine-learning models.

5. Discussion and Conclusions

Considering only the density plots and eight model evaluation indices presented in Figure 5,
it is evident that, overall, the model performs well. Consistent with the model evaluation approach
undertaken here, most previous studies applying machine learning in this field have simply concluded
that the model was well implemented based on such single evaluation indicators. In practice, however,
the models do not perform well. One of the most unnoticed cavities is a model failure in the range
of target values (for prediction or reconstruction) where training data are insufficient. The model
evaluation results in this minority classes (S1 and S3 in Figure 6) are not distinctly confirmed in
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the overall evaluation results (as Figure 5) compared with that of the majority class (S2 in Figure 6).
The model failure in the CHL ranges with the low data frequency (S3) was found and then diagnosed
(Figure 7). Because the high CHLs have significant implications for the studies on the phytoplankton
bloom, this needs to be solved. To avoid this problem and then raise the reconstruction efficiency,
in this study, we used a simple oversampling technique to duplicate existing data. The adjusted
model was able to achieve significant improvements with the introduction of such a method (Figure 8),
and the overall performance of the adjusted model was impressive based on the spatiotemporal
continuity of the CHL (Figure 9) and the relatively high similarity with the in situ data compared with
the satellite measurements (Figure 10). Nevertheless, further research is still required for two aspects.
First, although various oversampling methods exist, such as the synthetic minority oversampling [47]
and adaptive synthetic sampling [48] approaches, most techniques that we have tried produced rather
poor results because of fake data production and heterogeneous sampling (by random resampling).
At least, of the many methods we tried, the duplication-based method was the most effective. However,
even with this method, large uncertainties still exist. There is still no guarantee that the CHL will
reappear within these limited CHL-values. Therefore, a precise reconstruction is almost impossible for
the minority class because the discrete distribution of data can lead to insufficient training. In other
words, if a CHL value has never appeared, it cannot be properly reconstructed through the method
based on duplication. Additionally, it may not appropriate to create data through simple relations such
as least-square regression artificially. Therefore, it is required to be developed or applied an appropriate
method to process these discrete data for an optimized reconstruction model. Second, the CHLADJ

produced in this study better matched the field observation data than the fCHLSAT in terms of the
R2, MSE and RMSE (Figure 10). It may suggest that the CHLADJ is more accurate than the CHLSAT.
However, these comparison results shown here are still not absolute evidence for such a suggestion
because it was based on still lacking in situ data (N = 164). Moreover, most field observations have
been concentrated in the western Ross Sea due to its ecological importance (see Figure 1). This spatial
heterogeneity of the in situ data are hardly considered complete evidence of this conclusion.

We believe that these problems can be solved to some extent by extending the data period and
collaborating with other researchers. We targeted a single sensor (VIIRS, since 2012) dataset with no
further postprocessing to reconstruct the CHL closest to the satellite observations. Nonetheless, if the
study period is further extended using multisensor CHL products, such as GlobColor and the Ocean
Color Climate Change Initiative, it would enable the acquisition of higher data frequencies for natural
high CHL values as well as the usability of more accumulated field observation data.

In the process of using the ensemble-based machine-learning model, the PDP provides a
quantitative description of the dependence of predictors on the response of the target variable
(Figure 12) [46]. The PDP characterizes the marginal relationship between the predictor variable of
interest and the dependent predictor while accounting for the influence of all other predictors. Models
are generally accessible in terms of predictive and interpretive powers. While more sophisticated
models with high predictive power are hardly interpretative, a regression-based model can interpret
intuitively even if their performance is relatively low. Accordingly, the PDP can be applied universally
to various models and is one of the attempts to interpret the relationship between the modeled
values and the input variables. With this advantage, many studies have used the PDP to explain
the relationships between a responsive variable and environmental predictors in the oceanographic
fields (e.g., climate-induced local habitat variability of commercial fishes [49], long-term changes in the
trophic position of organisms [50] and nitrogen fixation [51]). In this study, we added geographical
features into the model development process such as LAT, LON, DOY and DEP, including CHLCLIM,
which is hardly a physical factor. These predictors are not factors leading to a specific CHL change
but denote the mean state of the CHL distribution in the Ross Sea. They also contain parts that
the physical predictors applied here cannot explain. Therefore, it is incorrect to elucidate the CHL
changes through these factors. In addition, the PDPs are flat in the parts where the data frequency
of the predictor variable is low. The flatness exhibits response to adjacent and sufficiently trained
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predictors. Then these flat parts must be excluded from the analysis. We expect that this approach
will play an essential role in identifying the deterministic relationship between the environmental
variables and the variation in the CHL. Moreover, the PDP allows us to investigate the model sensitivity
towards the accuracy of the input variables. For example, for T2M, with the highest VI among the
environmental factors, if the actual T2M is assumed to be −1.0 °C and the observed T2M is one degree
Celsius, an error of approximately 0.05 mg m−3 may occur in the CHL value reconstructed in this
model. However, if the observed T2M is −3.0 °C, the difference between the input value (∆T2M = two
degrees Celsius) is consistent with in the previous case, but it may not contribute significantly to the
change in the CHL. Although the PDP is a useful tool in terms of the environmental interpretation and
sensitivity towards input variables mentioned above, it is still necessary to continuously test whether
the response suggested by the PDP occurs in nature. We are working on a quantitative and systematic
assessment of how useful PDP is for environmental interpretation, as well as a sensitivity evaluation of
the input predictors.

Despite some improvements, in the current version, the model performance does indeed show
considerable skill in reconstructing the CHL data, and the products are expected to be applied to
various studies of phytoplankton dynamics in the Antarctic Ross Sea. For example, quantitative and
detailed studies on characteristics of bloom phenology, such as bloom peaks and timings (initiation
and termination), could be possible, as well as the variability of multiple time scales of phytoplankton
growth (Figure 13). As shown in Figure 13, the time–series of the climatological fCHLSAT and the
CHLADJ show similar seasonal variations in the CHL overall in all regions. However, the significant
issue is regarding the length of the error bar associated with the amplitude of the annual variation in
the CHL. The amount of cloud cover differs every year, and the spatial average is calculated based only
on the CHL values of the limited exposed surface layer. In terms of the amplitude of annual variation,
the CHLADJ generally seems to have more stable variations compared with that of the fCHLSAT.
This stability may be attributed to the actual CHL difference from year-to-year, but the inconsistency
of the number of valid pixels each year is likely to be the more critical factor for significant annual
variations, on only the remotely-sensed data. Therefore, the analysis using the CHLADJ data could
be more beneficial than that with the fCHLSAT or CHLSAT for the annual variation of phytoplankton
biomass because the use of satellite measurements without any treatment could lead to a critical
misinterpretation of results. In addition, the fCHLSAT, even in climatology, too often has missing values
during the austral spring and summer (November to March). In most regions in Figure 13, including
November, a complete data absence often occurred. While these data absence makes it difficult to study
short-term phytoplankton dynamics practically, the CHLREC permits the examination of the detailed
process of variation over each spring and summer. Notably, it is necessary to test whether these
predicted CHL variations (especially the period of permanent data missing) are consistent with the
actual CHL variations, and such verification can be achieved by securing many in situ measurements.
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Figure 13. Climatological time–series of the spatially-averaged daily CHL from fCHLSAT (black lines)
and CHLADJ (red lines) for five arbitrary regions; A1 (western Ross Sea), A2 (southern Ross Sea), A3 (off

cape Colbeck), A4 (eastern Ross continental shelf break) and A5 (eastern Ross Sea). Magnitude of the
error bar indicates the annual variation in the CHL.
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