

Agenda

- Introduction
- Data set
- Case event
- Statistical event
- Pc1 waves in the ionosphere
- Summary

Introduction

Pulsations type	Periods (s)	Frequency (mHz)
Pc1 (EMIC)	0.2 – 5	200 – 5000
Pc2	5 – 10	100 – 200

Introduction

- A waveguide theory for ionospheric propagation of MHD waves and mode conversion through collision processes in the ionosphere [Tepley and Landshoff, 1966].
- Duct propagation is most efficient along the magnetic meridian [Greifinger and Greifinger, 1973].
- Small attenuation during night hours, but it is large during the day, because increased electron density [Manchester, 1966].
- Left handed polarization in space and convert to right handed polarization as propagation in the ionosphere [Greifinger, 1972; Fujita and Tamao, 1988].

Paper	Latitudinal range	
Fraser (1975)	66.6 – 49.0° N	
Hayashi et al. (1981)	75.1 – 53.7° N	
Engebretson et al. (2002)	74.0 – 66.5° S	
Neudegg et al. (2002)	75.6 – 70.5° S	
Kim et al. (2010)	86.7 – 61.2° S	

Kim et al.(JGR, 2010)

Motivation

Latitudinal range
66.6 – 49.0° N
75.1 – 53.7° N
74.0 – 66.5° S
75.6 – 70.5° S
86.7 – 61.2° S

Station	GM Lat.	GM Long.
Jang Bogo	79.7° S	54.4° W
Neumayer	60.5° S	42.88° E
King Sejong	48.5° S	12.3° E

Wide range and crossing the plasmapause

Data set

Ground search-coil magnetometer data

Station	Geographic (deg)	Geomagnetic (deg)	Magnetic local time
Jang Bogo (JBS)	-74.37 / 164.13	-79.72 / -54.43	UT +15.35
Neumayer (VNA)	-70.40 / -8.16	-60.45 / 42.88	UT -4.20
King Sejong (KSS)	-62.13 / -58.47	-48.47 / 12.32	UT -2.17

- Sampling rate JBS: 10 Hz / KSS: 20 Hz / VNA: 20 Hz
- Re-sampled down to 10 Hz
- Interval: 2019/03 ~ 2019/12
- Swarm data
 - High resolution (50 Hz) magnetic field data → 10 Hz
 - 2nd order poly-fitting
 - Convert coordinates from NEC to BFA (Background Filed Aligned)

Event selection

Transverse component of PSD

 $PSD_{tr} = PSD_x + PSD_y$

- PSD criteria: 10⁻³ [(nT/0.1s)/Hz²]
- Low cut off frequency: 200 mHz
- Duration time: over than 10 min

Case event: 28 May 2019

Statistical anlaysis

- Pc1 waves at VNA: 113 events from Mar to Dec in 2019
 - Ducting Pc1: 45 waves at KSS (40%)
 - 17 waves propagating to JBS and KSS (15%)

Statistical analysis

	VNA	VNA-KSS	JBS-VNA-KSS
Low coh. (γ < 0.6)	45	16 (35.6%)	2 (4.4%)
High coh. (γ > 0.6)	68	29 (42.6%)	15 (22.1%)

- Pc1 with high coherence propagated far distance than low coherence.
- Most of Pc1 waves observed at VNA are polarized.

- All high-coh. Pc1s are high-polarized (R > 0.6).
- Left handed polarization
 - small number of event
 - direct precipitation from space
 - high possibility of ducting to KSS and JBS
- Other polarization
 - propagating from other source region
 - ducting in the small region than LH

Attenuation factor

How to determine the attenuation factor?

- 1) Set time interval using dynamic spectrum
- 2) Find peak frequency ag VNA
- 3) Integrated PSD in the range of frequency and time

Attenuation factor

- Attenuation of ducted Pc1 waves are influenced by enhancement of electron density in the ionosphere.
 - Attenuation factors to JBS < Attenuation factors at KSS
 - Not clear sun-light effect: characteristics of polar region (polar night at JBS)

Paper	Attenuation factor
Hayashi et al. (1981)	100 or 25 dB/1000 km
Neudeggg et al. (2000)	41 dB/1000 km
Kim et al. (2010)	8-20 dB/1000 km

Swarm observation

ing

Swarm observation

- The foot-points of Swarm is very close to VNA at 01:53 UT.
- Swarm detected broad-band signal.
- Peak frequency at LEO is larger than the frequency of Pc1 wave on the ground.
- $f_S \sim 1.03 f_{VNA}$ for y-component at Swarm-C.

- Swarm probes passed near KSS and VNA from 11:55 to 12:00 UT.
- After crossing aurora oval (~11:55:30 UT),
 Swarm-A and -C observed ULF waves in the Pc1 band.
- The frequency at Swarm is slightly higher than on the ground $(f_S \sim 1.1 f_{VNA})$. --> Why?

Doppler effect in the ionosphere

Ground

First identification of Doppler effect in the Pc1 band

Summary

- Statistical analysis of ducted Pc1 waves from Mar to Dec in 2019
 - Total Pc1s at VNA: 113
 - Ducted Pc1s to KSS: 45 (40%) / to JBS: 18 (16%)
- Proper ducting condition
 - High amplitude / Long duration
 - High coherence and polarization
- Attenuation factor
 - Influenced by the latitudinal dependence of electron density
- LEO satellite observed ducted Pc1 waves
 - Frequency difference because Doppler effect

Future work

- Ducting range
 - distance issue: using other data (e.g., SPA, MCM, and AGO)
 - regional issue: the plasmapause, cusp
 - horizontal propagation: 16 Mar event

- The variations of polarization during waveguide
- Confirm Doppler effect in the ionosphere
 - frequency relation between ground station and satellite

Solar wind condition and plasmapause

• Plasmapause:

- Night side: L = 3

- Day side: L = 5

• VNA:

2019/05/28 00:00:00 - 2019/05/28 06:00:00 UTC

RBSP-B ³

O 06 UT

Polarization change

	Left-handed		Right-handed		Linear	
	KSS	JBS	KSS	JBS	KSS	JBS
# of ducted Pc1s	8	5	11	7	10	3
Left-handed	1	1				
Right-handed	4	2	1	3	3	1
Linear	3	2	4	3	5	1
Mix			4	1	2	1

- Polarization changed as waves propagated.
 - from left-handed to right-handed in theory
- No left-handed Pc1 waves at KSS and JBS, except when VNA observed Pc1 with left-handed polarization.

Event selection

Polarization change

Statistical analysis

	VNA	VNA-KSS	JBS-VNA-KSS
Low coh. (γ< 0.8)	79	28 (35.4%)	7 (8.9%)
High coh.	34	17 (50.0%)	11 (32.4%)
Low pol. (<i>R</i> < 0.6)	1	0	0
High pol.	112	45 (40.2%)	18 (16.1%)

Most of Pc1 waves at VNA are polarized,

Attenuation factor

Paper	Attenuation factor	Paper	Attenuation factor
Hayashi et al. (1981)	100 or 25 dB/1000 km	Kim et al. (2010)	8-20 dB/1000 km
Neudeggg et al. (2000)	41 dB/1000 km	Kim et al. (2010)	1-14 dB/1000 km

Statistical analysis

	VNA	VNA-KSS	JBS-VNA-KSS
Low coh. (γ< 0.6)	45	16 (35.6%)	2 (4.4%)
High coh.	68	29 (42.6%)	16 (23.5%)
Low pol. (<i>R</i> < 0.6)	1	0	0
High pol.	112	45 (40.2%)	18 (16.1%)

- Pc1 with high coherence propagated far distance than low coherence.
- Most of Pc1 waves observed at VNA are polarized.

- Left handed polarization
 - small number of event
 - direct precipitation from space
 - high possibility of ducting to KSS and JBS
- Other polarization
 - propagating from other source region
 - ducting in the small region than LH

