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— Abstract ~
Understanding of soil organic carbon (SOC) dynamics Is important to ecological succession, because the change in the quality and quantity of soil carbon is closely related to the
microbial species turnover. Many studies have been conducted separately on SOC dynamics and microbial community thus, we investigated the linkage between SOC dynamics,
particularly DOM more readily available to microbes, and microbial community composition together during succession process on glacier foreland in high Arctic. In this study;,
we applied high-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) to investigate the molecular characteristics of dissolved organic carbon
(DOM) and their dynamics along the deglaciation. Soil samples were collected in the foreland of the Midtre Lovénbreen glacier (78.8°N, 12.0°E) in Ny-A lesund, Svalbard,
Norway. As a results so far, the diversity of DOM molecules shows unique pattern, especially in Proteins-, Lipids- and Lignins-, following deglaciation. Changes in DOM
chemical composition is related more strongly with RNA-based community dynamics of bacteria and protist than fungi and archaea. It will be discussed which factor, such as

\_ Microbial taxa and abiotic factor, drives this unique pattern of DOM molecules with further analysis. )
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This Is the first study to examine linkage between DOM chemistry and microbial
taxa during terrestrial ecosystem development.
A unique DOM molecular richness pattern was observed, with peaks in 20-60 years
and after 80 years.
The amount and composition of DOM molecules measured by FT-ICR-MS are

highly correlated with microbial biomass in glacier foreland.

DOM composition 1s more strongly associated with potentially active RNA-based
bacteria and protists communities than DNA-based ones
N-cycle associated microbial OTUs, belong to Nitrospirae, Cyanobacteria,
Proteobacteria, Ciliophora and Cercozoa, were observed In a co-occurrence
network between DOM molecules and microbial OTUs.
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