Byeong-Gwon Song Korea Polar Research Institute (KOPRI) 2020 KSSS Fall Conference

Statistical analysis of neutral winds in the MLT using 14 years (2007–2020) of meteor radar data at King Sejong Station

Byeong-Gwon Song¹, Changsup Lee¹, Jeong-Han Kim¹, In-Sun Song¹, Geonhwa Jee¹, and Hye-Yeong Chun²

¹Division of Polar Climate Research, Korea Polar Research Institute, South Korea ²Department of Atmospheric Sciences, Yonsei University, South Korea

Introduction

- The mesosphere and lower thermosphere (MLT) region is an important region connecting the lower atmosphere and the space.
- Investigation of atmospheric dynamics in the MLT region, therefore, is essential to understand a coupling process between the lower atmosphere and the space.
- A meteor radar (MR) can continuously observe winds and temperatures in the MLT region regardless of weather conditions.
- MLT winds over **King Sejong Station (KSS)** have been observed using the very high frequency MR since March 2007.
- The observed horizontal winds consist of large-scale components, including atmospheric tides (such as semidiurnal tides and diurnal tides) and planetary waves (PWs) (such as 2-, and 4-day waves).
- A study on the temporal characteristics of the neutral winds and waves revealed from the long-term observations will improve our understanding of wave dynamics and vertical couplings between the lower and upper atmosphere.

In this study, we investigate the seasonal, interannual, and long-term variability of the neutral winds including tide and PW components in the MLT at KSS using the MR for 14 years (2007–2020).

Data and Methodology

Meteor radar data at KSS •

Data and Methodology (cont.)

***** Large-scale wind components

- The fast Fourier transform (FFT) is used in each 4-day (96-hour) window incremented in 1-hour time steps. Here, we select a 4-day window to include the 2- and 4-day wave, which is somewhat large in the mesosphere.
- The large-scale wind components within the 4-day window include
 - <u>Tidal components</u>
 - diurnal (24 h), semidiurnal (12 h), and terdiurnal (8 h) tides
 - <u>PW components</u>
 - 2- and 4-day waves

Temporal variations and spectral analysis

- Monthly-averaged data
 - only for months when more than 15 days of observations were conducted
- Spectral analysis
 - the Lomb-Scargle periodogram method (Lomb, 1976; Scargle, 1982) is used

Data and Methodology (cont.)

MERRA-2 reanalysis data

MERRA-2 reanalysis data on m						
Variables		<i>u</i> , <i>v</i> , <i>w</i> , <i>T</i> , and C				
Period		2007–202				
Resolution	Temporal	3				
	Horizontal	$0.625^{\circ} \times 0$				
	Vertical	72 layers (up to 0				

PW propagation: Eliassen-Palm fluxes $(F^{(\phi)}, F^{(z)})$

$$F^{(\phi)} = \rho_0 a cos \phi \left[\frac{\partial \bar{u}}{\partial z} \frac{\overline{v' \theta'}}{\partial \bar{\theta} / \partial z} - \overline{u' v'} \right], \qquad F^{(z)} = \rho_0 a cos \phi \left[f_a \frac{\overline{v' \theta'}}{\partial \bar{\theta} / \partial z} - \overline{u' w'} \right].$$

PW generation by a baroclinic instability: zero potent

	$\partial \overline{q}$ _	2Ωcosφ	1	д	1	$\partial(\bar{u}cos\phi)$	1
- ($a\partial\phi$	a	$\overline{a^2}$	$\partial \phi$	<u>cosφ</u>	$\partial \phi$	$\overline{\rho}$

✓ The perturbation: a departure from the zonal mean

odel level

3 mass mixing ratio

20 (14 years)

hours

0.5° (lon. x lat.)

0.01 hPa (~80.6 km))

tial vorticity gradient
$$\left(\frac{\partial \bar{q}}{\partial \partial \phi} = 0\right)$$

$$\frac{1}{\partial_0} \frac{\partial}{\partial z} \left(\rho_0 \frac{f_0^2}{N^2} \frac{\partial \bar{u}}{\partial z}\right).$$

Zonal winds

• Blue dot: monthly-averaged value, Red line: 2-month running averaged value, Green line: linear trend

- z < 90 km: annual variations (eastward winds in winter and westward winds in summer)
- z > 90 km: annual and semiannual variations ullet
- No statistically significant linear trend is found both in monthly- and seasonally-avg. values

Meridional winds

averaged value, Green line: linear trend

- Smaller than the zonal winds
- Mostly equatorward, except in autumn \bullet
- Annual (in whole height range) and semiannual (above z = 90 km) variations
- No statistically significant linear trend lacksquare

- **<u>Tides</u>: Black**: Semidiurnal tide, **Red**: Diurnal tide, **Green**: Terdiurnal tide
- **PWs**: **Blue**: 2-day wave, **Gold**: 4-day wave

- **<u>Tides</u>: Black**: Semidiurnal tide, **Red**: Diurnal tide, **Green**: Terdiurnal tide
- **PWs**: **Blue**: 2-day wave, **Gold**: 4-day wave

- **<u>Tides</u>: Black**: Semidiurnal tide, **Red**: Diurnal tide, **Green**: Terdiurnal tide
- **PWs**: **Blue**: 2-day wave, **Gold**: 4-day wave

- **<u>Tides</u>: Black**: Semidiurnal tide, **Red**: Diurnal tide, **Green**: Terdiurnal tide
- **PWs**: Blue: 2-day wave, Gold: 4-day wave

- **Tides: Black**: Semidiurnal tide, **Red**: Diurnal tide, **Green**: Terdiurnal tide
- **PWs**: **Blue**: 2-day wave, **Gold**: 4-day wave

• **<u>Tides</u>**: **Black**: Semidiurnal tide, **Red**: Diurnal tide, **Green**: Terdiurnal tide

• **PWs**: Blue: 2-day wave, Gold: 4-day wave

Semidiurnal tides

• Blue dot: monthly-averaged value, Red line: 2-month running averaged value, Green line: linear trend

- The growth of the amplitude of semidiurnal tides with height
- Annual, semiannual, and terannual variations with a primary peak in May

height Imary peak in May

Semidiurnal tides and stratospheric ozone mixing ratio

- The semidiurnal tide is generated by the interaction of solar radiation with stratospheric lacksquareozone
- No significant linear trends are found both in amplitude of SDT and ozone mixing ratio, except for increasing trends in amplitude of SDT above 93.3 km during spring (not shown)

2-day waves

• Blue dot: monthly-averaged value, Red line: 2-month running averaged value, Green line: linear trend

- Annual and semiannual variations with a primary peak in January
- No statistically significant linear trend lacksquare

Generation and propagation of the 2-day waves in

• Vector: Eliassen-Palm flux, shading: EP flux divergence, • Magenta contour: zero PV gradient line

Summary and discussions

- Meteor radar at KSS in the Antarctic Peninsula are used to analyze winds in the MLT region over a **14-year** period (2007–2020).
 - Annual and semiannual variations in horizontal winds are observed in MLT region.
 - No statistically significant linear trends are found.
- Spectral analysis of the observed horizontal winds is performed to investigate the characteristics of **tides** and **planetary waves**
 - Amplitude of the **semidiurnal tide** is the largest among the three tidal component.
 - The semidiurnal tidal signal is dominant above 90 km, especially in May, which has also been shown in previous studies (Hibbins et al., 2007; Lee et al., 2013).
 - Strong semidiurnal tide activities are associated with the ozone concentration in the **stratosphere** over mid- and high-latitudes.
 - The amplitude of the 2-day wave shows clear seasonal variability, with a maximum value in summer (especially in January), secondary maximum in winter, and nearzero value in spring and autumn, which is consistent with previous studies (Baumgaertner et al., 2008; Manson et al., 2004; Murphy et al., 2007; Nozawa et al., 2003; Phillips, 1989; Sandford et al., 2008; Tunbridge & Mitchell, 2009).
 - In January, the 2-day wave generated by the **baroclinic instability** in the midlatitude upper stratosphere can propagate to the MLT in the polar regions.

THANK YOU.

40

-90

-80

-70 -60 -50 Latitude (deg) -90 -80 -70 -50 -40 -30

40

Mean U

-70 -60 -50 Latitude (deg)

-70

-50

-40

-30

-75 -60 -45 -30 -15 0 15 30 45 60 75 90 (m s⁻¹)

-75 -60 -45 -30 -15 0 15 30 45 60 75 90 (m s⁻¹)

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 (m s⁻¹ day⁻¹)

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 (m s⁻¹ day⁻¹)

EP fluxes & EPD (ZWN-3)

Apr

EP fluxes & EPD (ZWN-3)

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 (m s⁻¹ day⁻¹)